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Figure S1. Primer designs, directions, locations, sequences of target mutation amplification and 
troubleshooting;  Accurate identification of the mutated cells from the amplicon libraries. Related 
to Figure 1. A. Schematic illustration of primer direction  against target mRNA and the change of primer 
directionality during amplification of sc-cDNA. B. Schematic diagrams of  the nested PCR from step 1 to 
step 5, respectively. C. Oligonucleotide sequences and localization of common primers and  adaptors. D. 
Example primer positions and sequences of targeted mutation. E. Example TapeStation trace for QC and  
optimization from step 1 to 5. F. Number of reads vs rank of molecule and threshold of cell calling. G. In a 
control experiment HL60 (WT cells) were mixed with SET2 cells (heterozygous JAK2-V617F mutation) 
and ran through the experimental and analysis pipeline. The two cell populations could be distinguished 
based on their transcriptional profiles: two distinct clusters were seen when transcriptomes of the cells 
were visualized using tSNE. Marker genes were used to identify the clusters as either HL60 or SET2 
cells. Cells in which a mutated JAK2 transcript (middle panel) or a WT JAK2 transcript (right panel) were 
detected in the amplicon libraries are shown as colored points. All other cells are shown in gray. JAK2
mutation site was detected in ~4% of cells. The detection limit is primarily determined by the JAK2 
expression levels (shown in the left panel). The false positive rate of detecting a mutated transcript in a 
WT HL60 cell is less than 1%. H. In another control experiment we combined the single-cell libraries of a 
JAK2-V617F patient (ET 1) and that of the JAK2-V617L patient before the libraries were fragmented and 
indexed. We then ran the combined library through the experimental and analysis pipeline. The JAK2
amplicon sequences could be mapped back to the library from which they originated based on their 
single-cell barcode. The plot shows the number of reads of each JAK2 transcript detected for the V617F 
library (left) and V617L library (right). The colors of the points denote whether the transcript sequence 
contained a V617F or V617L mutation. Blue dots on the left side and red dots on the right side 
correspond to incorrect mapping of a mutation to a single-cell barcode, most likely due to PCR crossover 
events during amplification. Above the threshold of 100 reads, the false positive rate is negligible.



Figure S2. scRNA-seq analysis and genotyping of JAK2-mutant MPNs. Related to Figure 
2. A. UMAP of CD34-enriched bone marrow scRNA-seq data from all patients before batch 
correction, colored by donor as in B. B-D. UMAP of CD34-enriched bone marrow scRNA-seq 
data from all patients after Seurat batch correction, colored by donor (B), Louvain cluster (C), 
and final cell type identification (D). F. UMAPs for patient PV 2 (left) and PV 3 (right) with cells 
with JAK2 and/or TET2 mutant transcripts highlighted. G-H. Volcano plots of differential 
expression for all CD14+ cells between ET patients and healthy controls (G) or PV patients and 



healthy controls (H). Genes found to be differentially expressed in all pairwise comparisons 
between different patient subsets are highlighted and colored by KEGG 2019 biological process 
group (gold: hematopoiesis-related, green: antigen presentation, blue: ribosomal, black: other).  



 



Figure S3. Mutational analysis of individual HSCs and MPPs from MPN patients. Related 
to Figure 3. A. Correlation between age at diagnosis (years; x-axis) and the number of somatic 
SNVs (y-axis) detected in WT HSCs, JAK2-mutant HSCs, WT MPPs, and JAK2-mutant MPPs. 
Each dot corresponds to a single-derived colony, and the lines represent the regression through 
the origin. The estimated values for the slope and the 95% confidence intervals (CI) are shown. 
B-C. Patterns of somatic mutations for JAK2-mutant or JAK2-WT colonies from patients ET 1 
(B) and ET 2 (C). The relative fraction of each mutation type in the catalogue of point mutations 
detected in each colony is reported. Base substitutions are further stratified into categories 
based on the trinucleotide context in which the mutation occurs. D. Distribution of telomere 
lengths estimated using the whole-genome sequencing data for JAK2-mutant and JAK2-WT 
HSPCs from patients ET 1 and ET 2. E. Distribution of the number of C>T mutations at CpG 
dinucleotides in JAK2-mutant and JAK2-WT HSPCs from patients ET 1 and ET 2. The box plots 
in D-E show the median, first and third quartiles (boxes), and the whiskers encompass 
observations within a distance of 1.5× the interquartile range from the first and third quartiles. 
The box plots in D-E show the median, first and third quartiles (boxes), and the whiskers 
encompass observations within a distance of 1.5× the interquartile range from the first and third 
quartiles. The single, double, and triple asterisks indicate statistical significance at P < 0.05, P < 
0.01, and P < 0.001, respectively (Wilcoxon rank sum test). 
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Figure S4. Inference on patient data. Related to Figure 4. ABC was run on the patient data, 
and the model parameters were inferred. Joint distributions of the parameter values were 
plotted along with their marginals. s is in growth per year, and age of onset of the disease is in 
years. A. Distributions for inference on 34-year-old patient data. B. Distributions for inference on 
63-year- old patient data. As observed, inference of n can indicate saturation when the number 
of cancer cells approaches N. In this case, the cancer expansion slows down and begins to 
exhibit neutral dynamics. This changes the coalescent structure, allowing ABC to detect the 
saturation and infer a saturation parameter value of n = N. When N is too large to affect the 
exponential growth dynamics of the cancer cells, ABC can only put a bound on N, namely that N 
must be larger than the number of cancer cells at the final time-point.  
  



Table S1. Primers and sequences for mutation-specific single-cell amplicon libraries 
(5′→3′). Related to STAR Methods. 

 
INTERNAL_FORWARD AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC 

SHORT_INT_FOR AATGATACGGCGACCACCGAGATCT 

JAK2_EXT1 ACCAACCTCACCAACATTACAGAGGCCT 

JAK2_EXT2 AGGAGACTACGGTCAACTGCATGAAACAGA 

JAK2_EXT3 GCAGCAAGTATGATGAGCAAGCTTTCTCACA 

JAK2_EXT4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAGCAAGTATGATGAGCAA 

ASH1L_Ext1 GCATCTCACTCCTATCTGAAAAGTTGACAAGC 

ASH1L_Ext2 TGGCCACAAAGAAAAACCTAGACCATGTCA 

ASH1L_Ext3 GGAAATGTCCCCTTCAGGCTGTCGTATCAA 

ASH1L_Ext4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGAAATGTCCCCTTCAGGCT 

HSPA9_EXT1 ACCTGACAAGAGTCTTAAGCAACCAAAGCA 

HSPA9_EXT2 GTGGGTCATGCCTGTAATCCCAACACTTG 

HSPA9_EXT3 GTGTGGGAGTTGAAGATCACCCTAGGCAA 

HSPA9_EXT4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGTGGGAGTTGAAGATCAC 

NRROS_EXT1 GAATCCATCTGTCTCCTTTCCTCAGCTTTGCCT 

NRROS_EXT2 AGTCCCGGAGCTGGTGGCAAAGA 

NRROS_EXT3 TCTCACGGGCCCAGCCTTACTCA 

NRROS_EXT4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTCACGGGCCCAGCCTTAC 

UPF1_EXT1 TTCCCATTGCTCTAGGGCTTTCGGTTTCC 

UPF1_EXT2 GGGTAGGTTTCCGCGGTGACCCC 

UPF1_EXT3 TCTGCTTCGCCCTGTGCTGTGTTCTC 

UPF1_EXT4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTGCTTCGCCCTGTGCTGT 

TET2B_EXT1 CACATAACTGCAGTGGGCCTGAAAATCCAG 

TET2B_EXT2 TAATGGTGCTACAGTTTCTGCCTCTTCCGT 

TET2B_EXT3 ACATCTCACATAAATGCCATTAACAGTCAGGC 

TET2B_EXT4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACATCTCACATAAATGCCAT 
  



 

 
Methods S1, related to STAR Methods. 

