GigaScience

Micro X-ray computed tomography-based atlas of mouse cranial development --Manuscript Draft--

Manuscript Number:	GIGA-D-20-00282		
Full Title:	Micro X-ray computed tomography-based atlas of mouse cranial development		
Article Type:	Data Note		
Funding Information:	Ministerstvo Školství, Mládeže a Tělovýchovy (LQ1601/LM2018110)	Not applicable	
	Vysoké Učení Technické v Brně (CEITEC VUT-J-20-6477)	Mr. Jan Matula	
	Vysoké Učení Technické v Brně (CEITEC VUT-J-20-6317)	Mrs. Marketa Tesarova	
Abstract:	(CEITEC VUT-J-20-6317) International content of the content of t		
Corresponding Author:	Tomas Zikmund, PhD Central European Institute of Technology, E Brno, CZECH REPUBLIC	Brno University of Technology	
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Central European Institute of Technology, E	Brno University of Technology	
Corresponding Author's Secondary Institution:			
First Author:	Jan Matula, MSc		
First Author Secondary Information:			
Order of Authors:	Jan Matula, MSc		
	Marketa Tesarova, MSc		

Powered by Editorial Mahagas Zikmunder Wanager® from Aries Systems Corporation

	Marketa Kaucka, PhD
	Igor Adameyko, PhD
	Jozef Kaiser, PhD
Order of Authors Secondary Information:	
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically	

appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	J in	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?		

±

Micro X-ray computed tomography-based atlas of mouse cranial development

4 J. Matula¹, M. Tesarova¹, T. Zikmund¹, M. Kaucka^{2,3}, I. Adameyko³, J. Kaiser¹

- ⁵ ¹ Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- 6 ² Max Planck Institute for Evolutionary Biology, Plön, Germany
- 7 ³ Medical University Vienna, Vienna, Austria

8 Abstract

Background: Micro X-ray computed tomography (μ CT) has become an invaluable tool for nondestructive analysis of biological samples in the field of developmental biology. Mouse embryos are typical model for investigation of human developmental diseases. By obtaining 3-D high resolution scans of the mouse embryo heads, we gain valuable morphological information about the structures prominent in the development of future face, brain and sensory organs. The development of facial skeleton tracked in these μ CT data provides a valuable background for further studies of congenital craniofacial pathologies.

Findings: In this work, re-usable tomographic data from 7 full 3-D scans of mouse embryo heads are presented and made publicly available. The ages of these embryos range from E12.5 to E18.5. The samples were stained by phosphotungstic acid prior to scanning, which greatly enhanced the contrast of various tissues in the reconstructed images and enabled precise segmentation. The images were obtained on a lab-based μCT system. Furthermore, we provide manually segmented masks of mesenchymal condensations (for E12.5 and E13.5) and cartilage present in the nasal capsule of the scanned embryos.

1

Conclusion: We present a comprehensive dataset of X-ray 3-D computed tomography images of the developing mouse head with high-quality manual segmentation masks of cartilaginous nasal capsules.
The provided µCT images can be used for studying any other major structure within the developing mouse heads. The high quality of the manually segmented models of nasal capsules may be instrumental to understand the complex process of the development of the face in mouse model.

28 Keywords

29 X-ray, computed tomography, mouse embryo head, tissue contrast, 3-D modelling, nasal capsule

30 Data description

31 Context

32 Vertebrate head is considered one of the most complex parts of the body. The head is formed during 33 the embryonic development through a process known as morphogenesis, which involves hundreds of 34 genes and non-coding regulatory sequences [1,2]. This intricate body compartment hosts numerous 35 cell and tissue types forming, for instance, muscles, ligaments, nerves and central nervous system, 36 sensory organs, hair follicles, teeth, which are all integrated in the complexly shaped skull. There is a 37 remarkable inter- but in some cases (such as humans) also intra-species variability of the craniofacial 38 shapes [3]. Reportedly, the shape of the face (or the whole head) depends on the geometry of the 39 skeleton that provides protection to sensitive nervous tissues and serves as a scaffold for muscle 40 attachment [1]. The skeleton of the head is formed by two types of stiff tissue – bone and cartilage. 41 Although the majority of head skeleton in mammals is formed by bones postnatally, the embryonic 42 development of the skull relies on the cartilage. Chondrocranium is induced as 14 independent pieces 43 that grow, acquire specific shape and fuse later on to form the skull [1]. Interestingly, the development of cartilage and bone corresponds to the progress of development of central and peripheral nervous 44 45 system and sensory organs [2]. Therefore, what is the exact developmental link between the 46 emergence of nervous structures and the appearance of cartilage and bone, is one of the fundamental questions in developmental biology. At the same time, understanding both molecular basis and cellular dynamics driving the formation and shaping of the mammalian head is of utmost interest in the field of clinical genetics and regenerative medicine, dealing with a broad spectrum of human congenital craniofacial disorders.

