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SUMMARY
Pluripotentcells emergeasanaive founderpopulation in theblastocyst, acquirecapacity forgermlineandsoma
formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem
cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we inves-
tigate the intermediate formativestage.Usingminimalexposure tospecificationcues,wederivestemcells from
formativemouse epiblast. Unlike ESCsor EpiSCs, formative stem (FS) cells responddirectly to germcell induc-
tion. They colonize somatic tissues andgermline in chimeras.Whole-transcriptome analyses show similarity to
pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage
capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2.
Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem
cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
INTRODUCTION

Mouse embryonic stem cells (ESCs) correspond to naive

epiblast, a transient population in the pre-implantation embryo

(Hackett and Surani, 2014; Smith, 2017). As the embryo im-

plants, naive pluripotency transcription factors are downregu-

lated and their ability to form ESCs is lost, while transcription fac-

tors such as Otx2 and Pou3f1 are upregulated together with de

novo methyltransferases Dnmt3a and Dnmt3b (Acampora

et al., 2016; Auclair et al., 2014; Boroviak et al., 2014, 2015;

Brook and Gardner, 1997). After this transition, epiblast cells

manifest competence for primordial germ cell (PGC) induction

(Ohinata et al., 2009). Subsequently, the epiblast becomes pro-

gressively regionally fated and molecularly diverse (Beddington

and Robertson, 1998; Cheng et al., 2019; Lawson et al., 1991;

Peng et al., 2016, 2019). These events are mirrored by ESCs

entering into differentiation (Hayashi et al., 2011; Kalkan et al.,

2017; Mulas et al., 2017). We hypothesize that exit from naive

pluripotency heralds a formative conversion that instates

competence for both soma and germline induction (Kalkan and

Smith, 2014; Kinoshita and Smith, 2018; Smith, 2017).

Cultures termed epiblast-derived stem cells (EpiSCs) have

been obtained by exposure of embryo explants to fibroblast

growth factor (FGF) and activin (Brons et al., 2007; Guo et al.,
Cell Stem Cell 28, 453–471,
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2009; Tesar et al., 2007). EpiSCs can be derived from all stages

of epiblast (Kojima et al., 2014; Najm et al., 2011; Osorno et al.,

2012) but invariably converge on mid-gastrula stage pheno-

types, generally displaying transcriptome relatedness to primed

epiblast of the anterior primitive streak (Kojima et al., 2014; Tsa-

kiridis et al., 2014). Thus, culture of epiblast in relatively high

levels of FGF (12.5 ng/ml) and activin (20 ng/ml) results in the

propagation of a form of primed pluripotency, which is likely

dictated by these strong growth factor signals.

Notably, EpiSCs are refractory to PGC induction, unlike em-

bryonic day 5.5 (E5.5)–6.5 epiblast. (Hayashi et al., 2011; Mura-

kami et al., 2016; Ohinata et al., 2009). Naive ESCs are also un-

responsive to germ cell inductive stimuli, unless they are

transitioned for 24–48 h into a population termed epiblast-like

cells (EpiLCs) (Hayashi et al., 2011; Nakaki et al., 2013). EpiLCs

are molecularly as well as functionally distinct from both naive

ESCs and EpiSCs (Buecker et al., 2014; Hayashi et al., 2011; Kal-

kan et al., 2017; Smith, 2017). They are enriched in formative

phase cells related to pre-streak epiblast but are heterogeneous

and persist only transiently (Hayashi et al., 2011).

Here, we invested in an effort to capture and propagate stem

cells representative of mouse post-implantation epiblast be-

tween E5.5–E6.0, when the formative transition is expected to

be completed but epiblast cells remain mostly unspecified.
March 4, 2021 ª 2020 The Authors. Published by Elsevier Inc. 453
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RESULTS

Derivation of Stem Cell Cultures from Mouse Formative
Epiblast
We hypothesized that shielding formative epiblast cells from line-

age-inductive stimuli while maintaining autocrine growth and sur-

vival signals may stall developmental progression but sustain

propagation. Nodal, FGF4, and FGF5 are broadly expressed in

the early post-implantation epiblast (Haub and Goldfarb, 1991;

Mesnard et al., 2006; Niswander and Martin, 1992; Varlet et al.,

1997) and promote lineage capacitation in mouse ESCs (Hayashi

et al., 2011; Kunath et al., 2007; Mulas et al., 2017; Stavridis et al.,

2007). They are therefore candidates for supporting formative plu-

ripotency. However, togetherwithWnt3 and bonemorphogenetic

proteins (BMPs), these growth factors also drive specification in

the gastrula (Liu et al., 1999; Winnier et al., 1995).

We speculated that in a context of Wnt inhibition and absence

of BMP, moderate stimulation of FGF and Nodal pathways may

sustain a formative population. We used the Tankyrase inhibitor

XAV939 to block canonicalWnt signaling and excluded undefined

components such as feeders, serum, knockout serum replace-

ment (KSR), or matrigel. Autocrine Nodal is known to be downre-

gulated in vitro in the absence of extraembryonic tissues (Guz-

man-Ayala et al., 2004); therefore, we added activin A (20 ng/ml)

as a substitute. E5.5 epiblasts were isolated by microdissection

and plated intact in individual fibronectin-coated 4-well plates in

N2B27 medium under 5% O2 conditions (Figure 1A). After 5–

6 days, explants were treated with Accutase for 5–10 s and

then gently detached, fragmented into small clumps, and seeded

into fresh 4-well plates. With or without added FGF, colonies of

tightly packed epithelioid cells grew that could be passaged

further and expanded into continuous cell lines (Figures 1A and

S1A). In the absence of FGF, we observed an appreciably higher

expression of primitive streakmarkers Brachyury, FoxA2, Eomes,

and Gsc (Figures S1B and S1C). Nodal/activin signaling is known

to stimulate these genes (Brennan et al., 2001; Conlon et al., 1994;

Takenaga et al., 2007). We titrated activin and found that contin-

uous cultures could still be established in the absence of FGF (Fig-

ures 1B and S1D). In low activin (3 ng/ml) plus XAV939 (AloX), we

obtained cell lines that could be propagated formore than 20 pas-

sages (Figures 1B and S1D; Video S1).

Cell lines derived in AloX expressedOtx2, consistent with post-

implantation identity but showed no expression of T and minimal

FoxA2 (Figures 1C and 1D). They displayed similar levels of

Pou5f1 (Oct4) mRNA to EpiSCs, slightly higher Sox2, and lower

Nanog. (Figure 1C). Upon embryoid body formation and

outgrowth, we detected germ layermarkers indicatingmulti-line-

age differentiation (Figure 1E).

These observations suggest that in the absence of other stim-

uli, limited stimulation of the Nodal/activin pathway combined

with autocrine FGF activity may suspend cells in the formative

phase of pluripotency.

Stem Cell Propagation Is Facilitated by Retinoic Acid
Receptor Inhibition and Requires Nodal Pathway
Activity
During establishment and expansion in AloX, we observed spo-

radic expression of neural lineage markers and appearance of

neuronal morphologies. On occasion, differentiation was exten-
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sive and led to loss of cultures. We speculated that retinoids

might be acting as neural inductive stimuli (Bain et al., 1995;

Stavridis et al., 2010). We therefore applied a pan-retinoic acid

receptor inverse agonist (RARi; BMS 493; 1.0 mM) (Figure S1E).

Supplementation of AloX with RARi, henceforth AloXR, resulted

in improved derivation efficiency (Figure S1F), reduced ectopic

expression of neural specification factors Sox1 and Pax6 (Fig-

ure S1E), and stabilized long-term cultures. Using AloXR, we es-

tablished nine cell lines from embryos of two different strains,

namely, 129 and CD1. These lines were all passaged more

than 10 times (30 generations) with no indication of crisis or

senescence. Established cultures expanded slightly slower

than EpiSCs and similar to ESCs, with routine passaging every

2–3 days at a split ratio of 1/10 to 1/15. Chromosome counts

showed a majority of diploid cells even at later passages (Fig-

ure S1G). Cells were routinely passaged by mild dissociation

into small clumps. Survival was poor after dissociation to single

cells, but addition of Rho-associated kinase inhibitor (ROCKi)

(Watanabe et al., 2007) enabled reliable clonal expansion.

Using fluorescent in situ hybridization, we detected a promi-

nent cloud of Xist expression in nuclei of a female line (Fig-

ure S1H). Upregulation of Xist is indicative of initiation of X chro-

mosome inactivation, a predicted feature of formative epiblast

(Mak et al., 2004; Shiura and Abe, 2019).

Mouse ESCs undergo formative transition when withdrawn

from 2iLIF (Hayashi et al., 2011; Kalkan et al., 2017; Mulas

et al., 2017).We applied AloXR during this transition and obtained

continuously proliferating epithelial cells. Cultures displayed var-

iable levels of heterogeneity during the first few passages (Fig-

ure S1I) but stabilized within 4–6 passages and subsequently

expanded similarly to embryo-derived FS cells. We replated cul-

tures in 2iLIF, which supports clonal propagation of ESCs at high

efficiency (Kalkan et al., 2017). All cells died or differentiated

within a few days, demonstrating complete extinction of ESC

identity. This finding is in marked contrast to other reports of ‘‘in-

termediate’’ pluripotent states, which readily revert to ESCs

(D’Aniello et al., 2016; Neagu et al., 2020; Rathjen et al., 1999).

Germline and Somatic Lineage Induction In Vitro

In mice, the formative phase of pluripotency is definitively distin-

guished from naive and primed phases by competence for germ-

line specification (Hayashi et al., 2011; Ohinata et al., 2009). We

examined the response of embryo-derived AloXR cells to the cyto-

kine cocktail for PGC induction (Ohinata et al., 2009). In each of 8

independent lines tested, we detected the PGC surface marker

phenotype CD61+SSEA1+ (Figure 1F). This capacity was main-

tained even in late passage (>P30) cultures. The proportion of

marker-positive cells ranged up to >30% in some experiments

and was generally between 5%–25%, although one line was

consistently less efficient, around 1%. Two lines expanded

without RARi also producedCD61+SSEA1+ immunopositive cells,

albeit at <10% (Figure S1J). In contrast, 4 AFX EpiSC lines derived

from E5.5 epiblast did not yield double-positive cells (Figure S1K).

Furthermore, AFX EpiSCs adapted to culture in AloXR over several

passages remained unable to produce PGC-like cells (PGCLCs)

(Figure S1L).

To confirm PGCLC identity, we sorted the CD61+SSEA1+ pop-

ulation and verified expression of a range of germ cell markers by

qRT-PCR (Figure S1M). We also observed co-expression of



Figure 1. Derivation of Stem Cell Lines from Formative Epiblast

(A) Schematic of cell line derivation from E5.5 epiblast.

(B) Image of serially passaged E5.5-epiblast-derived culture. Scale bar, 100 mm.

(C) qRT-PCR analysis of marker gene expression relative to ESCs in 2iL ( =1) in AloX cells and EpiSCsmaintained in either activin and FGF (AF) or activin, FGF, and

XAV939 (AFX), normalized to beta-actin. Error bars are SD from technical triplicates.

(D) Immunofluorescent staining of EpiSCs and AloX cultures for early lineage markers. Scale bars, 150 mm.