Outline. In Section 1, we first define our mathematical model for mutated HSC growth dynamics, 

followed by the model with feedback where the fitness of the mutant cells decreases over time, 

and then describe an efficient way to simulate the mutant growth dynamics for inference. We then 

go on to derive analytical mathematical expressions for the average growth rate of mutant cells 

in our model, and use these to show that the fitness in terms of growth per year can be inferred 

from lineage trees without knowledge of the mutation rate. In Section 2, we include a detailed 

description of the simulations, analyses, and figures to verify our theoretical calculations and to 

demonstrate the robustness of our inference with respect to the model assumptions. Section 2 

can be read before Section 1. 

1. Mathematical Description of Growth Dynamics of Mutated Cells 

WF model with selection 

We chose to model mutated HSC growth (or the growth of a population of mutant cells within a 

population of wild-type cells) as a variation of the Wright-Fisher stochastic process (Fisher, 1923; 

Wright, 1931) with selection included. We begin with an initial population of ! stem cells at " = 0. 

The stochastic process arises by iterating the following rule on the initial population: the cells at 

generation " give birth to ! stem cells which correspond to generation " + 1. Each cell in 

generation " + 1 then selects a cell at random from generation " as its parent, and the cells at 

generation " die off. At generation "′, a mutation arises in one of the stem cells that gives it a 

selective advantage. From then on, the iterative rule changes in that instead of the cells from the 

parent generation being selected at random, each wild-type cell has probability p of being selected 

as a parent, and each mutant cell has probability (1 + ))+ of being selected as a parent. The cells 

always inherit the phenotypic state of their parents (mutant or wild-type). After L iterations, we 

produce an evolving population of stem cells for "	 = 0,1, …	, "′, "′ + 1, . . . , 0 along with a set of 

genealogical relationships. 

Note that here there are a total of 0 + 1 generations of cells, since the first generation corresponds 

to " = 0. In the computational section (Section 2), we instead define 0 to be the total number of 

generations. The way we have defined 0 here is more convenient for the mathematical 

derivations, but it should be noted that any expression we have derived here in the mathematical 

section (Section 1) that uses 0 will be replaced with 0 − 1 in the computational section (Section 

2). 



 

 
Computing the number of mutant cells as a function of time 

Here, we derive the distributions for the number of mutant cells as a function of time. Given the 

current generation of mutant cells, the number of mutant cells in the generation that follows is 

binomially distributed with parameter values that depend on the number of mutant cells in the 

current generation. This fact is used in the subsequent subsections to compute the mean growth 

of mutant cells and for efficient simulation of clonal expansions.  

Suppose that there are 2 mutant cells at generation " (Note that in Section 2, we define 2 to be 

the number of mutant cells at the final time-point. This 2 is not the same). Since each wild-type 

cells has probability + of being selected as a parent, and each mutant cell has probability (1 + ))+ 

of being selected as a parent, then the probability that a cell at t + 1 choses a wild-type cell is 

(! − 2)+, and the probability it chooses a mutant cell is (1 + s)np. Since probabilities must sum 

to one, p can be derived from the condition that (! − 2)+	 + (1 + ))2+	 = 	1, and so we obtain + =
!

"	$	%&. After substituting, we obtain the probability a cell selects a mutant cell as its parent as: 

 
(!$&)%
"$%&  

Since each of the N cells at t + 1 either chooses a mutant cell or it does not, and since the choices 

are independent, then the number of mutant cells at generation t + 1 is binomially distributed with 

parameters ! and 
(!$&)%
"$%& . It then follows that we can compute the number of mutant cells as a 

function of time by beginning with an initial condition of 2 = 1 mutant cell, and then carrying out a 

series of binomial draws where we update 2 before each draw to equal the current number of 

mutant cells. 

 

Wright-Fisher model with feedback 

The Wright-Fisher model is an idealized model that ignores a wide range of biologically plausible 

scenarios. For example, as the number of mutant cells increases, it is conceivable that there are 

underlying biological mechanisms that slow the growth of the mutant cells. To simulate such 

scenarios, we decided to incorporate feedback into the Wright-Fisher model. This is accomplished 

by letting the value of s change depending on the current number of mutant cells. In particular, if 

the number of mutant cells at generation " is 2, then the selection parameter at " is )(1 −
%)!
")!)

*. 

Notice that when 3 = 0, the selection parameter remains constant and we recover the usual 

Wright-Fisher model with selection. 



 

 
To simulate clonal expansions for mutant cells with feedback, we simply draw a series of numbers 

from binomial distributions as described in the previous section, except that instead of just 

updating 2 before each draw, we first update 2 and then )(1 −
%)!
")!)

*. Clonal expansions with 

feedback in Section 2 are simulated in this way. 

 

Dynamics of average population size 

Define n(t) as the number of mutant cells as a function of time. We now compute the expectation 

of 2("), which we will call the mean trajectory. We consider the expected value of 2("), conditioned 

on the mutant clone consisting of 2 cells at time " − 1. Upon conditioning, 2(") reduces to a 

binomially distributed random variable as shown before, and so its mean is given by: 

 

4"[2(")	|	2(" − 1) = 2] 		= 		!
(1 + ))	2
! + 2)

	 

 

Subscript N is used to emphasize the dependence on population size. We then assume !	 >>

	2), and drop subscript !to obtain: 

 

4[	2(")	|	2(" − 1) = 2	] 	= 	 (1 + ))2 

 

Rewriting the expected value as a conditional expectation gives us 

 

    4[	2(")	|	2(" − 1)	] 		= 		 (1 + ))	2(	" − 1	) 

 

We then take the expectation of both sides to generate the following recursion 

 

    4[2(")] 		= 		 (1 + ))	4[2(" − 1)] 



 

 
 

    initial condition: 	2(0) = 1 

where without loss of generality we have let the time at which the mutation arrives be " = 0. 

The recursion is then easily solved to obtain 

 

4[2(")] 	= 	 (1 + ))+ 

 

Dynamics of average population size conditioned on survival. 

When the number of mutant cells is small, they are susceptible to stochastic fluctuations and 

extinction. After growing to a sufficiently large size, their growth dynamics become deterministic 

and fluctuations can be safely ignored. 

When using ABC to infer our model’s parameters, we only consider trees where mutant cells have 

not gone extinct. We are thus interested in the growth dynamics conditioned on no stochastic 

extinction. 

In the previous section, we computed the expectation value of the number of mutant cells as a 

function time across all trajectories. Here, we will constrain the expectation value to trajectories 

that do not go extinct. As would be expected, the average population size is larger when extinction 

is not allowed. 

We begin by defining the conditioning event for our trajectories as 9 = {;<3="<>2	?<@@	>AABC} . 