51 In our previous work, we aimed to explore the exact sequence of formation and shaping of the 52 mammalian developing face and we used a mouse model for our investigation [1,2]. The 53 morphological properties of the observed structures are complex and to fully understand their 54 shaping, advanced imaging techniques are required. X-ray computed tomography technique is one of 55 the oldest imaging techniques, but in recent years it has shown its strengths in the field of 56 developmental biology [4]. The principle of X-ray computed tomography lies at acquiring 2-D 57 projections of the scanned sample at regular angle increments. 3-D view of the scene is then created 58 by the process of tomographic reconstruction. This way we gain 3-D spatial information that would 59 be otherwise unobtainable without destroying the sample. The superior resolution of modern lab-60 based µCT machines provides a way to visualize and analyze biological structures on the level of units 61 of micrometres and more importantly, in the 3-D spatial context. We combined genetic tracing, gene 62 knock-out strategies, mathematical modelling and µCT to reconstruct the craniofacial development in 63 detail. As a result, we generated a full set of μ CT scans from wild type mouse strains, ranging from 64 E12.5 (where the first induction of early cartilage, represented by condensation of the mesenchyme, can be observed) to E18.5 with fully formed chondrocranium. 65

66 While μCT has been proven useful for non-destructive high-resolution imaging of high-density 67 biological tissues (e.g. bones [5,6], teeth [7,8]), there are issues with the differentiation between types 68 of soft tissues in the resulting images. The reason is an insufficient difference in their X-ray attenuation 69 coefficients, which results in low contrast in the reconstructed tomographic images [4]. This inherent 70 limitation of absorption-based computed tomography can be addressed by utilizing contrast-71 enhancing techniques (e.g. staining the sample with contrast-enhancing chemical substances [9]). We

3

72 used a tissue-contrasting method based on a different uptake of phosphotungstic acid (PTA) by various 73 tissues, resulting in an unprecedented resolution and visibility of fine structures (see Figure 1 for 74 example tomographic slices). It enabled us to differentiate between nasal capsule cartilage (and 75 mesenchymal condensations in the images of younger embryos) and surrounding soft tissues. An 76 operator was then able to manually segment the mesenchymal condensations and cartilage forming 77 the nasal capsule of the embryos (Figure 2). We provide the generated manual segmentations 78 alongside the tomographic slices. These scans can be used by researchers interested in the 79 development of various structures in the head.

Figure 1: Examples of tomographic slices of mouse embryos 12.5 days old (E12.5) and 18.5 days old (E18.5). μCT scanning of
samples stained with PTA provides image data with excellent contrast, where even fine details are visible. Yellow arrows show
areas of the imaged that might be interesting for potential users of the provided dataset.

83 Figure 2: 3-D reconstruction of a mouse embryo head E17.5. Yellow 3-D model represents segmented nasal capsule and
84 Meckel cartilage in the head.

The provided atlas of mouse cranial development (including tomographic slices and segmented nasal capsules) will be essential for tracing normal development of any tissue type within the vertebrate head. Given the excellent differential contrast and general high quality of the data, they can be reused for any investigation of normal anatomy during developmental time course.