(E) Immunostaining of embryoid body outgrowths for germ layer markers; DAPI in blue. Scale bars, 150 mm.

(F) Flow cytometry analysis of PGCLC induction at day 4.

(G) Immunostaining of day 4 PGCLC. Scale bars, 50 mm.
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Oct4, Blimp1, and Stella proteins by immunostaining in both

AloXR and AloX cultures (Figures 1G and S1N). Collectively, these

features constitute recognized hallmarks of mouse PGCLCs

(Hayashi et al., 2011; Ohinata et al., 2005). Based on this compe-
tence, we designated AloX and AloXR cells as formative stem

(FS) cells.

We then investigated directed somatic differentiation of FS

cells in comparison with EpiSCs. Inhibition of the Wnt pathway
Cell Stem Cell 28, 453–471, March 4, 2021 455
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shifts the character of EpiSCs toward anterior epiblast identity

and predisposes them to neuroectodermal fate (Osteil et al.,

2019; Tsakiridis et al., 2014). We used the Sox1::GFP reporter

(Stavridis and Smith, 2003) to quantify neural induction kinetics

of FS cells and EpiSCs maintained with Wnt inhibition. After

transfer into permissive N2B27 medium, more than 80% of

EpiSCs became GFP positive on day 1 compared with only

around 25% of FS cells (Figure 2A). By day 2, however, the

GFP+ fraction approached 80% for FS cells and by day 3

reached >80% as for EpiSCs. We examined protein expression

by immunostaining and found that FS cells lagged behind

EpiSCs in both downregulation of Oct4 and upregulation of

Sox1, but by day 3, the vast majority were Oct4 negative and

Sox1 positive (Figure 2B). Thus, mouse FS cells have similar ca-

pacity to form neuroectoderm as EpiSCs but take longer to

do so.

We tested primitive-streak-like induction in response to activin

and GSK3 inhibition (Burgold et al., 2019). We observed sub-

stantially higher induction of mesendoderm surface markers

and gene expression from FS cells than from EpiSCs (Figures

S2A–S2C). Using flow cytometry, we quantified Flk1+Ecad�

lateral mesoderm and Cxcr4+Ecad+ definitive endoderm.We de-

tected no induction of either lineage directly from ground state

ESCs and only modest induction from EpiSCs (Figures 2C and

2E). Across a panel of FS and EpiSC lines, induction of meso-

derm was on average 3-fold more efficient from FS cells (Fig-

ure 2D) and induction of endoderm was 4-fold higher (Figure 2F).

To probe the basis of differential propensity for primitive streak

induction, we examined the response of ESCs, FS cells, and

EpiSCs to signals operative during gastrulation. Ground-state

ESCs did not upregulate T in response to any stimulus tested,

with the exception of very low induction by the GSK3 inhibitor

CH. EpiSCs also failed to show any appreciable response, apart

from induction by CH at 6 h that was not maintained at 24 h. In

contrast, FS cells showed sustained upregulation of T upon

treatment with activin, FGF, CH, or, to a lesser extent, BMP (Fig-

ure 2G). Notably, addition of FGF at only 1 ng/ml induced T and

FoxA2 expression in FS cells (Figure S2D)

Thus, FS cells show rapid and efficient responsiveness to

primitive streak inductive cues but require 48 h for full neural

specification. These behaviors are distinct from EpiSCs and

consistent with a developmental stage of E5.5–6.0 epiblast.

Chimera Colonization
EpiSCs (AF) do not normally contribute to blastocyst injection

chimeras unless they have been genetically modified to enhance

ICM integration or survival (Masaki et al., 2016; Ohtsuka et al.,

2012; Tesar et al., 2007). We confirmed this finding for AFX

EpiSCs derived from E5.5 epiblast, detecting no mid-gestation

chimeras after blastocyst injection of three lines and transfer of

95 embryos.We testedwhether FS cells may have a higher prob-

ability of enduring from the E3.5 blastocyst until stage-matched

early post-implantation epiblast. Following blastocyst injection

of three different embryo-derived FS cell lines engineered to ex-

pressmKO2 or GFP, we saw reporter expression inmultiple E9.5

embryos (Figures 3A and S3A–S3E). Contributions are low to

moderate compared with typical ESC chimeras and tend to be

patchy rather than evenly dispersed. Nonetheless, colonization

may be spread over multiple tissue types, including Sox2-posi-
456 Cell Stem Cell 28, 453–471, March 4, 2021
tive putative migratory PGCs (Figure 3B). We examined genital

ridge contribution at E12.5 and detected mKO2-reporter-posi-

tive Oct4+ Mvh+ PGCs (Figures 3C, S3F, and S3G). By fluores-

cence imaging, we observed contributions to three newborn

pups. Two of these animals developed to adulthood and one

was euthanized at post-natal day 21 (P21) due to malocclusion.

Post-mortem tissue inspection revealed contributions to brain,

bone, skin, heart, lung, and gut (Figure 3D). In addition, we ob-

tained several overt coat color chimeras (Figure 3E).

Chimera formation conceivably might entail reversion of FS

cells to naive status in the blastocyst. We therefore inspected

embryos 24 h after injection. FS cells were localized to the

ICM, but immunostaining showed that in contrast to host naive

epiblast or introduced ESCs, FS cells did not express the naive

pluripotency specific transcription factor Klf4 and retained the

formative marker Oct6 (Figure 3F). Therefore, FS cells maintain

formative identity within the blastocyst environment.

Chimera formation by FS cells derived from post-implantation

epiblast challenges the conclusion from classic embryo-embryo

chimera studies that epiblast cells lose colonization ability

entirely by E5.5 (Gardner and Brook, 1997; Gardner et al.,

1985). We revisited those experiments by using a fluorescent re-

porter to allow sensitive detection of contributions.We dissected

epiblasts from cavitated E5.5 and pre-streak E6.0–6.25 trans-

genic embryos expressing membrane-bound tdTomato

(mTmG). Epiblasts were dissociated using Accutase with addi-

tion of ROCKi to improve viability and 10 cells injected per blas-

tocyst. We detected tdTomato-positive cells in 11 out of 91 em-

bryos recovered at E9.5 (Figures 3G, 3H, and S3H–S3L).

Contributions were typically sparse and, interestingly, were

most frequently in the yolk sac mesoderm and amnion. In three

chimeras, however, colonization was widespread in the embryo

proper (Figures 3G, 3H, and S3H). We did not detect any contri-

bution from streak stage (E6.5–7.0) epiblast cells (Figure S3L).

These observations establish that FS cells and primary forma-

tive epiblast cells can contribute to blastocyst chimeras,

although with lower efficiency than ESCs or ICM cells.

Transcriptome Relatedness to Pre-streak Epiblast
For global evaluation of cellular identity, we performed RNA

sequencing (RNA-seq). We first compared FS cells with

ground-state ESCs and with EpiSCs cultured in AF or AFX. Prin-

cipal component analysis (PCA) grouped ESCs apart on PC1,

whereas the two types of EpiSCs and FS cells were resolved

on PC2 (Figure 4A). Differential expression analysis (Log2 fold

change, >1.4; adjusted p < 0.05) identified 531 and 266 genes

upregulated and 941 and 168 genes downregulated in FS cells

relative to AF and AFX EpiSCs, respectively (Figures S4A ad

S4B). Gene Ontology (GO) term enrichment analysis highlighted

‘‘cell adhesion’’ in FS cells, contrasting with gastrulation and

development in EpiSCs (Figures S4A and S4B). We identified

328 genes that are upregulated in FS cells compared with

ESCs or either class of EpiSC (Figure 4B), with GO term enrich-

ment for ‘‘ion transport’’ and cell adhesion (Figure 4C).

We then used a low cell number RNA-seq protocol with deep

read depth (Boroviak et al., 2015) for comparison of FS cells with

dissected pre-cavitation (E5.0), early cavitation (E5.5), and pre-

streak (E6.0) epiblast. Unsupervised hierarchical clustering

showed FS cell relatedness to E5.5 and E6.0 epiblast, with a
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Figure 2. Lineage Potency of FS Cells and Responsiveness to Differentiation Cues

(A) Neural differentiation assayed by quantification of Sox1::GFP-positive cells. Error bars represent SD from 4 independent experiments.

(B) Immunostaining of FS cells and EpiSCs during neural differentiation; DAPI in white. Scale bars, 100 mm.

(C) Lateral plate mesoderm differentiation and representative quantifications of the Flk1+Ecad� fractions by flow cytometry.

(D) Average efficiency of Flk1-positive cell production from FS cells and EpiSCs. n, independent cell lines assayed. Error bars represent the SD. **p < 0.01.

(E) Definitive endoderm differentiation protocol and representative quantifications of the Cxcr4+Ecad+ fraction.

(F) Average proportion of Cxcr4+Ecad+ double-positive cells from differentiation of FS and EpiSC lines. Error bars represent SD; *p < 0.05.

(G) T expression analyzed by qRT-PCR 6 h and 24 h after transfer into N2B27mediumwith the indicated supplements; 2 mMXAV939, 20 ng/ml activin A, 10 ng/ml

BMP2, 12.5 ng/ml Fgf2, and 3mMCH. Relative expression is normalized to GAPDH. Error bars are SD from two independent cell lines and two technical replicates.
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lower correlation to the pre-cavitation stage (Figure 4D). EpiSCs,

both AF and AFX, were less related to the pre-gastrula epiblast

stages. We identified 953 differentially expressed genes be-

tween FS cells and EpiSCs. This gene set clustered published

embryo and EpiLC single-cell data (Nakamura et al., 2016) by

developmental trajectory (Figure 4E). Our RNA-seq E5.5 and

E6.0 epiblast profiles projected onto this PCA aligned with

E5.5 and EpiLC single cells (Figure 4E). FS cells overlapped

with EpiLCs, between E5.5 and E6.5 TLo, whereas EpiSCs

were positioned with the E6.5 cells. We inspected several of

the FS-cell-specific genes (Figure 4B) and detected dynamic

expression in the embryo single-cell data with enrichment at

E5.5 (Figures 4F and S4C).

We performed single-cell analysis on FS cells and EpiSCs by

using the Smart-seq2 method (Picelli et al., 2014). Applying a

threshold of 3 million reads, we examined 326 cells. FS cells

from two independent lines formed a single cluster in the PCA

plot (Figure 4G), separated from EpiSCs on PC1. Notably, there

was no overlap between EpiSCs and FS cells. PC2 separated AF

and AFX EpiSCs. Measurement of gene expression correlation

by the Jaccard index showed that FS cells are more homoge-

neous than either class of EpiSC (Figure 4H).

Collectively, these analyses indicate that FS cells capture fea-

tures of pre-streak epiblast and EpiLCs but are less related to

later stage epiblast and EpiSCs.

Growth Factor Requirements for FS Cell Propagation
As potential autocrine stimuli of self-renewal or differentiation,

we evaluated Nodal, FGF, and Wnt family representation in the

FS cell transcriptome data (Figures S4D–S4F). We found robust

expression of Fgf5 as expected but also detected several other

FGFs at lower levels. However, Fgf8, which is active during prim-

itive streak formation (Sun et al., 1999), was lowly expressed

compared with EpiSCs. FS cells express both Fgfr1 and Fgfr2

(Figure S4D). We tested whether FS cell cultures are dependent

on FGF signaling by adding specific inhibitors of FGF receptors

(PD173074; 0.1 mM) or downstreamMEK1/2 (PD0325901; 1 mM).