Then we use Bayes’ theorem to compute 

 

4"[	2(")	|	9	] 	= E 2	F(	2(") = 2	|	9	)

"

%	,	!
	= E

2	F(	2(") = 2	)	F(	9	|	2(") = 2	)
F(	9	)

"

%	,	-
 

 

The probability of fixation of a clone of size 2 within a sufficiently large population of size ! and 

with fitness 1 + ) is given by Kimura’s diffusion approximation (Kimura, 1962) 

 



 

 
1 − G).&%

1 − G).&"
 

 

We therefore put 

 

F(	9	|	2(") = 2	) = 	
1 − G).&%

1 − G).&"
 

 

F(	9	) 	= 	
1 − G).&

1 − G).&"
 

 

The probability of fixation F(	9	) independent of the clone size is simply the probability that a clone 

of size 2 = 1 will eventually fix. Substituting both probabilities back into the sum and cancelling 

terms gives us 

 

4"[	2(")	|	9	] 	= 	
1

1 − G).&
	 E

"

%	,	-
2	F(	2(") = 2	)	(1 − G).&%) 

 

Next, we make a key biologically motivated assumption: we assume that t is sufficiently large so 

that the population of mutant cells is: 

1) either large enough to exhibit deterministic dynamics, or 

2) has gone extinct. 

Therefore, F(	2(") = 2	) vanishes except for when 2 is large, or 2 = 0. Since the only nonzero 

terms in the expectation are those for large 2, and since 1 − G).&%~1  when 2 is large, then we 

may replace 1 − G).&%	with 1 in the expectation as an approximation. After replacing  1 − G).&% 

with 1 and observing that the sum is now the unconditional expectation, we obtain 

 



 

 

4"[	2(")	|	9	] 	= 	
1

1 − G).&
	4"[	2(")	] 

 

If we let ! >> 2) and drop the subscripts, the expectation on the right-hand side becomes the 

mean trajectory 4[2(")] 	= 	 (1 + ))+	 that we derived in the previous section. Substituting then 

gives us 

4[	2(")	|	9	] 	= 	
1

1 − G).&
	(1 + ))+ 

 

Note that the above approximation is not valid for small values of ", for example, evaluating at 

" = 0 does not give an average population size of 1, because we assumed that " must be 

sufficiently large. 

Importantly, the above approximation has an interesting biological interpretation. The growth 

dynamics excluding extinction events is functionally equivalent to the growth dynamics of 

unconditional trajectories that begin with a clone size 
!

!)/!"# . Later, we will use this observation 

to show that s could be inferred without prior knowledge of mutation rate. 

 

To validate the approximation derived above, we simulated the average growth dynamics of the 

mutant cells. Figures below show the simulated mean trajectory (blue dots), the simulated mean 

trajectories conditioned on no stochastic extinction (orange dots), and then our approximation of 

the mean trajectories conditioned on no stochastic extinction (blue curve) for different values of 

s. The simulated mean trajectories were collected by taking the average number of mutant cells 

at each time slice over a large number of simulated clonal expansions. The simulated mean 

trajectories conditioned on no stochastic extinction were generated similarly by first letting the 

simulated clones expand until they either went extinct or fixed, discarding the clones that went 

extinct, and then taking the average number of mutant cells at each time slice over the remaining 

clonal expansions. All simulated expansions were run with ! = 100 and are shown for H = 28 

generations. 



 

 

 

 

Decoupling of fitness and mutation rate for weakly expanding clones 

Under the neutral Wright-Fisher model, it is not possible to separately infer population size without 

knowledge of the mutation rate per generation. If we underestimate the mutation rate, we will 



 

 
overestimate the number of generations between coalescent events in the tree, and thereby 

overestimate the population size. Conversely, if we overestimate the mutation rate, we will 

underestimate the number of generations between coalescent events in the tree, and thereby 

underestimate the population size. It is therefore necessary to have a priori information about one 

parameter, for example mutation rate, to extract any information about the other, for example 

population size, from the tree. 

Fitness, or growth rate per year )1, can be inferred from the shape of the reconstructed lineage 

tree of a small number of cells randomly sampled from the population at the final time point. If )1 

is large, the population of mutated stem cells grows rapidly, therefore the coalescent events on 

the lineage tree will be confined to the first few generations, when the population size was small. 

Conversely, if )1 is small, coalescent events are more likely to occur in the last few generations. 

Critically, unlike population size, )1 can be inferred without any knowledge of the mutation rate, 

or equivalently, the total number of generations along the lineage tree. To intuitively understand 

this, note that rescaling the number of generations by a given factor scales the inferred population 

size by the same factor. Because at the onset of disease there is only one mutant cell, it might be 

expected that the growth rate, or s, must also be changed to achieve the scaled population size 

at the final time point. However, rescaling the number of generations also scales the minimum 

population size required before the mutated cells can escape stochastic extinction and grow 

exponentially. This is because more generations implies that the fitness advantage per generation 

is smaller and therefore the population is more susceptible to going extinct from random birth and 

death events. Taken together, these two competing effects precisely cancel and thus )1 can be 

inferred directly from the observed lineage trees without knowledge of the mutation rate or the 

number of generations. 

We will make the above intuition precise by deriving the analytical expression for coalescent 

statistics as a function of )1 and showing that when expressed as growth per unit time, )1 does 

not vary with the mutation rate. 

 

Mathematical analysis of mutation rate per generation and rate of population growth per 

unit time 

Here, we will show that it is possible to infer the population growth rate per unit time without 

knowledge of the mutation rate per generation.   



 

 
First, we will define the population growth rate per unit time. Then, we will derive an expression 

for the expected coalescent times of a random sample of mutant cells, and use it to estimate the 

impact of mutation rate per generation on the inferred population growth rate. 

Define L to be the total number of divisions that an HSC would have undergone averaged across 

all HSCs, or equivalently the total number of generations in our trees. Note that knowing 0 is 

equivalent to knowing the mutation rate per generation, since we know the number of mutations 

accrued throughout the patient’s life. 

 

Definition of population growth rate per unit time 

Note that 1 + ), where ) is the selection parameter, is the average growth per generation. We can 

also define a related quantity )1 as the average percent growth per unit time (for example percent 

growth rate per year). If we let = be the age of the patient, the number of generations per unit time 

is 
2
3 . Hence, per unit time, the mutant clone is expected to grow by a factor of (1 + ))

$
%, and so we 

arrive at the expression 

 

)1(), 0) = (1 + ))
2
3	– 	1 

 

Estimating the coalescent times 

We now derive an expression for the expected time for coalescence of k randomly sampled 

mutant cells given that the clone has expanded for g generations. 

Let " denote time in number of generations measured from the leaves of the tree towards the root. 

If there are 2(") mutants at generation ", then the amount of coalescence time that passes from 

generation " to " + 1is 
!

%(+), whereby coalescence time refers to the timescale in the Kingman 

Coalescent model (Kingman, 1982a, 1982b, 1982c). To understand what we are doing intuitively, 

note that for the standard Wright-Fisher model without selection, where the population size ! is 

constant over time, the average time for coalescence of L randomly sampled lineages is 

"
4&"5

generations. This is generally computed by scaling time so that ! generations correspond to 1 

unit of time, and then letting ! become large. In doing so, the times of coalescence of L randomly 



 

 
sampled lineages converge to the Kingman Coalescent where the coalescence times are known 

to be 
!
4&"5

. The coalescence times in generations can then be recovered through an inverse time-

scale transformation. Note that this is equivalent to scaling time so that the time between two 

neighboring generations is 
!
". To account for a variable population size, we let the time between 

two neighboring generations " and " + 1  be the inverse of the population size at " and assume 

the population size is always large. In doing so, the times until coalescence also converge to the 

Kingman Coalescent model. The statistics of coalescence times are then recovered by 

transforming back to time in generations. 

Since the expected coalescence time of k lineages is 
!
4&"5

 in units of coalescence, and since the 

population size in our simulations grows approximately as 2(") =
!