89 Methods

90 Sample preparation

91 Mouse embryonic heads were contrasted using PTA-staining procedure, followed by a µCT 92 measurement. The staining protocol is a modification of the protocol pioneered by Brian Metscher [9] 93 and has been described previously in [2,10]. Briefly, the mouse embryos were fixed with 4% 94 formaldehyde in phosphate buffer saline (PBS) for 24 hours at 4 °C. The samples were then washed 95 with PBS and subsequently dehydrated with 30%, 50% and 70% ethanol for 1 day each to minimize 96 shrinking of the embryonic tissue. The samples were then transferred into 1.0-1.5% PTA solution in

4

97 90% methanol. The solution was replaced every 2 to 3 days. The E12.5 sample was left to absorb the 98 contrasting solution for 7 days, the E15.5 for 21 days and the E18.5 for 49 days. Starting with the stage 99 E15.5, the head was separated from the body at the level of shoulders to ensure an adequate and 100 uniform contrasting. After this staining procedure was completed, the samples were rehydrated in 101 ethanol series of decreasing concentration (90 %, 70 %, 50 % and 30 %). Prior to the µCT scanning, the 102 samples were submerged in 1% agarose gel and placed in polypropylene conical tubes with volume 103 ranging from 0.5 to 15 ml. The tube volume was chosen with respect to the size of the sample in order 104 obtain images of the best possible quality. The prepared samples are listed in Table 1.

105 Table 1: List of samples

Resource	Organism	Strain	Age	Source	RRID
Embryo 1	Mus	C57BL/6NCrl	12.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	
Embryo 2	Mus	C57BL/6NCrl	13.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	
Embryo 3	Mus	C57BL/6NCrl	14.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	
Embryo 4	Mus	C57BL/6NCrl	15.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	
Embryo 5	Mus	C57BL/6NCrl	16.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	

Embryo 6	Mus	C57BL/6NCrl	17.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	
Embryo 7	Mus	C57BL/6NCrl	18.5 days after	Charles	RRID:IMSR_CRL:27
	musculus		fertilization	River	
				Germany	

107 Image acquisition

108 The samples were scanned with a lab-based μ CT system GE Phoenix v|tome|x L 240 (GE Sensing & 109 Inspection Technologies GmbH Germany). The system was equipped with a high contrast flat panel 110 detector DXR250 with 2048 × 2048 pixel resolution. The embryos were fixed in polyimide tubes filled 111 with 1% agarose gel to prevent the sample movement during the µCT stage rotation. 2000 projections 112 were acquired with an exposure time of 900 ms per projection. Each projection was captured three 113 times and an average of the signal was used to improve the signal-to-noise ratio. The acceleration 114 voltage of the X-ray tube was 60 kV and the tube current 200 μ A. The X-ray beam was filtered with a 115 0.1 mm aluminium plate.

116 Software processing

Tomographic reconstruction of the obtained set of projections was performed with GE phoenix datos
 |x 2.0 3-D computed tomography software (GE Sensing & Inspection Technologies GmbH Germany),

- 119 which allowed to generate a 3-D image of the mouse embryo head. The voxels are isotropic, the voxel
- 120 sizes for individual samples are shown in Table 2.

121

Table 2: Voxel sizes of individual samples

Sample	Voxel size [µm]
Embryo 1	3.2
Embryo 2	3

Embryo 3	5
Embryo 4	6
Embryo 5	6
Embryo 6	5.8
Embryo 7	5.5

123 Manual segmentation

124 Avizo (Thermo Fisher Scientific, USA) image processing software was used for manual segmentation 125 of the mesenchymal condensations and nasal capsule cartilage in the reconstructed CT images. Avizo 126 is a commercial software providing a broad range of tools for manipulating and procession 3-D image 127 data. The manual segmentation of the cartilaginous nasal capsule tissue takes approximately 10 to 20 hours depending on the size of the sample and the experience of the operator. To make the load of 3-128 D segmentation volume smaller, only every 3rd slice was manually segmented and the rest was 129 130 calculated by linear interpolation between adjacent manually segmented slices [10]. This three-fold 131 increase in segmentation speed does not affect the accuracy of the segmentation in a significant way, 132 because the small slice width makes differences in structures in adjacent slices minimal. The cartilage 133 was segmented in 2-D slices of the whole 3-D volume, so there is in some cases a staircase artefact 134 present in the planes other than the plane, in which the segmentation was performed.