Both inhibitors caused rapid collapse of FS cell cultures. We

conclude that endogenous low-level expression of FGFs sup-

ports self-renewal, without inducing the primitive-streak-associ-

ated gene expression associated with exposure to exogenous

FGF (Figures 2G and S2D).

FS cells express nodal/activin receptors but interestingly pre-

sent lower mRNA levels for the co-receptor Tdgf1 and for Nodal

itself than either ESCs or EpiSCs (Figure S4E). We investigated

further the requirement for nodal pathway stimulation. Addition

of receptor inhibitors (A83-01 or SB505124) resulted in extensive
Figure 3. Blastocyst Chimera Contribution by FS Cells and Formative

(A) Bright-field and fluorescent images of E9.5 embryos generated after blastocy

(B) Sagittal section from one chimera, stained for mKO2 and DAPI. (B’), mKO2-p

(green arrowheads). (B’’) (rotated 90�), Sox2 immunostaining (white arrowheads)

(C) mKO2-positive cells expressing Oct4 and Mvh PGC markers in E12.5 chim

bars, 75 mm.

(D) Fluorescent images of organs from post-natal day 21 (P21) chimera overlaid

(E) Coat color chimeras generated from NBRA3.2 FS cells at 7 weeks (above) an

(F) Blastocysts injected with GFP reporter ESCs or FS cells and cultured for 24 h.

Scale bars, 40 mm.

(G) E9.5 chimeras obtained from blastocyst injection of mTmG expressing E5.5

(H) Section from left embryo in (G) stained with anti-RFP to visualize membrane-
cell death and differentiation with loss of Oct4 and upregulation

of Pax6 (Figures 4I and S4G). Withdrawal of activin also led to

reduced viability and increased differentiation, indicating that au-

tocrine activity does not provide sufficient pathway stimulation.

In FS cell medium, activin is added at only 3 ng/ml compared

with 20 ng/ml typically used for feeder-free culture of EpiSCs.

Dosage sensitivity is a well-known feature of nodal signaling in

the mouse embryo (Robertson, 2014). We observed markedly

less induction of nodal pathway targets in FS cells at 3 ng/ml

than at 20 ng/ml activin (Figure 4J). Furthermore, immunoblotting

indicated lower steady-state levels of phospho-Smad2 in cells

passaged in 3 ng/ml activin (Figure 4K). These observations

are consistent with a dose-dependent response to nodal/activin

stimulation, whereby low signal sustains the formative gene reg-

ulatory network and higher signal promotes primitive streak

specification.

Finally, the observed expression of Fzd receptors and low

levels of some Wnts may underlie the requirement for inhibition

of Wnt signaling to fully suppress differentiation (Figure S4F).

Consistent with this interpretation, we observed that the porcu-

pine inhibitor IWP2 could substitute for XAV939 during FS cell

maintenance.

Thus, FS cells aremaintained by FGF and nodal/activin but are

poised to respond to increased levels of either signal or of ca-

nonical Wnt by entering into mesendoderm differentiation.

Chromatin Accessibility in FS Cells
We used the assay for transposase accessible chromatin

coupled to deep sequencing (ATAC-seq) (Buenrostro et al.,

2013) to survey open chromatin in FS cells. Independent FS

cell samples were well correlated (Figure 5A). We classified sites

that exhibit differential accessibility between ESCs, FS cells, and

EpiSCs based on a fold-change enrichment greater than two (p <

0.05). Reorganization was evident between naive and formative

cells, with 3,742 sites closing, 4,259 opening, and only 207

shared open sites (Figures 5B and 5C). In contrast, between

formative and primed cells, a majority of open sites were shared

(3,588), whereas just over 1,000 became more accessible and a

similar number closed. We detected 826 peaks specifically en-

riched in FS cells compared to either ESCs or EpiSCs. These

FS-cell-specific open chromatin regions were also accessible

in transient EpiLCs (Figures 5C and 5D). Nearby genes (<1 kb)

showed no significant GO term enrichment, however

(Figure S5A).

Chromatin immunoprecipitation sequencing (ChIP-seq) for

histone modifications showed the expected correlation between

open chromatin and active marks, H3K4me3, H3K4me1, and
Epiblast

st injection of mKO2 reporter FS cells. Scale bar, 1 mm.

ositive cells in foregut endoderm (yellow arrowheads) and cardiac mesoderm

in the hindgut region. Scale bars, 200 mm (B) and 100 mm (B’and B’’).

eric gonad. Triple-positive cells are highlighted with dashed circles. Scale

with 20% opacity bright-field image. Scale bars, 2 mm.

d 4 weeks (below).

ESCs are Klf4+Oct6� (n = 11) (F’), whereas FS cells are Klf4�Oct6+ (F’’) (n = 15).

epiblast cells. Scale bars, 500 mm.

tdTomato; DAPI in blue. Scale bar, 200 mm.
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Figure 4. Whole-Transcriptome Analysis and Nodal/Activin Pathway Activity

(A) PCA with all genes for ESCs, FS cells, and EpiSCs (AFX and AF).

(B) Heatmap clustering of naive, formative, and primed enriched genes.

(legend continued on next page)
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H3K27Ac (Figure 5E). Regions that were more open in naive and

formative cells showed marked enrichment for H3K4me3 and

H3K27ac that was lost in EpiSCs. Interestingly, active marks

were also more highly represented in FS cells than in ESCs at

loci that opened only in EpiSCs. We surveyed bivalent promoter

regions marked with both H3K4me3 and H3K27me3 (Azuara

et al., 2006; Bernstein et al., 2006). We enumerated 2,417 biva-

lent promoters in FS cells, nearly three times the number in

ESCs (Figure S5B). Many, but not all, of these loci were also biva-

lent in EpiSCs. Figure S5C shows examples of different profiles.

Among the FS-cell-specific bivalent promoters was Prdm14, en-

coding one of the key germ cell determination factors (Nakaki

et al., 2013). Promoters for other germ cell genes Tfap2c and

Prdm1 are also bivalent in FS cells, consistent with being poised

for expression (Figure 5F). In EpiSCs, however, Prdm14 loses

both marks, indicating the gene is inactivated. This chromatin

change may be a decisive feature in the loss of competence

for PGCLC induction in EpiSCs (Hayashi et al., 2011)

We also assessed DNAmethylation at open chromatin regions

by using published data for EpiLCs and EpiSCs (Zylicz et al.,

2015). In EpiLCs, all ATAC peaks were hypomethylated. In

EpiSCs, in contrast, only primed peaks maintained low methyl-

ation (Figure S5D).

Among genes proximal to shared ATAC peaks in FS cells and

EpiSCs, we observedmarked differential expression (Figure 5G).

GO term analysis of genes more highly expressed in EpiSCs

identified enrichment for heart development, multicellular organ-

ism development, and gastrulation (Figure S5E). These included

gastrulation-associated genes such asCer1,Gsc, and Pax3. FS-

cell-enriched transcripts were more numerous but comprised

genes without annotated functions in early development (Ta-

ble S1).

We used HOMER (Heinz et al., 2010) to identify transcription

factor binding motifs enriched in open chromatin regions (Table

S2). Core pluripotency factor binding motifs for Oct4 and Oct4-

Sox-Tcf.-Nanog were over-represented in all three cell types.

ESC ATAC peaks were also enriched for Tfcp2l1 and Prdm14

motifs, whereas those in EpiSCs featured Gsc, Brachyury,

Slug, and Eomes motifs (Figures 5H and S5F). Both FS cells

and EpiSCs showed increased accessibility of AP1/Jun sites.

Finally, we noted that FS cell open chromatin showed specific

enrichment for ETS-domain factor binding motifs.

FSCells andEpiSCsShowContrastingDependencies on
Etv and Otx2
Previously, we presented evidence linking Etv5, an ETS factor of

the PEA3 sub-family, to enhancer activation during pluripotency

progression (Kalkan et al., 2019). We also showed that ESCs
(C) GO term analyses based on the genes identified in (B). x axis is �Log(p value

(D) Heatmap comparison of FS cells and AFX and AF EpiSCs with E5.0, E5.5, an

(E) Left, PCA with mouse single-cell data from embryos and EpiLCs (Nakamura

(F) Gene expression patterns of selected FS cell enriched genes identified in (B) c

(G) PCA using 2,000 most abundant genes of single-cell RNA sequencing (scRN

(H) Violin plot of Jaccard index analysis of 2,000 most abundant genes shows hi

(I) qRT-PCR analysis of FS cells in AloXR (Ctrl), with addition of 1 mMA83-01 or 5 mM

Error bars are SD from technical duplicates.

(J) qRT-PCR analysis of FS cells cultured in low (3 ng/ml) and high (20 ng/ml) activi

duplicates.

(K) Immunoblot analysis of phospho-Smad2. Cells were passaged once with low
lacking Etv5 show diminished ability to make EpiSCs. Here, we

used CRISPR-Cas9 to generate ESCs deficient for both Etv5

and the related Etv4. Etv4/5-double-knockout (dKO) cells failed

completely to produce EpiSCs upon transfer to AFX and differ-

entiated into fibroblast-like cells (Figure S6A). This phenotype

is more severe than that for the Etv5 mutation alone. Somewhat

unexpectedly, however, Etv4/5-dKO cells converted to epithelial

culture in AloXR and subsequently expanded, albeit with persist-

ing differentiation (Figures 6A and S6A). Relative to ESCs, naive

factors were downregulated and post-implantation markers up-

regulated, including several targets of Etv5, such as Fgf5, Otx2,

and Pou3f1 (Figure 6B). We detected no compensatory upregu-

lation of the third PEA3member Etv1. Etv4/5-dKO FS cells differ-

entiated readily by embryoid bodies and in directed protocols

(Figures S6B–S6E), including induction of Blimp1+, Stella+, and

Oct4+ PGCLC (Figure S6F). However, when transferred to AFX,

Etv4/5-dKO cells failed to convert to EpiSCs, lost expression

of Oct4 within 3 days, and differentiated into fibroblasts with

aberrant expression of Pou3f1 (Figures 6C, 6D, and S6G). Intro-

duction of an Etv5 transgene to Etv4/5-dKO cells restored the

ability to convert to EpiSCs (Figures 6E–6H). These results estab-

lish that Etv4 and Etv5 are not essential for lineage competence

of FS cells and yet are required for the production of EpiSCs

in vitro.