!)/!"# (1 + ))
+, the expected 

coalescence time of k lineages in units of generations is the t satisfying: 

 

1

M
L
2N
	= E

1
1

1 − G).& (1 + ))
6)7

+)!

7,-
 

 

We then notice the R.H.S. is a geometric sum and rewrite to obtain: 

 

1 +
)

1 − G).&
(1 + ))6

M
L
2N

= (1 + ))+ 

 

Solving for t we obtain: 

 

" =

@>H	O1 +
)

1 − G).&
(1 + ))6

M
L
2N

P	

@>H	(1 + ))	
 

   



 

 

We use 
2
3 to convert 3) from generational time to real time (such as years), thereby obtaining 

 

"7(), H, 0) =
=
0
	

@>H	O1 +
)

1 − G).&
(1 + ))6

M
L
2N

P	

@>H	(1 + ))	
 

 

 

Invariance theorem for weakly expanding clones 

We now show that for a weakly expanding clone, we always infer the correct percent growth rate 

per unit time (for example per year) independent of our assumption of 0.  

We begin by assuming that )8, H8,	and 08 are the parameter values associated with our patient’s 

tree, and that Q)8Q ≪ 1 so that selection is weak.  

We then assume that we have incorrectly estimated our H and 0 parameters (i.e., our mutation 

rate) so that we erroneously believe they are H9 = AH8 and 09 = A08 respectively. Note that we 

have kept the ratio 
6'
2'
=

6(
2(

, and so we have treated the arrival time of the first mutated cell in real 

time as known. 

Then we show that if we incorrectly assume our parameter values to be H9 and 09, we then infer 

)9 = S1 + )8T
)
( − 1 for our ) parameter, where 

 

)1()9 , 09) = )1S)8, 08T 

 

That is, we always infer the same percent growth per year. The way we show our inferred ) is )9 

is by plugging in H9, 09 and )9 into the expected coalescent time expression we derived, and then 

showing that the coalescent times are identical to having plugged in )8, H8,	and 08. In other words, 

we show that when we erroneously assume H9 and 09 are our parameter values, the ) value that 

generates trees that match our patient’s is )9, and that )9 we infer combined with the 09 we’ve 



 

 
assumed give us the same inference for yearly percent growth as the correct parameter values. 

We first show that )9 is our inferred ): 

Begin by recalling that our coalescent time expression is given by 

 

"7(), H, 0) =
=
0
	

@>H	O1 +
)

1 − G).&
(1 + ))6

M
L
2N

P	

@>H	(1 + ))	
 

 

 

Since |)| ≪ 1, a Taylor expansion lets us make the following approximation: 

 

1 − G).&	~2) 

 

where we have let the 2nd order terms vanish. Substituting above and cancelling gives us 
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But then using )9 = S1 + )8T
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so that )9 is our inferred ). 

 

We then show our inference of percent growth is identical using )9 = S1 + )8T
)
( − 1 and 09 = A08: 
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2. Description of Simulations for Inference and Validation 

 

Description of ABC 

Approximate Bayesian Computation, or ABC, is an algorithm used to infer the parameter values 

of a stochastic model. ABC works by simulating data with the model using parameter values 

drawn from a prior distribution, and then computing a metric distance between the simulated data 

and the observed data. If their distance is smaller than a predetermined threshold, the parameter 

values are retained, otherwise, they are discarded. This procedure is iterated until a sufficient 

number of parameter values are retained to construct the posterior distribution. 

 

ABC implementation 

To perform ABC, it is first necessary to define a model. We briefly describe our model (see Section 

1 for more details), and then give a detailed description of our ABC inference algorithm. 

The model we used to infer the population dynamics of mutant cells is a variation of the Wright-

Fisher model with selection (Fisher, 1923; Wright, 1931). Briefly, we consider a population of N 

stem cells that exists in discrete generations. There are L generations in total. At each generation, 

each cell chooses a parent cell at random from the previous generation. After t’ generations, a 

cancerous mutation is acquired by one of the cells. Critically, the mutant cells are 1 + s times as 

likely to be chosen as a parent than the wild type cells. As a result, the number of mutant cells 

grows as ~ (1 + s)i , for i = 1, … , g, where g = L – t’ corresponds to the disease duration. For 

convenience we use g as opposed to t’ as a parameter in the following sections. However, 

provided L is given, if we know the value of g, we also know the value of t’ and vice versa, and so 

the two parameters are equivalent. To summarize, the parameters of our model are: 

N = saturation parameter (the total number of stem cells) 

  L = total number of generations 

  g = disease duration (g <= L) 

  s = selection parameter 

 

We also define n as the number of mutant cells at the final time-point. 

We now outline the steps of the ABC algorithm, and then elaborate on the details. 

1. Draw s from its prior distribution. 

2. Draw N, L, and g from their prior distributions. 

3. Simulate a clonal expansion with our model for g generations. 



 

 
4. If the final number of mutant cells is n < k, where k is the number of mutant cells we sample 

from the final population, back to 2). Else, move on to 5). 

5. Sample k mutant cells from the final population and simulate their lineage history. 

6. Simulate the number of mutations along the branches of the tree with the given mutation 

rate. 

7. Perform the averaging algorithm on the tree so that the number of mutations from any leaf 

to the root of the tree is the same. 

8. Convert the tree to an LTT plot. 

9. If the area between the LTT plot of our simulated tree and the LTT plot of our patient tree 

is smaller than epsilon, retain the parameter values, otherwise discard them. 

10. If a sufficient number of parameters to construct a distribution has been retained, finish. 

Else, back to 1). 

 

Note that to perform the ABC, we must first specify the prior distributions on s, N, L and g (to test 

the robustness of our simulation in silico, we will sometimes fix parameter values rather than 

drawing from a distribution), the number of cells we will sample from the final population k, the 

mutation rate, and the epsilon threshold for retaining or discarding parameter values. 

We now elaborate on the details of each step. We begin with 3) since 1) and 2) simply involve 

assigning a distribution, which will be specified when the simulations are described below. 

 

After drawing the parameter values in 1) and 2), we simulate a clonal expansion for g generations. 

By a clonal expansion, we mean the number of mutant cells as a function of time. This can be 

attained in linear time complexity through a series of binomial draws. We begin with an initial 

condition of one mutant cell, since the number of mutant cells is always one when the mutation 

first arises. Then, assuming there are n(i) cells in the ith generation, the number of mutant cells 

in the (i + 1)th generation is drawn from a binomial distribution with parameters N and p = 

n(i)*(1+s)/(N + n(i)*s) (see Section 1 for the derivation). After iterating the binomial draw g times 

beginning with the initial condition, we recover the number of mutant cells as a function of time 

(see figure below that shows the ABC schematic). If the mutant clone does not grow to at least k 

cells, we redraw the parameters in 2) and re-simulate 3), iterating until we have acquired an 

expansion that does. 

It is important to note that the clonal expansion is conditioned on n >= k, which is equivalent to 

conditioning on the mutant cells escaping stochastic extinction. In general, if the clonal expansion 

is simulated for a sufficient number of generations, that is for a sufficiently large g, then the mutant 



 

 
clone will either go extinct or grow to a large size and exhibit deterministic dynamics. Therefore, 

when g is sufficiently large, if the mutant clone has grown to more than k cells, its size will be 

much larger than k and will have escaped stochastic extinction. Conditioning on escaping 

stochastic extinction has the important consequence of allowing us to infer the fitness in percent 

growth per year from the lineage trees (see Section 1 for details). 