135 Data validation and quality control

The segmented 3-D models of nasal capsule can be subjected to various subsequent analyses that further highlight the differences between compared models from distinct samples. For instance, wall thickness analysis of the segmented nasal capsule provides valuable information outside of the general morphology assessment of the mouse embryonic anterior face. This information serves to compare multiple samples and provides quantitative information on the variability within the samples (Figure 3). Such an approach was instrumental in the work of Kaucka and collaborators [1,2] where 142 the wall thickness analysis was used to dissect the fundamental mechanisms of cartilage growth and highlighted the molecular basis of the thickness regulation. The obtained results were implemented 143 144 in the mathematical model that could predict the underlying cellular dynamics of the cartilage growth. 145 Furthermore, using this method it was possible to depict subtle differences between control and 146 mutant embryonic samples that appeared otherwise morphologically similar [1]. Together with core 147 measurements such as the width and the length of the nasal capsule and mapping the surface expansion during the embryonic growth, authors acquired detailed understanding of the shaping and 148 149 the growth of this complex structure.

- Figure 3: Wall thickness analysis of the manually segmented mouse embryonic nasal capsule (sample E17.5). The wall
 thickness is calculated as the diameter of a hypothetical sphere that fits within boundary points of the nasal capsule mesh.
 The 3-D wall thickness model was created in the Dragonfly software (Object Research Systems (ORS) Inc., Canada).
- Shape comparison between individual stages of development provides us with valuable information about the areas of the sample, where growth is the most prominent. Figure 4 depicts such analysis performed on nasal capsule of embryos in developmental stages ranging from 12.5 to 17.5 days old [1]. This analysis was done in the software GOM Inspect (GOM GmbH, Germany).
- Figure 4: Manually segmented nasal capsules of developmental stages E13.5, E14.5, E15.5, E16.5 and E17.5 were compared
 to the previous developmental stage in the GOM Inspect Software. Figure adapted from Figure 3—figure supplement 2
 from [1] under CC BY 4.0.

By manually segmenting the nasal capsule cartilage in reconstructed images of the samples, we were able to obtain anatomically accurate 3-D printed model of the embryonic mouse nasal capsule. This is very beneficial for researchers to physically evaluate the morphology of the embryonic head. Precise visualisation of the developing nasal capsule together with the opportunity to produce a physical 3-Dprinted model of this complex anatomical structure allows better understanding of the organization of single skeletal elements in the framework of the sophisticated organisation of mammalian embryonic head [10]. (Figure 5).

Figure 5: 3-D printed model of the mouse embryo nasal capsule (right) next to its 3-D render created from manually segmented binary masks (left). Figure adapted from Figure 7 from [10] under CC BY 3.0.

169 Re-use potential

170 This dataset with its high quality manually segmented masks can be instrumental in creating a robust 171 method for segmentation of cartilaginous structures from µCT images of mouse embryos. The field of 172 image processing is lately being dominated by deep learning algorithms and specifically convolutional 173 neural networks (CNNs) consistently achieve state-of-the-art results in fully-automatic image 174 segmentation tasks [11]. A segmentation model created in such way could make acquiring new 175 samples for analysis of nasal capsule development in mouse embryos much less time consuming, 176 because the time-expensive process of manual segmentation would be eliminated. Nevertheless, high 177 quality scans with a sufficient tissue contrast are required for such automated segmentation. Our 178 dataset has been validated for its suitability for such deep learning algorithm application and can be 179 therefore used by other researchers for this purpose as well.

180 **Biological potential:**

181 The possibilities to re-use this dataset are broad and include the analysis of developmental changes in 182 nasal epithelium, eyes, whiskers, tongue, oral cavity, developing teeth, brain, cranial cartilage and 183 bone, tendons, muscles, endocrine organs, vessels and nerves. For instance, questions pertaining to 184 the mechanisms controlling growth and shaping of the brain or craniofacial skeleton are still open, 185 and will benefit from presented data. Furthermore, during development and growth, multiple tissue-186 interactions and integration events occur at multiple morphologically distinct tissue interfaces. Such 187 interactions at the tissue scale lead to the development of muscle attachments, correct 188 vascularization, innervation and many other key developmental events. This dataset embraces late 189 stages of mouse cranial development when the definitive tissue integration events take place. Without 190 doubts, such tomographic data will be suitable for improving our understanding of these fundamental 191 questions.

192 Availability of supporting data

193 The dataset presented in this work is available through the GigaScience Database repository. We 194 provide already reconstructed X-ray computed tomography data. The dataset is presented as 8-bit tiff 195 stacks of corresponding CT slices and manually segmented masks. The folders are structured in a way, 196 that each folder representing one sample contains two folders: Images and Masks. The Images folder 197 contains reconstructed tomographic slices in Tiff format, the folder Masks contains corresponding 198 manually segmented masks. The naming convention is: Sample_name.tif for slice and 199 mask_Sample_name.tif for segmented mask. Additionally, a text file is provided for each sample 200 containing information about the voxel size.