Otx2 is prominently upregulated early during formative transi-

tion in vivo and in vitro (Acampora et al., 2016; Kalkan et al., 2017)

and is implicated in redirecting genome occupancy of Oct4

(Buecker et al., 2014; Yang et al., 2014). Intriguingly, Otx2 is

dispensable in both ESCs and EpiSCs (Acampora et al., 2013),

but homozygous embryo mutants exhibit severe gastrulation

phenotypes (Ang et al., 1996). We generated Otx2 KO ESCs

and investigated conversion into FS cells in AloXR. Epithelial col-

onies emerged and could be expanded for 4–5 passages but

continuously differentiated into neural cells (Figure 6I). By pas-

sage 5, Oct4 and Nanog were downregulated, and the majority

of cells were positive for Sox1 (Figure 6J). Cultures could not

be maintained reliably thereafter. In contrast, Otx2 mutant

ESCs could be converted into stable Oct4-positive EpiSCs by

direct transfer into AFX (Figure 6I); although, colonies frequently

displayed aberrant expression of Sox1 as previously reported

(Acampora et al., 2013; Figure 6J). BMP has been shown to

enhance stability of Otx2-deficient EpiSCs (Acampora et al.,

2013). We added BMP to two Otx2�/� FS cell cultures in AloXR

but observed no suppression of differentiation (Figure S6H).

We also mutated Otx2 directly in FS cells and observed that

colonies became compact and dome-shaped, superficially

resembling naive ESCs (Figures 6K, 6L, and 6M). When replated

in 2iL, however,Otx2mutant FS cells did not expand but instead
). Top 6 significant terms are shown (Benjamini value, <0.05).

d E6.0 epiblast cells.

et al., 2016). Right, samples from (D) were projected onto the single-cell PCA.

olored on PCA from (E). E5.5 epiblast cells are highlighted by the dashed circle.

A-seq) data from two FS cell lines and one AFX and one AF EpiSC line.

gher correlation between FS cells than EpiSCs.

SB5124, or withdrawal of activin for 2 days. Relative expression to beta-actin.

n for 2 days. Relative expression to beta-actin. Error bars are SD from technical

(3 ng/ml) or high (20 ng/ml) activin A before assay.
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differentiated or died (Figure S6I). We managed to achieve initial

clonal expansion of targeted FS cells in AloXR, but 8 out of 8

clones subsequently underwent extensive neural differentiation

and could not be stably propagated. We added BMP to three

cultures, but this did not result in stabilization.

These results indicate that Otx2 but not Etv4/5 is required for a

stable FS cell state and conversely for EpiSCs.

Generation of Human FS-like Cells
We explored the derivation of FS cells from naive human plurip-

otent stem cells (hPSCs) (Takashima et al., 2014). We used both

chemically reset lines, namely, cR-H9EOS and cR-Shef6 (Guo

et al., 2017), and embryo-derived HNES1 cells (Guo et al.,

2016). AloX and AloXR were applied as for mouse FS cell culture,

except that plates were coatedwith a combination of laminin and

fibronectin to improve attachment. The domed naive hPSCs

converted to a more flattened epithelioid morphology over

several days. Cultures could be propagated continuously there-

after and exhibited a faster doubling rate than naive cells,

requiring passage every 4 days at a split ratio of 1/15 (Figure 7A).

Cells in AloXR lost naive markers (KLF4, KLF17, and TFCP2L1)

but retained the core pluripotency factor OCT4, with little or no

upregulation of lineage priming markers, TBXT or FOXA2, often

detected in conventional hPSCs (Figure 7B; Allison et al., 2018;

Gokhale et al., 2015). They showed gain of SOX11 and OTX2,

markers of post-implantation epiblast in the primate embryo (Na-

kamura et al., 2016).

Naive hPSCs do not respond productively to somatic lineage

induction protocols but must first undergo formative transition

to lineage competence (Guo et al., 2017). This capacitation pro-

cess takes place over several days (Rostovskaya et al., 2019). FS

cells, in contrast, are expected to be directly responsive to line-

age cues. We applied established protocols for differentiation to

human FS cells. In response to definitive endoderm induction

(Loh et al., 2014), we observed efficient formation of SOX17-pos-

itive cells (Figure 7C), whereas neural induction by dual SMAD in-

hibition (Chambers et al., 2009) resulted in abundant SOX1 im-

munopositive cells (Figure 7D). We also tested paraxial

mesoderm differentiation (Chal et al., 2016) and detected upre-

gulation of TBX6 and MSGN1 along with EMT markers such as

SNAIL1 and ZEB1 (Figure 7E).

We prepared RNA-seq libraries from three human FS-like cell

lines and carried out a whole-transcriptome comparison with

naive and conventional hPSCs (Figure 7F). PCA distinguished

naive cells on PC1 and separated formative from conventional

hPSCs onPC2, similar to the analysis ofmouse PSCs (Figure 4A).

As a reference for in vivo early post-implantation development,

we used data for the non-human primate Macaca fascicularis
Figure 5. Chromatin Landscape Analysis

(A) Hierarchical clustering of all ATAC-seq peaks.

(B) Peak changes between states. OC, open to closed; CO, closed to open; OO

(C) Heatmaps of differential ATAC-seq peaks.

(D) Heatmaps of ATAC-seq peaks from (C) in EpiLCs and EpiSCs derived from R

(E) Histone modification patterns at ATAC-seq peaks.

(F) Genome browser screenshots of H3K4me3 and H3K27me3 distribution at Pr

(G) Volcano plot showing expression fold changes for genes associated with A

EpiSCs; blue, upregulated in FS cells.

(H) Transcription factor binding motif enrichments at ATAC-seq peaks.
(Nakamura et al., 2016). We used 9,324 expressed orthologous

genes (median Log2 expression, >0.5) to compute the PCA for

Macaca, onto which we projected the human cell line samples

(Figure 7G). FS-like cells and conventional hPSCs aligned with

post-implantation embryo stages. FS-like cell samples were

positioned adjacent to post-implantation epiblast, whereas con-

ventional hPSCs spread further toward early gastrulating cells.

Single-cell transcriptome data have recently been published

for human embryos during extended culture (Xiang et al.,

2019). We used variable genes in the epiblast and primitive

streak anlage (PSA) stages to compute the PCA for naive, forma-

tive, and conventional hPSCs and then projected the embryo

single cells. The resulting plot shows a similar pattern to the

Macaca embryo comparison. Naive cells clustered with pre-im-

plantation epiblast, and formative cells were next to post-im-

plantation stages. Conventional hPSCswere adjacent to FS cells

but distributed more toward the PSA cluster (Figure 7H).

We performed K-means clustering (k = 6) between FS-like and

conventional PSC cultures (Figure S7A). Cluster 1 comprises 369

genes expressed more highly in FS cells than conventional

hPSCs. Themajority of protein-coding genes in this cluster are ex-

pressed in naive cells andpersist during capacitation (FiguresS7B

and S7C). DPPA2, GDF3, and several ZNF genes were identified

as useful markers expressed in both naive and formative cells but

variably low or absent in conventional hPSCs (Figures 7I andS7D).

Expression of these ZNF genes was detected in human pre- and

post-implantation epiblast transcriptome data (Figure 7J).

KRAB-ZNFs such as ZNF676, ZNF560, and ZNF528 can sup-

press the expression of transposable elements (TEs) (Friedli and

Trono, 2015). TEs are dynamically expressed in early develop-

ment and are highly differential between naive and primed

hPSCs (Friedli and Trono, 2015; Guo et al., 2017; Theunissen

et al., 2016). We examined TE expression in FS-like cells and

observed a distinct profile compared with naive or conventional

hPSCs (Figure 7K). For example, FS-like cells distinctively ex-

pressed LTR6A and retained expression of certain HERVK TEs

also expressed in naive cells but did not express subsets of

SVA family members that are prominent in naive cells, nor sub-

sets of HERVH, LTR7C, or LTR12C family members that are

prominent in primed cells (Figure S7E).

Finally, we investigated application of FS cell culture conditions

directly to human ICM explants that are known to transition to

early post-implantation stages (O’Leary et al., 2012). We thawed

E5 and E6 blastocysts and cultured for 1 or 2 days, respectively,

in N2B27. We then isolated ICMs by immunosurgery or manual

dissection and plated them intact on laminin/fibronectin-coated

dishes in AloXRwith ROCK inhibitor. After 2–4weeks, primary out-

growthsweremanually dissociated and re-plated.Weestablished
, open to open.

Gd2 ESCs.

dm1, Tfap2c, and Prdm14 loci.

TAC-seq peaks shared between FS cells and EpiSCs. Purple, upregulated in
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Figure 6. Differential Requirements for Etv4/5 and Otx2

(A) Morphology of Etv4/5 dKO FS cells.

(B) qRT-PCR analysis of ESCs (yellow), parental (wild-type [WT]) FS cells (blue), and Etv4/5dKO FS cells (purple). Error bars represent SD from technical du-

plicates.

(C) Morphology of WT and dKO FS cells in EpiSC (AFX) culture medium for 3 days.

(D) Time course qRT-PCR analysis of WT and Etv4/5dKO FS cells in EpiSC (AFX) culture. Error bars are SD from technical duplicates.

(E) Morphology of Etv4/5dKO FS cells expressing Etv5 transgene.

(F) qRT-PCR assay of Etv1, -4, and -5 in Etv5 rescue dKO lines. Error bars represent SD from technical duplicates.

(G) Morphology of rescued dKO FS cells in EpiSC (AFX) culture.

(legend continued on next page)
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three lines from different embryos. The embryo-derived lines ex-

hibited similar morphology and growth behavior to naive PSC-

derived FS-like cells (Figure 7L). G-banded karyotype analysis

showed that all three expanded lines were diploid (46XX; 20/20)

(Figure S7F). We confirmed a relatively homogeneous expression

of OCT4, SOX2, and NANOG by immunostaining (Figure 7M).

Expression of naive-specific transcription factors KLF4 and

KLF17 was not detected, whereas transcripts were present for

several genes that are expressed in naive and formative cells

but downregulated in conventional hPSCs (Figure 7N).

DISCUSSION

Expandablestemcells that retainhighfidelity tostagingpostsofplu-

ripotency in theembryowill be instrumental in harnessingacapacity

to recapitulate development, create diseasemodels, andmanufac-

ture therapeutic cells. Stemcells representative of naive andprimed

pluripotency have been established inmice and humans (Davidson

et al., 2015; Nichols and Smith, 2009; Rossant, 2015; Rossant and

Tam, 2017), but formative pluripotency has only been obtained in

the form of transient EpiLCs (Buecker et al., 2014; Hayashi et al.,

2011; Kalkan et al., 2017; Mulas et al., 2017). The findings in this

study fill the stem cell gap between early and late pluripotency.

Mouse ESC derivatives with features of late blastocyst or peri-

implantation epiblast, such as reduced Rex1 or increased Otx2,

have been reported previously (D’Aniello et al., 2016; Neagu

et al., 2020; Rathjen et al., 1999). However, those cells spontane-

ously reverted to the canonical ESC phenotype when transferred

to ESC culture. Therefore, they remainwithin the naive spectrum.

Significantly, the cytokine LIF, which potently promotes mouse

ESC identity (Dunn et al., 2014; Smith et al., 1988; Williams

et al., 1988), is a key component of all these culture conditions.

In contrast, FS cells are maintained without LIF and have extin-

guished ESC identity, which is in line with the inability of peri-im-

plantation epiblast to form ESCs (Boroviak et al., 2014).

In mice, a defining functional attribute of formative epiblast is

direct responsiveness to germline induction, which is lacking in

both naive cells and primed gastrula stage epiblast (Ohinata

et al., 2009). Conversion of ESCs into transient EpiLC popula-

tions generates a window of germline competence (Hayashi

et al., 2011). However, maintenance of competence over many

passages is a unique feature of mouse FS cells, signifying stabi-

lization of a transient embryonic state.