After obtaining a clonal expansion, we randomly sample k cells from the population of mutant 

cells at the final timepoint and simulate the lineage history of only the random sample, while 

ignoring the lineage history of all other cells. The lineage history is constructed by letting each 

sampled cell choose a mutant cell at random from the previous generation to be its parent. Each 

mutant cell chosen from the previous generation then chooses its parent at random from the 

generation of mutants before, etc. This is repeated until all lineages have coalesced (figure 

below). 

 

It is worth noting that simulating the number of mutant cells as a function of time and thus initially 

ignoring all genealogical relationships, and then simulating only the genealogical history of the 

random sample backwards in time is statistically equivalent to simulating the genealogical process 

forward in time, and then producing a tree by following the lineages of the random sample back 

to common ancestry. This equivalence follows from the fact that each mutant cell can be 

descended from any of the mutant cells in the previous generation with equal probability. 

Simulating the lineage history for only the subset of the k chosen cells significantly increases the 

speed of the simulations without the loss of any information. 

Once we have simulated the lineage tree, we then simulate the mutational process. To each edge 

of the tree (edge refers to a single line connecting two nodes on the tree, see figure below                         

), we assign the number of mutations drawn from a Poisson distribution, where the mean is equal 

to the mutation rate (in units of mutations per generation). The mutation rate is generally computed 

empirically from the patient tree by dividing the total length of the patient tree in mutations by the 

value of L - 1, where L was drawn in step 2). It is very important to note that in this case, when 

we refer to the length of the tree, we mean the total number of mutations from the very bottom of 

the tree, which corresponds to the present time, to the very top of the tree which corresponds to 

the birth of the patient (not to the common ancestor of the mutant cells).  

Before computing the mutation rate empirically from the data tree, we need to rescale the 

branches of the tree so that the distance (in mutations) from any leaf to the root of the tree is the 

same. If we don’t do this, the number of mutations from each leaf to the root of the tree would not 

be the same, resulting in a tree length and mutation rate that is not well-defined. We accomplished 



 

 
this by applying an averaging algorithm described below. The same averaging algorithm is also 

applied to simulated trees immediately after they are constructed before computing the metric 

distance between the simulated tree and the data tree. Therefore, any information loss from the 

algorithm will be expressed as uncertainty in the error bars of our inference. 

 

The averaging algorithm we designed is based on the principle that the best estimate of time to 

common ancestry between two lineages is the average number of mutations between the two. In 

particular, let’s define a tree as well-averaged if the distance from any leaf to the root is the same.  

In pseudocode, the algorithm works by calling the following function on the parent of any two 

sisters: 

 

  Average( currentNode ) 

  { 

 

If the left subtree of currentNode is not well-averaged: 

 Average(left child of currentNode) 

If the right subtree of currentNode is not well-averaged: 

Average(right child of currentNode) 

If both the left and right subtrees are well-averaged: 

Compute the average length of the left and right subtrees. Then, for both the left and right subtree, 

rescale the branches of the subtree proportionally so that the length of the subtree equals the 

average. 

 if currentNode != root: 

  Average( parent of currentNode) 

 else: 

  break 

} 

We begin at the parent of two sisters, where the subtrees are single branches connecting a parent 

node to two leaf nodes. Note that we may start at the parent of any two sisters (or even more 

generally, at any node) and produce the same averaged tree since averaging the two subtrees of 

any node produces a unique value. For implementation of this algorithm refer to our GitHub 

repository. See figure below for a schematic of the averaging algorithm. 

 



 

 
After producing a well-averaged tree, we construct its LTT (Lineages Through Time) plot. The 

LTT plot of a tree shows the number of lineages as a function of time in mutations (figure below). 

The LTT plot of a tree loses all information about its topology (the way the branches are 

connected). However, since the mutant cells in each generation pick their parents at random from 

the mutant cells in the previous generation, any topology on the tree is equally likely, and thus the 

tree topology contains no information about the parameter values that gave rise to the tree. 

Therefore, LTT contains all possible information about the parameter values. 

 

After converting the simulated tree to an LTT plot, we compute the distance between the LTT plot 

of the simulated tree to the LTT plot of the data tree, defined as the area between the two LTT 

curves. The LTT plot of the data tree is always constructed before the ABC begins by first applying 

the averaging algorithm we previously described so that the leaf nodes line up side by side, and 

then converting it to an LTT plot. If the area between the two plots is smaller than the epsilon 

threshold, we retain the parameter values s, N, L, and g drawn from the priors, as well as the 

cancer trajectories n(t) and the LTT curve produced, and if the area is >= epsilon we discard them. 

This process is iterated until a sufficient number of parameter values (along with the trajectories 

and LTT plots) to construct a convergent posterior distribution is retained. 

 

The LTT curves start at zero but may end at different values because of different tree lengths. 

The area between two LTT curves that do not end at the same point on the x axis is undefined. 

To address this, we extend the end points of LTT curves, which corresponds to a value of 1, to 

infinity. 

 

Since the lengths of LTT curves tended to vary, we decided to divide the area by k*(the length of 

the data tree) before checking if epsilon was smaller than the threshold. This allowed us to run 

ABC without having to choose a new epsilon for each tree, since a smaller epsilon would be 

required for a tree of smaller length, and a larger epsilon for a tree with a larger length. Intuitively, 

this is equivalent to taking the percent difference between the data tree and the simulated trees. 



 

 

Figure. Schematic of the Approximate Bayesian Computation. First, the parameters that 

determine the growth dynamics (i.e. fitness, population size, total number of stem cells, and age 

of onset) are randomly drawn from a prior distribution. a. The clonal expansion of the cancer cells 

given the selected parameters is simulated. b. A specified number of cells is randomly chosen 

from the final population. The lineage tree is reconstructed for these cells. c. We assign a number 

of mutations accrued along each branch by drawing from a Poisson distribution at each edge with 

the mutation rate. Those mutations are shown pictorially as blue dashes on the tree. The resulting 

tree is a phylogeny with branch lengths in mutations as opposed to generations. d. Next, the 

branch lengths are scaled so that the total number of mutations from the root of the tree to each 

leaf node is the same. e. The rescaled trees are then plotted as LTT curves. f. A distance is 

computed between the LTT curve of the simulated tree and the observed tree. If the distance is 

below a threshold, the initial set of parameters is retained, otherwise they are discarded. This 

process is iterated. 

 

Simulating data 

To test the robustness of our ABC inference, we were interested in inferring the model parameters 

from simulated data where the ground truth is known. The way we simulated data as follows: 

1. Draw s from its prior distribution. 

2. Draw N, L, and g from their prior distributions. 
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3. Simulate a clonal expansion for g generations. 

4. If the final number of mutant cells n < k, where k is the number of mutant cells, we sample 

from the final population, back to 2). Else, move on to 5). 

5. Sample k mutant cells from the final population and simulate their lineage history. 

6. Simulate the mutational process on the tree with the given mutation rate. 

7. Perform the averaging algorithm on the tree. 

The resulting tree is used as the data tree in ABC, and its parameters are inferred. Note that these 

steps are simply the first 7 steps of ABC. 

 

In silico validation of the inference algorithm 

To validate our inference, we decided to test the inference on simulated data over a wide range 

of parameter values. We began by simulating 30 trees as data with our model, where the 

underlying parameter values were known. Each tree was constructed using the following 

specifications: 

1. s was drawn from a uniform distribution on (0, 1.2). 

2. N was drawn from 10X, where X is uniformly distributed on (1, 9). 

3. L was drawn from round(Y), where Y is a Gaussian with mean 35 and std 5. If we drew L 

< 2, we redrew L until L >= 2 since at least 2 generations are necessary to produce a tree. 