As tiff stacks, the deposited data can be opened and viewed in any basic image viewer, however, to fully take advantage of the possibilities provided by the 3-dimensional nature of the images, a specialized viewer for 3-D data is recommended. Avizo (Thermo Fisher Scientific, USA) is a commercial software providing a broad range of possibilities to visualize, manipulate and analyze 3-D µCT image data. Another commercial software option is VG Studio MAX (Volume Graphics GmbH, Germany). We recommend the Fiji ImageJ distribution [12] as a free software option to view and manipulate the provided data.

208 Declarations

209 List of abbreviations

μСТ	micro X-ray computed tomography
CNN	convolutional neural network
GE	General Electric
ΡΤΑ	phosphotungstic acid
VG	Volume Graphics

210 Ethics approval and consent to participate

- 211 All animal work was approved and permitted by the Local Ethical Committee on Animal Experiments
- 212 (North Stockholm Animal Ethics Committee) and conducted according to The Swedish Animal
- 213 Agency's Provisions and Guidelines for Animal Experimentation recommendations.
- 214 Consent for publication
- 215 Not applicable.
- 216 Competing interests
- 217 The authors declare no competing interests.

218 Funding

- 219 This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the
- 220 Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability
- 221 Programme II and CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).
- JM was financially supported by grant CEITEC VUT-J-20-6477.
- 223 MT was financially supported by grant CEITEC VUT-J-20-6317 and by the Brno City Municipality as a
- 224 Brno Ph.D. Talent Scholarship Holder.

225 Authors' contributions

JM	conceptualization, writing – original draft, visualization
MT	methodology, data curation, writing – review & editing
TZ	conceptualization, writing – review & editing
МК	writing – original draft, writing – review & editing
IA	writing – original draft
JK	funding acquisition, supervision, project administration

227 Acknowledgements

228 Not applicable.

229 References

1. Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, et al. Oriented clonal cell
 dynamics enables accurate growth and shaping of vertebrate cartilage. Elife. 2017;
 doi:10.7554/eLife.25902.

2. Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, et al. Signals from the brain and
olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife. 2018;
doi:10.7554/eLife.34465.

3. Zollikofer CPE, Ponce de León MS. Visualizing patterns of craniofacial shape variation in Homo
sapiens. Proc R Soc B Biol Sci. 2002; doi:10.1098/rspb.2002.1960.

4. Metscher BD. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at
histological resolutions. Dev Dyn. 2009; doi:10.1002/dvdy.21857.

5. Balto K, Muller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone
destruction in mice by micro-computed tomography. J Dent Res. 2000;
doi:10.1177/00220345000790010401.

6. Sabolova V, Brinek A, Sladek V. The effect of hydrochloric acid on microstructure of porcine (Sus
scrofa domesticus) cortical bone tissue. Forensic Sci Int. 2018; doi:10.1016/j.forsciint.2018.08.030.

7. Dosedelova H, Stepankova K, Zikmund T, Lesot H, Kaiser J, Novotny K, et al. Age-related changes in
the tooth–bone interface area of acrodont dentition in the chameleon. J Anat. 2016; doi:
10.1111/joa.12490.

248 8. Landova Sulcova M, Zahradnicek O, Dumkova J, Dosedelova H, Krivanek J, Hampl M, et al.

249 Developmental mechanisms driving complex tooth shape in reptiles. Dev Dyn. 2020;
250 doi:10.1002/dvdy.138.

9. Metscher BD. Micro CT for comparative morphology: Simple staining methods allow high-contrast
3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009; doi:10.1186/1472-6793-911.

10. Tesarova M, Zikmund T, Kaucka M, Adameyko I, Jaros J, Palousek D, et al. Use of micro computedtomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum. 2016;
doi:10.1088/1748-0221/11/03/C03006.

11. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image
segmentation. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. 2015;
doi:10.1007/978-3-319-24574-4_28.

260 12. Schindelin J, Arganda-Carreras I, Frise E. et al. Fiji: an open-source platform for biological-image
261 analysis. Nat Methods. 2012; doi:10.1038/nmeth.2019.