Mouse FS cells also differ fromESCs and EpiSCs in their contri-

bution to chimeras.Chimerism is less frequent, to lower levels, and

less evenly distributed than typically obtained with ESCs. Poorer

contributions are not unexpected given the heterochronicity be-

tween FS cells and E3.5 host blastocysts. Pioneering mouse

embryo chimera studies suggested that blastocyst colonization

capacity was lost entirely after implantation (Gardner, 1985).
(H) Time course qRT-PCR analysis of rescued lines. Error bars represent SD from

(I) Phase images of Otx2 KO ESCs transferred to FS cell or EpiSC (AFX) culture c

(J) Immunostaining of Otx2 KO cells at passage 5 (p5) in FS cell or EpiSC cultur

heterogenous Nanog and Sox1; right, uniformly Oct4, Sox1, and Nanog triple po

(K) Alkaline phosphatase (AP) staining of control andOct4 andOtx2KOs generated

stained 3 days after replating transfected cells.

(L) Morphology of AP-positive Otx2 KO FS cells and EpiSCs.

(M) Representative image of Otx2 KO FS cells before culture collapse. Scale bar
Here, using more sensitive detection systems and injecting 10

cells rather than single cells with ROCKi to improve viability, we

found that formative epiblast cells can contribute toblastocyst chi-

meras, similarly to FS cells. EpiSCs, in contrast, do not generally

show any significant contribution to chimeras by blastocyst injec-

tion, unless they have been genetically engineered (Masaki et al.,

2016; Ohtsuka et al., 2012; Tesar et al., 2007). Intriguingly, it has

been reported that certain EpiSC lines cultured on feeders or

serum-coated dishes contain a sub-population of cells that are

able to contribute to chimeras (Han et al., 2010; Kurek et al.,

2015). The nature of such cells is unclear, but our results raise

the possibility that they may represent FS cells co-existing with

EpiSCs under those undefined conditions.

FS cells exhibit distinct signal dependency and responsive-

ness compared to ESCs or EpiSCs. Both mouse EpiSCs and hu-

man conventional PSCs are cultured in medium supplemented

with FGF. Indeed, high FGF (100 ng/ml) is considered an essen-

tial component of defined E8 medium for hPSCs (Chen et al.,

2011; Cornacchia et al., 2019). FS cells, in contrast, are cultured

without FGF supplementation. Notably mouse FS cells respond

directly to FGF or other stimuli for primitive streak induction by

upregulating T. Consistent with a readiness for T induction, FS

cells exhibit a greater propensity to form mesendoderm than

EpiSCs. We surmise that the relative recalcitrance of EpiSCs to

primitive streak induction may reflect adaptation to the high

growth factor signals that drive their in vitro proliferation. FS cells

are also efficient at entering the neural lineage but, consistent

with an earlier stage of epiblast, do so more slowly than EpiSCs.

High competence for germline, primitive streak, and neural in-

duction are features of pre-streak formative epiblast. Whole-

transcriptome analysis substantiates this identity and further

confirms that mouse FS cells are related to EpiLCs and are

distinct from EpiSCs.

FS cells and EpiSCs show different transcription factor depen-

dencies. FS cells are mildly destabilized by deletion of Etv5 and

Etv4 but remain expandable and pluripotent, whereas the EpiSC

state cannot be established without these factors (Kalkan et al.,

2019). Whether the inability to produce Etv4/5 dKO EpiSCs re-

sults from a cryptic change in formative competence or reflects

a specific function in EpiSCs remains to be clarified. Interest-

ingly, a proportion of Etv5 or Etv4/5 mutants proceed through

gastrulation (Lu et al., 2009; Zhang et al., 2009). The Etv4/5

knockout phenotypes therefore suggest that the in vitro EpiSC

state may not be fully representative of epiblast progression

in vivo (Kojima et al., 2014). Conversely, Otx2, which is necessary

for in vivo gastrulation (Ang et al., 1996), is not required by ESCs

or EpiSCs (Acampora et al., 2013) but is indispensable for the

stable expansion of FS cells. Defective formative transition

may also underlie the precocious neural differentiation of EpiSCs

lacking Otx2 (Acampora et al., 2013).
technical duplicates.

onditions for 5 passages.

e. Two classes of EpiSC colony were observed: left, homogeneous Oct4 with

sitive.

by Cas9/guide RNA (gRNA) transfection in FS cells and EpiSCs. Colonieswere

s, 100 mm, except (J) 50 mm.
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In FS cells, the transcription factor circuitry governing naive

pluripotency (Dunn et al., 2014; Takashima et al., 2014) is

dismantled, signaling pathways are rewired, and chromatin

accessibility is extensively remodeled compared to ESCs. These

events indicate a step change as cells transition from naive to

formative pluripotency. By contrast, the separation between

FS cells and primed pluripotent stem cells is blurred, which is

in linewithmore continuous developmental progression.We sur-

mise that the gene regulatory network and chromatin landscape

are reconfigured in formative cells to provide the requisite

context for signaling cues to induce germ layer and germline line-

age specification and the subsequent unfolding of gastrulation.

Capture of formative phase cells as self-renewing stem cell cul-

tures should facilitate deep interrogation of the machinery that

confers multi-lineage potency.
Limitations of Study
Although the formative phenotype is reached within 48 h of ESC

withdrawal from 2i, generation of stable FS cell lines requires

several passages. The inherent asynchronicity of exit from naive

pluripotency (Strawbridge et al., 2020) together with imperfect

in vitro transition conditions result in initial heterogeneity, as

also observed for EpiLC formation (Hayashi et al., 2011; Kalkan

et al., 2017). Passaging enriches for FS cells, similar to stabiliza-

tion of EpiSC cultures (Guo et al., 2009), but a more streamlined

and efficient capture would be advantageous for future research.

In mice, FS cells are unambiguously distinguished from EpiSCs

by several features, most notably competence for germ cell in-

duction and ability to colonize chimeras by blastocyst injection.

Neither of those functional criteria are applicable in the human

context. Conventional hPSCs share some features with EpiSCs

but do not appear to be direct equivalents (Lau et al., 2020; Ros-

sant and Tam, 2017). Notably, they can be induced to form

PGCLCs (Irie et al., 2015; Sasaki et al., 2015). Chimera contribu-

tion cannot be tested in human embryos. At the transcriptome

level, human FS-like cells differ from populations of conventional

hPSCs cultured in E8 or other conditions, but these differences

are relative rather than absolute. Heterogeneity and hierarchical

substructure has been described in hPSC cultures (Allison et al.,

2018; Hough et al., 2009, 2014; Lau et al., 2020; Nakanishi et al.,

2019), and we cannot exclude the presence of FS cells at some

frequency. Human FS cells and conventional hPSCs may be a
Figure 7. hFS-like Cells Established from Naive ESCs and Embryos

(A) Morphology of human AloXR cells derived from naive hPSCs. Scale bar, 100

(B) qRT-PCR expression analysis of marker genes in two human FS (hFS) cell line

SD from technical triplicates.

(C) SOX17 immunostaining of hFS cells after endoderm induction.

(D) SOX1 immunostaining of hFS cells after neural induction.

(E) qRT-PCR analysis of hFS cells differentiated into paraxial mesoderm for 6 da

(F) PCA of hFS cells with naive and conventional hPSCs computed with 11,051 g

(G) Projection of hFS cell and conventional PSC samples onto PCA of Macaca IC

(H) PCA for cell line populations computed using 922 variable genes across ep

projection of embryo single cells.

(I) Fragments per kilobase of exon model per million reads mapped (FPKM) values

(J) Boxplots of naive-formative specific gene expression in human epiblast stage

(K) Heatmap of differentially expressed transposable elements between naive, fo

(L) Morphology of FS cells derived directly from human embryo. Scale bar, 100 m

(M) Immunostaining of OCT4, SOX2, and NANOG in embryo-derived hFS cells. S

(N) qRT-PCR analysis of embryo-derived hFS cells. Error bars represent SD from
continuum spanning post-implantation epiblast progression. It

will be valuable in future studies to define marker sets and

in vitro differentiation behaviors that can better distinguish hu-

man formative cells from downstream stages in the spectrum

of post-naive pluripotency. To this end, additional transcriptomic

and other data on post-implantation epiblast will be important to

allow more precise comparison and staging.
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Recombinant human activin A Qkine Qk005
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Recombinant zebrafish Fgf2 Qkine Qk002

Recombinant mouse Stem Cell Factor BioLegend 579706

Recombinant human BMP2 In House N/A

N2 Supplement In house N/A

B27 Supplement Thermo Fisher Scientific 17504044

Neurobasal Thermo Fisher Scientific 11540566

DMEM/F12 Thermo Fisher Scientific 21103049

Human Plasma Fibronectin Millipore FC010

Tissue culture Laminin Millipore CC095-5MG

Gelatin Sigma-Aldrich G-1890

Accutase Biolegend 423201

M2 medium Sigma-Aldrich M-7167

Critical Commercial Assays

NEXTflex Rapid Directional RNA-seq Kit Bioo Scientific 5138-08

Ribo-Zero rRNA Removal Kit Illumina MRZH11124

PureLink RNA Mini kit Thermo Fisher Scientific 12183018A

PicoPure RNA Isolation kit Thermo Fisher Scientific KIT0214

SMARTerR Stranded Total RNA-Seq Kit v2

– Pico InputMammalian

Takara Clontech 634412

Nextera DNA Library Preparation Kit Illumina FC-121-1030

SAGE Warming Kit CooperSurgical Fertility & Genomic

Solutions

ART-8030

NEXTflex Rapid DNA-Seq Kit 2.0 bundle

with 96 HT barcodes

PerkinElmer NOVA-5188-13

Mouse Xist Stellaris RNA FISH Probe with

Quasar 670 Dye

BioSearch Technologies VSMF-3095-5

10 CIRCLE, 7MM ID, FROSTED, HEAVY

TEFLON COATED Slide

Roboz Surgical Instrument F107-HTC

TransIT LT1 Mirus MIR2304

Alkaline Phaphatase Kit Sigma Aldrich 86R-1KIT

Deposited Data

RNA-seq This paper GEO: GSE131566

ATAC-seq This paper GEO: GSE131566

scRNA-seq This paper GEO: GSE156589

ChIP-seq This paper GEO: GSE156261

Experimental Models: Cell Lines

5ar1 (mFS) This paper N/A

5ar2 (mFS) This paper N/A

5ar3 (mFS) This paper N/A

5ar5 (mFS) This paper N/A

5cdr1 (mFS) This paper N/A

5cdr2 (mFS) This paper N/A

NBRA3.2 (mFS) This paper N/A

5a6 (mFS) This paper N/A

E14Tg2a (mES) Hooper et al., 1987 N/A

Rd2 (mES) Kalkan et al., 2017 N/A

Sox1::GFP (mES) Stavridis and Smith, 2003 N/A

AFX6 (mEpiSC) This paper N/A

AFX33 (mEpiSC) This paper N/A

(Continued on next page)
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AF32 (mEpiSC) This paper N/A