4. g was drawn uniformly on 2, … , L. 

5. k = 22 mutant cells were randomly sampled. (22 is the number of mutant stem cells 

sampled for ET 1 patient data) 

6. The mutation rate was 723/(L - 1). 723 was the number of mutations observed in ET 1 

patient data. 

We then inferred the parameters for each tree using ABC. For the ABC, we used the exact same 

specifications as the data to generate trees for comparison, except that we instead drew s from a 

uniform distribution on (0, 5) in Step 1, and the mutation rate was instead estimated empirically 

as (total length of tree in data in # of mutations)/(L - 1) in Step 6. Epsilon was set to 0.03, since 

this threshold was sufficient to obtain an inferred distribution that converges to the posterior 

distribution for most inferences, while also allowing a large number of points to be retained for the 

inferred distribution. The simulations were run until they accrued ~10,000 or more points for the 

posterior. 

In the figure called “In silico validation of the inference algorithm without feedback,” we show a 

representative set of 10 inferences out of the 30 inferences we ran. 

           



 

 
To quantify the accuracy of our ABC inference, we then simulated 200 trees in precisely the same 

way as above, except that the value of s for the tree data was drawn uniformly on (0, 2) instead 

to obtain data across a much wider range of fitness values. We then carried out ABC inferences 

on each tree with epsilon =  0.0225 until most of the posterior distributions had accrued ~400 or 

more points. Tree data where the inference accrued less than 30 points for the posterior were 

excluded. 

We then applied the following filters to the data: 

1. We excluded data trees where the ratio of the standard deviation to the mean of the 

posterior of s (in percent growth per year) was greater than 0.425 

2. We excluded data trees where the std of n was larger than 1.15 

 

We arrived at the first filtering criterion by noting that inferences for small s tended to have large 

error bars relative to their inferred means (or large coefficient of variation), and their inferred 

means were generally inaccurate and much larger than the true values. ABC inference cannot 

determine whether a small number of cells at the final time-point is due to a small growth rate s 

or small saturation limit (see figure “In silico validation of the inference algorithm with feedback,” 

row 2 column 2). In both scenarios the population size is small and coalescence events occur 

rapidly, producing similar trees. We reasoned that if expansions produced by small s produce 

ABC inferences characterized by large coefficient of variation, then by eliminating ABC inferences 

exhibiting this characteristic we could exclude inaccurate inferences without any knowledge of 

the ground truth. 

 

Similarly, we arrived at the second filtering criterion because simulations that expanded to 

sufficiently large population sizes generated inferred log(n) distributions with large standard 

deviations and mean values distributed around 106. This suggested that ABC was extracting little 

information from the data and that the log(n) distributions were almost identical to the prior. We 

reasoned that by filtering out inferences with large log(n) standard deviations we could exclude 

inaccurate inferences without any knowledge of the ground truth value. We emphasize that this 

filtering procedure does not use the ground truth values in any way. The inference is deemed 

inaccurate if the posterior distribution width is too large regardless of the ground truth value. 

Therefore, the filtering procedure can also be applied to actual data where the ground truth is not 

known. Finally, when devising the filtering criteria, we were conservative with our choices. As 

such, the interpretation of these data was not sensitively dependent on the filters we chose. 

 



 

 
The inferred vs true values of the inferences is plotted in the figure called “ABC accurately infers 

model parameters”. 

 

Next, we quantified the accuracy of our ABC inference for a 63-year-old patient in a similar manner 

by simulating 200 trees, applying filters to the data, and then plotting the inferred vs true values 

(figure “ABC accurately infers model parameters”). The data were produced in a similar manner 

as for the 34-year-old patient using the following criteria: 

We simulated 200 trees as data for a 63-year-old patient using the following specifications: 

1. s was drawn from a uniform distribution on (0, 2). 

2. N was drawn from 10X, where X is uniformly distributed on (1, 9). 

3. L was drawn from round(Y), where Y is a Gaussian with mean 64 and std 10. If we drew 

L < 2, we redrew L until L >= 2 since at least 2 generations are necessary to produce a 

tree. 

4. g was drawn uniformly on 2, … , L. 

5. we sampled k = 13 cancer cells, which is the number of sampled cells in the ET 2 patient 

data. 

6. The mutation rate was 1205/L. 1205 was the number of mutations observed in ET 2 patient 

data. 

7. No feedback was included. 

We then carried out ABC inferences on each tree using the same specifications as the data, 

except that we drew s from (0, 5) uniformly in Step 1, and the mutation rate was estimated 

empirically as (total length of tree in data)/(L-1) for 6). Epsilon was set to 0.0125. The inferences 

were left running until about half of them (many ABC inferences accrued little to no points for the 

inferred distributions) had accrued ~100 or more points for the posterior distribution. Many 

simulations accrued little or no points, and so we excluded trees with less than 30 points. 

We then applied the following filters to the data: 

1. We excluded data trees where the mean of the posterior of s (in percent growth per 

generation) was larger than 1.5. 

2. We excluded data trees where the ratio of the std to the mean of the posterior of s (in 

percent growth per year) was greater than 1.5. 

Similar reasoning was applied to devise the above filtering criteria. Mainly, values outside of 

above criteria contain little information beyond the prior distributions. 

 

ABC on simulated data with feedback 



 

 
Our model of growth dynamics of the mutant cells only approximates the actual growth dynamics. 

In particular, the population of mutant cells seems to saturate when it has expanded to a certain 

fraction of the total population of stem cells. Therefore, it is conceivable that the mutants lose their 

fitness advantage as their population size increases. Here, we set out to test whether the 

inference of the parameters of the simple model of growth dynamics remains accurate if the actual 

dynamics is simulated using a different model. To do so, we constructed a model with feedback, 

whereby the fitness advantage of the mutant cells decreases compared to wild-type cells as their 

population size increases. The model with feedback is described in detail in Section 1. 

We then repeated the simulations carried out for 34-year-old and 63-year-old patients, except that 

we used feedback with x = 30 when generating the simulated data (see Section 1 for definition of 

x parameter). The ABC did not incorporate feedback in the model, since we were interested in 

how well we could infer the parameter values if the ground truth incorporated feedback. For the 

10 example trees shown in the figure called “In silico validation of the inference algorithm with 

feedback,” we ran ABC until most of the inferences had accrued ~5,000 or more points for the 

posterior. For the 200 trees for the 34-year-old (figure “ABC accurately infers model parameters”               

), we ran ABC until most of the inferences had accrued ~300 or more points for the posterior. For 

the 200 trees for the 63-year-old (figure “ABC accurately infers model parameters”), we ran ABC 

until about half of the inferences had accrued ~50 or more points for the posterior. Inferences that 

accrued less than 30 points were always excluded. The filters were applied in an identical fashion 

as for the inferences without feedback. 

 

Taken together, the inferences suggest that the ABC inference can infer model parameters over 

a wide range of parameter values, regardless of whether or not feedback is incorporated in the 

underlying model. In particular, s in percent per year and the age of onset of the disease can be 

inferred from lineage trees, even if feedback is incorporated. However, it appears n can only be 

inferred for the 34-year-old patient. The inferred n vs true n plots for the 63-year-old patient 

indicate that the trees have no information about the number of mutant cells at the final time point. 