OEC2 (mEpiSC) Guo et al., 2009 N/A

HNES1 (hES) Guo et al., 2016 N/A

cR-H9 (hES) Guo et al., 2017 N/A

cR-Shef6 (hES) Guo et al., 2017 N/A

Etv4/5 dKO ES This paper N/A

Otx2 KO ES This paper N/A

hFS1 This paper N/A

hFS2 This paper N/A

hFS3 This paper N/A

Experimental Models: Organisms/Strains

Mouse/CD-1 Charles River 022

Mouse/129aa WT-Gurdon Institute N/A

Mouse/ ROSAmT/mG Jackson Laboratory 007576

Mouse/C57BL/6 WT-Gurdon Institute N/A

Oligonucleotides

gRNA sequences See Table S3 N/A

Genotyping primers See Table S3 N/A

Taqman probes and UPL primers for

qRT-PCR

See Table S3 N/A

Recombinant DNA

pPBCAG-mKO2-IP This paper N/A

pPBCAG-GFP-IP This paper N/A

pPBCAG-Cas9-IN This paper N/A

pCML32 This paper N/A

Software and Algorithms

Tophat2 v2.1.0 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/

index.shtml

TrimGalore v0.4.5 N/A https://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/

FeatureCounts v1.5.0 Liao et al., 2019 http://subread.sourceforge.net/

R v3.6.2 N/A https://www.R-project.org/

DESeq2 v1.18.1 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Pheatmap N/A https://cran.r-project.org/web/packages/

pheatmap/index.html

ggplot2 N/A https://ggplot2.tidyverse.org/

DeepTools Ramirez et al., 2016 https://doi.org/10.1093/nar/gkw257

Diffbind v2.6.6 N/A https://bioconductor.org/packages/

release/bioc/html/DiffBind.html

MACS2 Zhang et al., 2008 N/A

DAVID v6.8 Huang et al., 2009 https://david.ncifcrf.gov/

HOMER v4.10 Heinz et al., 2010 http://homer.ucsd.edu/homer/

Bismark Krueger and Andrews, 2011 https://www.bioinformatics.babraham.ac.

uk/projects/bismark/

MarkDuplicates Picard tools N/A

Seurat v3.1.0 Butler et al., 2018 https://satijalab.org/seurat/

STAR v2.7.3a Dobin et al., 2013 https://github.com/alexdobin/STAR

Wiggletools Zerbino et al., 2014 https://github.com/Ensembl/WiggleTools

Bowtie Langmead and Salzberg, 2012 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Samtools v1.9 N/A http://www.htslib.org/

FastQC v0.11.3 N/A https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

MultiQC v1.8 N/A https://multiqc.info/

Methpipe Song et al., 2013 http://smithlabresearch.org/software/

methpipe/

Venny 2.1 N/A https://bioinfogp.cnb.csic.es/tools/venny/

index.html

FCS Express 7 Research N/A De Novo Software
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Austin

Smith (austin.smith@exeter.ac.uk).

Materials Availability
All stable reagents generated in this study are available from the Lead Contact without restriction except for human embryo derived

cell lines for which permission must be requested from UK Stem Cell Steering Committee and a Materials Transfer Agreement

completed.

Data and Code Availability
The datasets reported in this paper are deposited in Gene Expression Omnibus (GEO) with the following accession codes: RNA-seq

and ATAC-seq, GEO: GSE131556; scRNA-seq, GEO: GSE156589; ChIP-seq, GEO: GSE156261

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Mice used in these studies were adult females. CD1 and 129aa strains provided embryos for cell line derivation and ROSAmT/mGmice

provided donor embryos for primary epiblast injections. Host embryos for chimera generation were from C57BL/6. CBA/BL6 F1 an-

imals were used as transfer recipients. Animals in the facility tested positive for Helicobacter and negative for other specific patho-

gens. Studies were carried out in a UK Home Office designated facility in accordance with EU guidelines for the care and use of lab-

oratory animals, and under authority of UK HomeOffice project license 76777883. Use of animals in this project was approved by the

Animal Welfare and Ethical Review Body for the University of Cambridge.

Human Embryos
Supernumerary frozen human embryos were donated with informed consent by couples undergoing in vitro fertility treatment. Use of

human embryos in this research is approved by the Multi-Centre Research Ethics Committee, approval O4/MRE03/44, and licensed

by the Human Embryology & Fertilization Authority of the United Kingdom, research license R0178.

Cell Cultures
Cell lines are listed in the Key Resources Table. Cell lines were cultured without antibiotics in humidified incubators at 37�C in 7%

CO2. Reduced oxygen (5%) was used except for mouse ES cells, which were maintained in atmospheric oxygen. Cell lines tested

negative for mycoplasma by periodic PCR screening.

Mouse FS cell, EpiSC and ES cell culture
FS cells were cultured in AloXRmedium, comprising 3ng/ml of activin A, 2mMXAV939 and 1.0mMBMS493 in N2B27medium (Nichols

and Ying, 2006). EpiSCs were cultured in either AF (20ng/ml activin A and 12.5ng/ml Fgf2) or AFX (20ng/ml activin A, 12.5ng/ml Fgf2

and 2mMXAV939) in N2B27medium. When passaging, cells were dissociated by Accutase into clumps and re-plated every 2-3 days

at a ratio of 1:10-1:20. Mouse ES cells were maintained in 2i/LIF medium as described (Mulas et al., 2019). FS cells and EpiSCs were

maintained on fibronectin (Fn) coated (16.7 mg/ml) plates. Experiments were generally performed between p10 and p30.

Derivation of FS and EpiSCs from mouse embryo
E5.5mouse embryos were dissected from decidua and further micro-dissected into embryonic and extraembryonic parts. Extra-em-

bryonic endoderm layers were removed by mouth pipette and individual epiblasts were plated onto Fn coated (16.7 mg/ml) 4-well
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plates in either FS or EpiSC medium. After the epiblast outgrowth became large enough, the outgrowth was briefly incubated in Ac-

cutase and collected in wash buffer and re-plated onto a fresh 4-well plate.

Derivation of FS and EpiSCs from mouse ES cells
ES cells were plated either directly in AloXR, AF or AFX medium or N2B27 basal medium for two days and then re-plated in AloXR, AF

or AFX medium. Cultures were passaged at higher densities for the first 4-5 passages with Accutase.

Derivation of human FS cells from naive PSCs
Human naive PSC propagated in PXGL (Bredenkamp et al., 2019) were cultured in N2B27 medium for 7 days before changing to

AloXR. Cells were passaged every 3-5 days at a ratio of 1:10-1:20 and Rock inhibitor was added for the first 24 hours after dissoci-

ation. hFS cells were cultured on plates pre-coated with Laminin (10 mg/ml) and Fn (16.7 mg/ml).

Derivation of human FS cell from embryos
Day 5 or day 6 human embryos were thawed using SAGE REF ART 8030 vitrification warming kit as per the manufacturer’s instruc-

tions and cultured for one or two days in N2B27 basalmedium in 7%CO2 and 5%O2 at 37
�C. ICMswere isolated on the following day

by immunosurgery (Solter and Knowles, 1975) or mechanical dissociation and plated in AloXR in the presence of Rock inhibitor on

laminin/Fn coated 4-well plates. 2-4 weeks later, outgrowths were mechanically dissociated into clumps and replated into a fresh

well. After this initial passage, Accutase was used for routine passaging.

METHOD DETAILS

Embryoid body differentiation
2,000 cells were plated in low-binding 96-well plates in GMEM supplemented with 10% fetal calf serum, 2 mM L-glutamine, 0.1mM

Non-essential Amino Acid (NEAA) (GIBCO), 1mM Sodium Pyruvate and 0.1mM 2-ME. After 5 days, the EBs were transferred for

outgrowth onto gelatin-coated plates in fresh medium.

PGCLC differentiation
3,000 cells were plated in low-binding 96-well plates in GK15 medium (GMEM and 15% Knockout Serum Replacement (GIBCO),

0.1 mM NEAA (GIBCO), 1mM Sodium Pyruvate, 2mM L-Glutamine, 0.1mM 2-mercaptoethanol) supplemented with 500 ng/ml

BMP2, 100ng/ml mSCF, 1mg/ml hLIF, 50ng/ml EGF in the presence of 10mM Rho-associated kinase inhibitor Y27632.

Mesoderm induction
Mouse FS cells were plated with 20ng/ml activin A and 3mM CH in N2B27 for 48 hours on Fn coated plates. Human FS cells were

plated with 3mM CHIR99021 and 500 nM LDN193189 for the first 2 days followed by the addition of 20ng/ml of Fgf2 from day 3

to day 6.

Endoderm induction
Mouse FS cells were plated with 20ng/ml activin A and 3 mMCH in N2B27 for 24 hours and the medium was replaced thereafter with

20ng/ml of activin A only for a further 2 days on Fn coated plate. Human FS cells were differentiated in 100ng/ml activin A, 100nM PI-

103, 3mMCH, 10ng/ml Fgf2, 3ng/ml BMP4 and 10mg/ml Heparin for the first 24hrs and then replaced with 100ng/ml activin A, 100nM

PI-103, 20ng/ml Fgf2, 250nM LDN193189 and 10 mg/ml Heparin for a further 2 days.

Neural induction
Mouse FS cells were plated on laminin coated plates in N2B27 (Mulas et al., 2019). Human FS cells were plated with 1mMA83-01 and

500nM LDN193189.

Signal responsiveness
Cells were plated in self-renewal medium and cultured overnight. On the following day, mediumwas changed to N2B27mediumwith

or without growth factors/inhibitors. The concentrations used were, activin A (20 ng/ml), Fgf2 (12.5 ng/ml), CHIR99021 (CH, 3mM),

Bmp2 (10 ng/ml), XAV939 (2 mM).

Flow cytometry analysis
Mouse endoderm and mesoderm cells were dissociated with Cell Dissociation Buffer (GIBCO). mPGCLC were dissociated with Tri-

pLE Express (GIBCO). After the dissociation, cells were incubated with fluorophore-conjugated antibodies in rat serum on ice for

20 min. Cells were washed once with wash buffer and analyzed in HANK’s buffer supplemented with 1% BSA. Antibodies are listed

in the Key Resources Table.
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RT-qPCR
Total RNAs were purified by Reliaprep RNAminiprep kit (Promega). cDNAs were prepared by GoScript reverse transcription system

(Promega). PCRwas performed by TaqmanGene ExpressionMaster Mix (Thermo Fisher Scientific) with Taqman (Thermo Fisher Sci-

entific) or Universal Probe Library (Roche) probes. Probes and primer information are listed in Table S3.

Immunofluorescence analysis
Cells were fixed on plates in 4% PFA for 15 minutes at RT. Cell were blocked with 5% skimmed milk or BSA/PBS 0.1% TritonX. Pri-

mary and secondary antibodies were incubated for 1 hour at RT or overnight at 4�C. Antibodies used were listed in Key Resources

Table. Cells were imaged by LeicaDMI4000. PGCLCs and embryo sections were imaged by Leica SP5.

FISH for Xist
FS cells were plated on Fn coated glass slide (Roboz Surgical instrument). The fluorescent conjugated RNA probe was purchased

from Stellaris (Biosearch Technologies). Xist FSIH was performed as described previously (Sousa et al., 2018). Nuclear was stained

with Dapi and imaged by Eclipse Ti Spinning Disk confocal microscope (Nikon).

Metaphase chromosome analysis
FS Cells were treated with KaryoMAX colcemid (GIBCO) and cultured further 2.5 hours. Cells were washed with PBS and harvested

by Accutase and collected in wash buffer. After centrifuge, cells were resuspended in 5mL of pre-warmed 0.075MKCl and incubated

for 15 minutes at RT. Freshly prepared ice cold fixative solution (methanol: glacial acetic acid (3:1)) (100 ml) were added into the sus-

pension and centrifuge. Cells were resuspended in 250-500 ml of fixative solution and up to 20 ml was spread onto a glass slide. DNA

was counterstained with DAPI and spreads were imaged by Leica DMI4000 for counting. Karyotype analysis of embryo derived hFS

cell lines were performed by Medical Genetics Service, Cytogenetics Laboratory, Cambridge University Hospitals.

Immunoblotting
Culture plates were taken out from the incubator and placed on ice. Cells were washed with ice-cold PBS and lysed with RIPA buffer

in the presence of Protease/Phosphatase inhibitor cocktail (Invitrogen). Lysed cells were rotated for 20minutes and sonicated in Bio-

ruptor (Diagenode). Cell lysates were cleared by centrifugation, and the supernatant was recovered. Protein concentrations were

measured by the BCA method (Pierce). 25 mg of protein was loaded in each well. Blots were blocked with 5% BSA/TBS 0.1%

Triton-X for 1 hour at RT and incubated overnight with primary antibodies at 4�C. Secondary antibodies were incubated for 1 hour

at RT and signals were detected with ECL Select (GE Healthcare) and Odyssey Fc (Li-Cor). NaOH (0.2N) was used for stripping.

Etv4/5 and Otx2 knock out analysis
Etv4/5 dKO ES cell lines were established from Etv4 KO ES cells (Kalkan et al., 2019) using a CRISPR/Cas9 based method. Guide

RNAs (gRNAs) were designed to excise exons 13–15 of Etv5 encoding the Ets domain. Otx2 KO ES cell lines were established from

E14tg2a ES cells. gRNAs were designed to excise Exon 3 encoding the homeobox. gRNAs were cloned into pCML32. Targeted ES

cell clones were picked and genotyped by genomic PCR. Oct4 and Otx2 KO in FS cells were performed by co-transfected with one

gRNA expression plasmid (pCML32, Oct4-1, Otx2-1 in Table S3, puromycin resistance, piggyBac vector) with Cas9 expressing

plasmid (G418 resistance, piggybac vector) and PBase expressing plasmid by TransIT LT1 (Mirus). Transfected cells were selected

with 1 mg/ml of puromycin and 250 mg/ml of G418 from 24-48 hours post-transfection. Cells were counted and re-plated for another

three days to form colonies. Rock inhibitor was added for the first 24 hours after replating. Alkaline phosphatase staining was per-

formed following manufacture’s instruction (Sigma-Aldrich). gRNA sequences, genotyping primers and the amplicon sizes of each

genotypes are listed in Table S3.

RNA-sequencing
For the bulk RNA-sequencing experiment, cells were lysed in Trizol (Thermo Fisher Scientific) and total RNAswere prepared using the

PureLink RNA Mini Kit (Thermo Fisher Scientific). Ribosomal RNAs were removed by Ribo-Zero rRNA Removal Kit (Illumina) and li-

braries were constructed using the NEXTflex Rapid Directional RNA-seq Kit (Bioo Scientific). For the low-input RNA-sequencing

experiment, RNA was isolated from cells and epiblasts with the PicoPure RNA Isolation kit (Thermo Fisher Scientific) and libraries

were constructed using the SMARTerR Stranded Total RNA-Seq Kit v2- Pico InputMammalian (Takara Clontech). 1,000 FS cells

and isolated entire single epiblasts from E5.0, E5.5, E6.0 embryos were used per sample.

ATAC-seq
50,000 cells were collected andwashedwith ice-cold PBS once then lysed in lysis buffer (10mMTris-HCl, pH 7.4, 10mMNaCl, 3mM

MgCl2, 0.1% IGEPAL). The nuclear pellets were collected and Tn5 tagmentation and library construction performed using the Illumina

Nextera kit (FC-121-1030). DNA was purified with AMPure XP beads (Beckman Coulter).

ChIP-seq
Chromatin immunoprecipitation (ChIP) was performed as described (Kalkan et al., 2019). Briefly, chromatin was cross-linkedwith 1%

formaldehyde for 10 minutes at RT and quenched with 125 mMGlycine for 5 minutes at RT with rotation. After cell pellets were lysed,
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sonication was performed for 16 cycles on High setting, 30sec ON/30 s OFF cycle by Bioruptor (Diagenode), 2x107 cells per 300 ml in

Bioruptor tube. 10% inputs were collected for the later library construction. Chromatin was immunoprecipitated with 2 mg of each

antibodies and 20 ml of Protein G Dynabeads (Invitrogen) were used against 3x106 cells. After the washes, DNA was eluted and

each samples were treated with 2.5 mg/ml RNase A at 37�C for 30 minutes followed by 87.5 mg/ml Proteinase K at 55�C for 1

hour. DNA was purified with PCR clean-up kit (QIAGEN). Libraries were prepared by NEXTflex Rapid DNA-Seq Kit 2.0 bundle

with 96 HT barcodes (ParkinElmer).

Single-cell RNA-seq
Cells were directly sorted into each well of 96-well plate filled with 2.3 ml of lysis buffer (1 unit/ml of SUPERaseIN RNase inhibitor (In-

vitrogen), 0.2% Triton X) by BD FACSAria Fusion (BD Biosciences). Libraries were prepared using the Smart-seq2 protocol (Illumina)

(Picelli et al., 2014).

Chimeras
FS cell chimeras

FS cells were pre-treated with 10 mMRock inhibitor for 1 hour before harvesting. Around 10 singly dissociated cells were injected into

each blastocyst stage embryo. Embryos are either transferred into pseudo-pregnant mice or cultured in vitro for another 24 hours in

N2B27. E9.5mid-gestation stage embryos and juvenile mouse tissues were imaged by Leica stereomicroscope. For sectioning, em-

bryos and E12.5 gonads were replaced with 20% sucrose/PBS overnight at 4�C after the fixation then embedded in OCT compound

and sectioned at 8 mm thickness. Sections were imaged by Zeiss apotome microscope or Leica SP5 confocal microscope.

Epiblast chimeras

Homozygous mTmG mice were crossed with CD1 mice to obtain embryos. E5.5, 6.0-6.25 and E6.5 embryos were dissected from

decidua and separated into embryonic and extraembryonic halves. Extraembryonic endoderm layers were removed using a

mouth-controlled pulled Pasteur pipette. Isolated epiblasts were treated with Accutase at room temperature and washed with M2

medium in the presence of 10 mM Rock inhibitor. Ten dissociated cells were injected per E3.5 blastocyst stage embryo of strain

C57BL/6. Microinjection was performed in M2 medium containing Rock inhibitor. For sectioning, embryos were embedded in

OCT compound and sectioned at 10mm thickness. Sections were stainedwith anti-RFP antibody and imaged using a Leica DMI4000.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk RNA-seq analysis
Low-quality RNA-seq reads and adaptor sequences were removed using Trim Galore!. Reads were aligned to the mouse (GRCm38/

mm10) and human (GRCh38/hg38) reference genomes using TopHat2 with parameters ‘‘ –read-mismatch 2 –max-multihits 1 –b2-

sensitive’’ considering uniquely mapping reads only. Gene counts were obtained using featureCounts using ENSEMBL (release 89)

gene annotations. Normalization and differential expression analyses were performed using the R/Bioconductor DESeq2 package.

Normalized counts were transformed into log2 fragments per million (FPKM). Genes with log2 fold change > 1.6 and adjusted p

value < 0.05 were considered differentially expressed. Differentially expressed gene clusters for human cells were identified by k-

means clustering of the first five principal components using the R ‘kmeans’ function. The distance plot was calculated using

Euclidean distance between samples based on log2 normalized counts of expression values. Heatmaps were generated using

the R ‘pheatmap’’ function.

For transposable elements (Tes), reads were aligned to the human (GRCh38/hg38) reference genome using bowtie with parame-

ters ‘‘-a –best –strata -m 1 -v 2,’’ retaining uniquely mapping reads only in order to identify the genomic origin of TE transcription.

Read counts on Tes were obtained using featureCounts on UCSC RepeatMasker-annotated regions. Normalization and differential

expression analyses between cell types of identical genotype were performed with the R/Bioconductor DESeq package. Tes with an

expression of at least log2-normalized counts > 3.5 in any cell type, a log2 fold change > 2 and an adjusted p value < 0.05 were

considered differentially expressed.

Published RNA-seq data comparison analysis
Mouse single cell RNA-seq data was downloaded from Nakamura et al. (2016) (GEO: GSE74767). Human naive and conventional

PSC transcriptome data were downloaded from SRA: SRP104789, ENA:E-MTAB-5114, ENA:E-MTAB-5674, GEO:GSE123005.

The data was processed using the same methods as described above, except that genes with zero counts were removed from

the single cell RNA-seq data matrix before further processing by DESeq2. The matrix of log2 fragment per millions for the Macaca

fascicularis was obtained from GEO: GSE74767 (Nakamura et al., 2016). The Human single cell RNA-seq FPKM ummarized counts

matrix was downloaded from GEO: GSE136447 (Xiang et al., 2019).

PCA plots
Principal component analyses (PCA) were performed using the R ‘prcomp’ function based on log2-transformed Z-score expression

values. To comparemouse and human bulk RNA-seqwithmouse andmacaque single cell RNA-seq, the principal components of the

single cell RNA-seq data were calculated, with the bulk RNA-seq data projected onto this PCA space using the R ‘predict’ function.

These PCAswere computed using all expressed genes or with genes differentially expressed between the formative and primed lines
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in order to narrow down genes important for developmental progression. To compare human bulk RNA-seq with human single cell

RNA-seq data, Log2 transformed counts were used. Using the most variable genes across the single cell stages, a PCA of the bulk

samples was computed and the single cells were projected using the R ‘predict’ function.

scRNA-seq analysis
Raw files were quality controlled using FastQC v0.11.3 and results ummarized with MultiQC, with checks including distributions of

nucleotide content and sequencing depth. Reads were aligned to theM.musculusGRCm38.p6 reference genome with Ensembl v98

annotations using STAR v2.7.3a (–outSAMtype BAM SortedByCoordinate). Protein-coding gene quantification was done using Sub-

read featureCounts v2.0.0 with Ensembl v98 annotations; only uniquely mapped reads were used. Cells with fewer than 3M reads

were removed from further analysis, leaving 326 cells that passed the threshold. Raw expression levels were normalized using

sctransform (Hafemeister and Satija, 2019), and the PCA created using the 2000most abundant genes across the data. Jaccard sim-

ilarity indices were calculated on the 2000 most abundant genes per cell, with similarities calculated between all cells of the

same type.

GO-terms
Gene ontology (GO) term enrichment analyses were performed using the David tool.