This is likely due to the fact that we have sampled only 13 lineages (as opposed to 22 lineages 

for the 34-year-old patient), and that the clone has expanded for much longer. Because of this, 

most coalescent events occur in the early history of the expansion, and information about the 

dynamics of the later history are lost. 
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Figure. In silico validation of the inference algorithm without feedback. To validate the 

inference algorithm, we generated simulated ground truth growth dynamics and then inferred the 

parameters using ABC. In these simulations, the ground truth dynamics were simulated using the 

same model as in the ABC. In all the heatmaps, the ground truth parameters are shown as white 

dots. In the traces, the ground truth is shown in black. 10 illustrative examples are shown. For 

each example, the heatmaps of inference of s (fitness parameter), n (number of cancer cells), N 

(total populations size), and g (age of onset) are shown alongside the LTT curves that were 

retained and the inferred trajectories of population growth. 

  



 

 

  

Age = 34 and x = 30 (with feedback)
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Figure. In silico validation of the inference algorithm with feedback. To validate the inference 

algorithm, we generated simulated ground truth growth dynamics and then inferred the 

parameters using ABC. In these simulations, the ground truth dynamics were simulated with a 

feedback where the fitness of cancer cells decreased as the population size increased. The 

growth dynamics for generating trajectories for ABC did not incorporate the feedback. In all the 

heatmaps, the ground truth parameters are shown as white dots. In the traces, the ground truth 

is shown in black. 10 illustrative examples are shown. For each example, the heatmaps of 

inference of s (fitness parameter), n (number of cancer cells), N (total populations size), and g 

(age of onset) are shown alongside the LTT curves that were retained and the inferred trajectories 

of population growth. Taken together, accurate inference is possible even if additional features, 

such as feedback, are not incorporated in the ABC dynamics. 
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Figure. ABC accurately infers model parameters. To verify that the inference framework can 

accurately infer model parameters, we simulated growth dynamics across a range of scenarios 

(corresponding to different parameter values) and inferred the parameters using ABC. The 

inferred parameter values were plotted against their true values for s (percent per year), n, and 

age of onset of the disease (years), and error bars were included to denote 1std in the inference. 

Filters were applied to exclude inferences with large error margins, and were done completely 

agnostic of the ground truths. a-b Many iterations of ground truths were simulated for a 34-year-

old patient. In a., the model used to simulate ground truths did not incorporate feedback, while in 

b. the model did. In both cases, the model used for the ABC inference did not incorporate 

feedback but was able to infer the parameters correctly within the statistical error. c. same as a. 

and d. same as b., except the ground truth simulations and ABC inferences were carried out for 

a 63-year-old patient. In both c. and d., the model used for the ABC inference also did not 

incorporate feedback, but was able to infer the parameter values of s and the age of onset of 

disease within the statistical error. However, for c. and d., n could not be inferred since there were 

not enough coalescent events in the later history to extract information about its dynamics after 

the initial expansion. For the inferred n vs true n plots in c. and d., we decided to show them with 

no filter so the reader could see that the inferences contain no information. 

 

Fitness can be inferred without knowing the number of generations 

So far, we have shown that our inference is robust to feedback but have not shown how well we 

can infer the parameter values if our assumption about the total number of generations is 

incorrect. Surprisingly, fitness, when converted to percent growth per year, can always be inferred 

without knowing the number of generations (Section 1). To validate this, we simulated ~10 data 

trees for a 34-year-old patient and carried out ABC on them. We then selected a data tree where 

the ABC inference precisely inferred the parameter values. The data tree had been simulated with 

the following specifications: 

1. Parameter values were fixed at s = 0.264911, N = 109, g = 50, L = 70, arbitrary values for 

which the inference was accurate. 

2. k = 22 cells were sampled  

3. The mutation rate was 723/69 per generation 

 

We then inferred s, n, and the age of onset of the disease having kept all other parameter values 

fixed, but assuming that the number of generations L was c times 70 (the ground truth L) in the 



 

 
ABC model. More precisely, for each c = 0.5, 1, 2, 4, 8, 16, 32, 64 we ran an ABC inference on 

the data tree with the following specifications: 

1. s was drawn uniformly on (0, 10/c) 

2. We fixed N = 109 and L = c*70 

3. g was drawn uniformly on 2, … , L 

4. A mutation rate of 723/(70*c - 1) was used 

5. An epsilon distance of 0.02 was used 

The inferences were run until the ABC had accrued ~15,000 points for the posterior distribution. 

We then plotted inferred joint distributions for s in growth per generation, s in growth per year, 

age of onset of the disease, and n (figure below). 

 

As expected, when increasing the number of generations assumed by the model for ABC 

inference, the inferred s in percent growth per generation decreased while the inferred percent 

growth per year remained invariant. In theory, the decrease in growth per generation will increase 

the rate of stochastic extinction, and so the number of mutant cells must fluctuate to a larger 

population size to escape stochastic extinction. As expected, the number of mutant cells 

increased at the final time point. 

 

Taken together, our simulation results are consistent with our theoretical calculations (Section 1) 

in that fitness, in percent growth per year, and the age of onset in years can be inferred from 

lineage trees without prior knowledge of L, while prior knowledge of L is necessary to infer n. 
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Figure. Fitness can be inferred without knowing the number of generations. Ground truth 

growth dynamics was simulated, and multiple ABC inferences were carried out under different c 

values. For each value of c, the number of generations used in ABC was multiplied by c for the 

ABC inference. a. inferred s (percent per generation) vs inferred age of onset of disease (years) 

are plotted for different values of c. As expected, increasing c, and hence the number of 

generations, decreases the growth per generation to keep the percent growth per year invariant. 

b. Inferred s was then converted to growth per year. As suggested by our derivation, the inferred 

s in growth per year remains invariant as the number of generations is scaled. c. The inferred s 

(percent per year) vs the inferred number of mutated HSCs at the final time-point is plotted for 

different values of c. As expected, increasing c, and hence the number of generations, decreases 

the growth per generation and thereby the rate of stochastic extinction. The number of mutated 

HSCs must then fluctuate to a larger population size early on to escape extinction. This results in 

a larger number of mutated stem cells at the final time-point.      

 

 

The analytical calculation of coalescent times matches the simulations results 

In Section 1, we provide an analytical calculation of the average coalescent times of our model, 

and show that the average coalescence times do not change if we scale the number of 

generations while keeping the percent growth the same (suggesting that fitness can be inferred 

without prior knowledge of the number of generations). 

 

To validate our analytical calculation of coalescent times, we performed the following simulations. 

For each s = 0.1, 0.3, … 1.5 (growth per generation), we constructed thousands of data trees 

using the following specifications: 

1. g = 25, L = 35, N = 109 (with the corresponding s) 

2. k = 22 cells were randomly sampled 

3. A mutation rate of 723/34 was used  

 

We then converted the branches of each data tree to years, assuming the tree was for a 34-year-

old patient, by multiplying the branch lengths by 34 / 723. Then, for each value of s separately, 

we constructed a distribution for each of the i = 1, …, 21 coalescence times using the 

corresponding trees. We computed the means and standard deviations of those distributions and 

plotted them (figure below). 



 

 
The analytical derivation of coalescence times therefore matches the simulated coalescence 

times within a standard deviation. Our derivations also predict that the coalescence times of a 

tree should not change when scaling the number of generations while keeping the percent growth 

per year fixed. To verify this occurs in our simulated trees, we did the following: 

 

For each s’ = 0.1, 0.6, 1.1 and for each c = 0.5,1, 2, 10, 100, we simulated thousands of data 

trees using the following specifications: 

1. s = (1 + s’)1/c - 1 (this s, in growth per generation, along with the L in specification 2), keep 

the percent growth per year invariant (See supplemental). 