ATAC-seq
Readswere quality-trimmed using TrimGalore!, and reads shorter than 15 nt were discarded. Readswere aligned to themouse refer-

ence genome (GRCm38/mm10) using bowtie with parameters ‘‘-m1 -v1 –best –strata -X 2000 –trim3 1.’’ Duplicates were removed

using Picard tools. Reads longer than one nucleosome length (146 nt) were discarded, and an offset of 4 nts was introduced. Peaks

were called withMACS2 and parameters ‘‘–nomodel –shift �55 –extsize 110 –broad -g mm –broad-cutoff 0.1.’’ Bigwig files for visu-

alization on the UCSC Genome browser were generated using deeptools bamcoverage with parameters ‘‘–binSize 10 and –normal-

izeUsing RPKM.’’ ATAC peaks specific to each cell type were identified using edgeR within the R/Bioconductor DiffBind package

using the option ‘‘bNot = T’’ to allow for contrasts between each cell type against all others. Significant peaks were determined using

a log2 fold change of > 1 and FDR < 0.05. Heatmaps of ATAC-seq peaks were generated with deeptools plotHeatmap. DNA motif

enrichment analyses for cell type-specific ATAC-seq peaks was performed using HOMER.

BS-seq
Whole genome BS-seq data was obtained from Zylicz et al., 2015 (GEO: GSE70355). BS-seq reads were aligned to the mouse refer-

ence genome (GRCm38/mm10) and deduplicated using Bismark.MethPipewas used calculate methylation levels at each CpG, and

only CpGs with at least 5X read coverage were retained for further analyses. Methylation levels were averaged using a 250nt-sliding

window to generate bigwig files.

ChIP-seq
Raw files were quality controlled using FastQC v0.11.3 and results summarized with MultiQC, with checks including distributions of

nucleotide content, sequencing depth and adaptor contamination. Reads were aligned to the M.musculus GRCm38.p6 reference

genome using bwamem v0.7.10-r789 (default parameters); theMT, X, Y chromosomes and scaffolds were excluded from the result-

ing BAM files. Genome browser tracks for the UCSC genome browser were created with deepTools bamCoverage v3.3.1 (—binSize

30). Averaged genome browser tracks for ChIP profile visualization were created as follows: first the tracks were generatedwith bam-

Coverage (—binSize 5 –normalizeUsing RPKM), then the output was averaged using wiggletools v1.2.1 (Zerbino et al., 2014). Profiles

of the ChIP tracks on the ATAC peaks were created using deepTools computeMatrix (reference-point–binSize 5 -b 4000 -a 4000–

referencePoint center) and plotProfile (default parameters). To identify bivalent promoters, peak regions were called with macs2

v2.2.6 (-f BAMPE -q 0.05), only peaks with signalValue > 5 were considered for downstream analysis. Peak regions were intersected

per condition and across histone marks using bedops v2.4.38. HOMER v4.10 was used to calculate distance between peaks and

transcription start sites (mm10 -size 3000); peaks within 3kb of a TSS were considered as promoter peaks.
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Supplemental Figure Legends 

Figure S1. Derivation of stem cell lines from formative epiblast, Related to Figure 1 
(A) Bright field image of E5.5 epiblast derived AFX and AhiX cultures. Scale bars, 200µm. (B) 
Gene expression analysis after FGF withdrawal. Three AFX cell lines (6, 27 and 33) were 
passaged without FGF and analysed by RT-qPCR. Error bars are S.D. from technical 
triplicates. (C) Immunostained images of early lineage marker expression in AFX and AhiX 
cells. Scale bars, 100µm. (D) Summary of derivation efficiency from E5.5 epiblasts in different 
concentrations of activin A. (E) RT-qPCR analysis of RAR inhibitor treated cells. AloXR 
samples established in AloX and transferred to AloXR are in orange and a line derived in AloXR 
in pink. Error bars, S.D. from technical triplicates. (F) Derivation efficiency in the absence of 
presence of RAR inhibitor. (G) Percentages of diploid cells for 4 FS cell lines. (H) Maximum 
projection of Z-stack slices of Xist RNA FISH images (red) in female FS cells. Nuclei were 
stained with DAPI (blue). Scale bar, 10µm. (I) Gene expression analysis by RT-qPCR during 
ES cell to FS cell conversion. Gene expression is relative to beta-actin. Error bars are S.D. 
from two technical replicates. (J) Flow cytometry analysis of day 4 PGCLC induction from AloX 
FS cells. (K) Analysis of day 4 PGCLC induction from AFX EpiSCs. (L) Analysis of day 4 
PGCLC induction from AFX EpiSCs adapted to culture in AloXR. (M) AloXR cells sorted for 
SSEA1 and CD61 co-expression on day 6 of PGCLC induction (left) and subject to  RT-qPCR 
analysis (right). Relative expression level to 2iL ES cells (=1) normalized to Tbp. Error bars 
represent S.D. from technical triplicates. (N) Immunostaining of AloX cell-derived PGCLC. 
Scale bars, 50µm. 

Figure S2. Lineage potency of FS cells and responsiveness to differentiation cues, 
Related to Figure 2 
(A) Flow cytometry profiles of Flk1+Ecad- mesodermal fraction of differentiated FS cells and 
EpiSCs at day 1 and day 2. (B) Cxcr4+Ecad+ endoderm fraction at day 3. Two experiments 
are shown. (C) RT-qPCR analysis after activin A and CH treatment for 3 days. AFX EpiSC 
samples at day 3 were set as 1, normalisation to 36B4 (Rplp0). Error bars represent SD from 
technical triplicates. n.d. not detected. (D) RT-qPCR analysis of T and Foxa2 expression 24 
hours after indicated doses of Fgf2 were added into AloXR culture. Error bars represent S.D. 
from technical duplicates. 

Figure S3. Blastocyst chimaera contribution by FS cells and formative epiblast, Related 
to Figure 3 
(A) Left, low contribution E9.5 chimaera produced from mKO2-labelled NBRA3.2 FS cells. 
Right, yolk sac contribution in one of the chimaeras in Fig. 3A. Scale bars, 500µm. (B) E9.5 
chimaeras from GFP-labelled 5a6 FS cells. Contributions were widespread (left) or localised 
(right). Scale bars, 500µm. (C) E9.5 chimaeras from GFP-labelled 5ar1 FS cells. Scale bars, 
500µm.  (D) Sagittal section of embryo from C, left panel, with widespread contribution of GFP 
positive cells. Scale bar, 200µm. (E) Summary of FS cell chimaeras examined at E9.5. *Not 
all yolk sacs from chimaeric embryos were examined. (F) E12.5 chimaeric gonads generated 
from mKO2-labelled FS cells. Scale bars, 500µm. (G) Section of gonad from (F) stained with 
anti-Oct4 and anti-Mvh antibodies. Nuclei were stained with DAPI. (H-J). E9.5 chimaeras with 
contribution from E5.5 and E6.0 donor epiblast. Contributions were detected in the embryo 
proper and yolk sac (H), amnion (arrowhead) (I), yolk sac (J). Scale bars, 1mm. (K) Yolk sac 
section showing membrane-tdTomato positive cells in the inner layer of extraembryonic 
mesoderm. Nuclei were stained with DAPI (blue). Scale bar, 100µm. Magnified image from 
boxed region is shown as (K’). (L) Summary of post-implantation epiblast chimaeras.  



Figure S4. Whole transcriptome analysis and nodal/activin pathway activity, Related to 
Figure 4 
(A) Heatmap for top 50 differentially expressed genes (DEG) between FS cells and EpiSCs 
(AF). GO terms are shown (Benjamini value<0.05) for analysis of 200 DEG. (B) Heatmap for 
top 50 DEG  between FS cells and EpiSCs (AFX). GO term analysis as in A (Benjamini 
value<0.05). (C) Example embryo gene expression profiles of FS cell enriched genes 
identified in Fig. 4B. E5.5 epiblast cells are highlighted by the dashed circle.  (D) Heatmap of 
expression of Fgfs and Fgfrs. (E) Heatmap of Nodal pathway gene expression. (F) Heatmap 
of expression of Wnts and Fzd receptors. Colour scale in (D-F) is log2(normalised counts +1) 
from RNA-seq. (G) Cell morphologies after two days in indicated culture conditions: AloXR; 
1µM A83-01 in AloXR; 5µM SB505124 in AloXR; without activin A in 2µM XAV939 and 1µM 
BMS493. Scale bars,100µm. 

Figure S5. Chromatin landscape analysis, Related to Figure 5 
(A) GO term enrichment for genes proximal to phase specific ATAC-seq sites. Bars in blue 
have a significant Benjamini value<0.05. (B) Enumeration of bivalent domains in each cell 
type. (C) Genome browser screenshots of differential histone modifications. Lower three 
examples show formative specific bivalency. (D) Methylation at ATAC peaks in EpiLCs and 
EpiSCs (original data from Zylicz et al., 2015). (E) Related to Fig. 5G. GO term analysis 
performed against significantly expressed genes in EpiSCs or FS cells. Bars in blue have a 
significant Benjamini value<0.05. (F) Transcription factor binding motifs and P-values enriched 
in phase specific ATAC sites. 

Figure S6. Differential requirements for Etv4/5 and Otx2, Related to Figure 6 
(A) Schematic of ES cell differentiation to FS cells or EpiSCs and morphologies of Etv4/5dKO 
cells at day 2, P1 and P2.  (B) Bright field image of contracting Etv4/5dKO differentiated cells. 
(C) Immunostaining of Etv4/5dKO FS cell EB outgrowth. Neuroectoderm stained with Sox1 
(red) and Tuj1 (Blue), mesoderm with Gata4 (Green) and cTnT (blue), and endoderm with 
Ecadherin (red) and Foxa2 (Blue). DAPI stainings were shown in white. (D) Flow cytometry 
plot of endoderm differentiated Etv4/5dKO FS cells. (E) Immunostaining for Oct3/4 (green), 
Sox1 (red) and Tuj1 (Blue) after neural differentiation of Etv4/5dKO FS cells. (F) PGCLC 
induction from Etv4/5dKO FS cells analysed by flow cytometry for SSEA1-660 and CD61-PE 
and by immunostaining for Blimp1 (green), Stella (red) and Oct4 (blue). (G) Immunostaining 
of Etv4/5dKO FS cells in AloXR and after transfer to EpiSC culture (AFX) for three days. (H) 
Otx2 KO cells passaged in AloXR with or without BMP. (I) Bright field image of Otx2 KO FS 
cells re-plated in 2iL. Scale bars in (A), (B), (F), (H), (I) 100µm, (C) 250µm and (E), (G) 75µm. 

Figure S7. Human FS-like cells established from naïve ES cells and embryos, related to 
Figure 7 
(A) K-mean clustering of differential gene expression between human FS-like cells and 
conventional PSCs. (B) Gene expression heatmap for cluster 1 protein coding genes. (C) 
Expression heatmap of cluster 1 protein coding genes during naïve cell capacitation (data 
from Rostovskaya et al 2019). (D) Related to Figure 7I, FPKM values for additional selected 
naïve-formative specific genes. (E) Bar charts of differentially expressed TE families between 
formative and conventional hPSCs. (F) G-banded chromosomes from three independent 
human embryo derived FS-like cell lines.  
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