2. L = c*35, g = c*25, N = 109, 

3. 22 cells were randomly sampled 

4. A mutation rate of 723/(c*35 - 1) was used  

 

We then converted the branches of each data tree to years, assuming the tree was for a 34-year-

old patient, by multiplying the branch lengths by (c*35 - 1)/723. For each combination of s and c, 

we constructed distributions for each of the i = 1, … , 21 coalescence times of the corresponding 

trees. We then computed the means and standard deviations of the distributions and plotted them 

(figure below). 

 

Consistent with our theoretical predictions, scaling the number of generations while keeping the 

percent growth per year invariant appears to not significantly change the average times until 

coalescence. This implies that trees are indistinguishable when the percent growth per year is the 

same, even if the number of generations is different, showing that percent growth per year can 

be inferred from lineage trees without knowing L. 

  



 

 

 

Figure. The analytical calculation of coalescent times matches the simulations results. a. 

We verify that our analytical calculation of the average coalescence times of our model matches 

the empirically observed coalescence times. Blue dots show the average coalescence times 

computed empirically for different s by simulating a large number of cancer expansions, 
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constructing trees, and then averaging over the times until coalescence. Error bars denote 1 std 

in the coalescence times. Orange dots show the average coalescence times derived analytically 

for comparison. b. Our mathematical derivation shows that scaling the number of generations by 

a factor of c while maintaining the percent growth per year, s, fixed does not change the average 

coalescence times of trees. We take s = 0.1, 0.6, and 1.1 in percent growth per year corresponding 

to rows 1, 2, and 3 respectively, scale the number of generations by different factors of c, and 

compute the average coalescent times empirically. Blue dots are the empirically computed 

coalescent times before scaling the number of generations by c, and the orange dots are the 

empirically computed coalescent times after scaling the number of generations by c. The average 

coalescent times using scaled parameter values always lie within 1 std of the average coalescent 

times using unscaled parameters. The small deviations are due to the fact that s in growth per 

year is not sufficiently small when the number of generations is not scaled. As c increases, 

increasing the number of generations, the growth per generation decreases to maintain constant 

percent growth per year. As the growth per generation decreases, the coalescent times converge 

according to our mathematical derivation.      

 

ABC on simulated data with fitness heterogeneity 

The Wright-Fisher model assumes that each cell at each generation has the same fitness value. 

However, it is conceivable that there is heterogeneity in the fitness of cells, or more precisely that 

the fitness of each cell comes from a distribution. To test the robustness of our inference to the 

assumption of homogeneous s, we simulated 20 data trees using the following specifications: 

 

1. We fixed parameter values N = 107, g = 25, L = 35. 

2. Clonal expansions were simulated for g generations, but with a slight modification to 

the Wright-Fisher process with selection that we use for ABC. In particular, each 

generation of cells creates the next generation of cells according to the following rule: 

Non-cancer cells have probability p of being chosen as a parent by a cell in the next 

generation, and the ith cancer cell has probability (1 + si)*p of being chosen, where the 

si are i.i.d. Gaussians with mean 0.6 and std 0.2. That is, a fitness value is assigned 

to each cell in the current generation, and then each cell from the next generation picks 

a parent cell randomly according to the probabilities determined by the fitness values 

drawn from a Gaussian. 

3. k = 22 mutant cells were randomly sampled 

4. The mutation rate was 723/(L - 1) 



 

 
 

We then inferred the parameter values for each tree using the same specifications as the ABC 

model used for the 34-year-old patient data (see Inference on patient data at the end of the 

document). Results were plotted in the figure below and show that the mean growth per year can 

be accurately inferred, even when incorporating Gaussian noise. 

 

To test how sensitive our results are to the assumed fitness distribution, we decided to simulate 

20 data trees in an identical fashion as before, except that instead of drawing from a Gaussian 

we chose to draw from a uniform distribution on (0, 1.2). Results were plotted in the figure below                     

and suggest that the mean growth per year can be accurately inferred, even when the fitness 

distribution is highly variable.  

 

The Wright-Fisher model assumes a specific amount of genetic drift, an assumption that is often 

neglected. To test the impact of this assumption on our inference, we simulated 20 data trees 

using the following specifications: 

 

1. We fixed parameter values s = 0.6, N = 107, g = 25, L = 35. 

2. Clonal expansions were simulated for g generations. At each generation, 25% of the 

total population of stem cells were randomly “inactivated”, so that when the lineage 

trees were simulated, the cells could not select an “inactivated” cell. This forces a 

smaller number of stem cells to contribute to the exponential growth, so that genetic 

drift occurs more rapidly. If all the cells in a generation were randomly inactivated by 

chance, the clonal expansion was re-simulated since this represents an extinction 

event. 

3. k = 22 mutant cells were randomly sampled 

4. The mutation rate was 723/(L - 1) 

 

Similar to the previous simulations, we used the ABC model specifications that were applied to 

the data tree for the 34-year-old. The results are plotted in the figure below, and show that the 

inference is robust to a different amount of genetic drift. 

 

We then decided to simulate a more realistic version of the previous scenario, where cells are 

continuously killed at a constant rate. 20 simulated trees were constructed in an identical fashion 

as above, except that instead of simulating the entire clonal expansion first and then inactivating 



 

 
cells at each generation, the cells were killed off simultaneously with the exponential growth. In 

particular, before a new generation was produced, 25% of the total number of stem cells were 

randomly killed, and this new smaller pool of stem cells was used to create the next generation 

of cells. Note that in this case, the p-value of the binomial parameter would be computed using 

N*0.75 instead of N, before N cells are chosen from current generation to create the next 

generation of cells. This is subtlety distinct from the drift scenario, where the parameter values for 

the binomial draws do not factor the temporary reduction in population size due to the random 

killing. The results are plotted in the figure below and show that the inference is also robust to 

randomly killing cells. 

 

Figure. Robustness to cell heterogeneity. a. 20 data trees were simulated for a 34-year-old 

patient using parameter values g = 25, L = 35, and N = 10^7, and where the fitness of each cell 

was drawn from a Gaussin with mean 0.6 and std 0.2. ABC inferences were then carried out on 

each data tree using the usual model that was applied to data, which assumes s is the same for 



 

 
each cell. The inferred mean of the posterior distributions for each tree were plotted with error 

bars to denote 1 std. The blue lines represent the ground truth parameter values. For the inferred 

vs true s figure, the blue line is just the mean growth per year of the clonal expansions. b. These 

figures were constructed in an identical fashion to figures 1b, except that s was instead drawn 

from a uniform distribution on (0, 1.2). c. 20 data trees were simulated for a 34-year-old patient 

by running clonal expansions with parameter values s = 0.6, g = 25, L = 35, and N = 107. After 

each clonal expansion, genetic drift was increased by inactivating 25% of the total number of stem 

cells at each generation so that ~75% of the cells were contributing to the exponential growth at 

each time step. ABC inferences were then carried out on each data tree using the usual model 

that was applied to data, which did not include the additional genetic drift. The inferred mean of 

the posterior distributions were plotted for each tree with error bars to denote 1 std. The blue lines 

represent the ground truth parameter values. d. 20 data trees were simulated for a 34-year-old 

patient by running clonal expansions with parameter values s = 0.6, g = 25, L = 35, and N = 10^7, 

except that 75% of the total population of stem cells was randomly killed at each generation before 

the next generation of cells was birthed. ABC inferences were then carried out on each data tree 

using the usual model that was applied to data, which does not include random killing. The inferred 

mean of the posterior distributions were plotted for each tree with error bars to denote 1 std. The 

blue lines represent the ground truth parameter values. 

 

 


