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SUPPLEMENTARY FIGURE LEGENDS AND TABLES 

Figure S1. Characteristics of L-ESCs 

(A) Summary of L-ESCs derivation from 2i/L-ESCs. 

(B) The summary of fluorescence-activated cell sorting (FACS) based on GOF/GFP 

positive cells in different passages L-ESCs. 

(C) Morphology of L-ESCs at p43. 

(D) Alkaline phosphatase (AP) staining on L-ESCs (p24) (results of three independent 

experiments). Scale bars, 100 μm. 

(E) Karyotyping of 2i/L-ESCs (P30, n = 50, results of three independent experiments) 

and L-ESCs (P30, n = 50, results of three independent experiments). 

(F) Immunostaining of OCT4, SOX2 and NANOG in 2i/ L-ESCs (results of three 

independent experiments). Scale bars, 50 μm. 

(G) Immunostaining of MERVL and ZSCAN4 in 2i/L-ESCs and L-ESCs (results of 

three independent experiments). Scale bars, 50 μm. 

(H) Immunostaining of H3K27me3 in2i/L-ESCs and L-ESCs (results of three 

independent experiments). Scale bars, 50 μm. 

(I) Derivation of L-ESCs from X/GFP ESCs (results of two independent experiments). 

Scale bars, 100 μm. 

 

Figure S2. Analyses of Molecular Features of L-ESCs 

(A) Heatmap showing general pluripotent markers in L-ESCs (n = 3), 2i/L-ESCs (n = 

3), S/L-ESCs (n = 3) and EpiSCs (n = 3) based on RNA-seq data. 

(B) Heatmap showing naïve pluripotent markers in L-ESCs (n = 3), 2i/L-ESCs (n = 3), 

S/L-ESCs (n = 3) and EpiSCs (n = 3) based on RNA-seq data. 

(C) Heatmap showing primed pluripotent markers in L-ESCs (n = 3), 2i/L-ESCs (n = 

3), S/L-ESCs (n = 3) and EpiSCs (n = 3) based on RNA-seq data. 

(D) Relative expression of WNT signaling related genes by RNA-seq data. Error bars 

are mean ± SD (n = 3). P values were calculated by two tailed Student’s t-test, p < 

0.05. 

(E) Western blotting analysis for ERK, p-ERK and β-CATENIN in L-ESCs and 



2i/L-ESCs (results of three independent experiments). 

(F) Heatmap of formative stem cells related genes in L-ESCs (n = 3) and 2i/L-ESCs 

(n = 3). 

 

Figure S3. Upregulation of DNA Methylation Level in L-ESCs 

(A) DNA methylation level at various genomic features in L-ESCs (n = 3), 2i/L-ESCs 

(n = 3) and S/L-ESCs (n = 2). 

(B) Relative expression of Dnmt3a and Dnmt3l measured by qPCR in GOF/GFP 

positive and negative L-ESCs; Relative expression of Prdm14 and Nanog measured 

by qPCR in 2i/L-ESCs, S/L-ESCs and L-ESCs. Error bars are mean ± SD (n = 3). P 

values were calculated by two tailed Student’s t-test, p < 0.05. 

(C) Expression levels of all histone genes in L-ESCs (n = 3) and 2i/ L-ESCs (n = 3) 

based on RNA-seq data. 

(D) Heatmap showing DNA maintenance methylation-related genes in 2i/L-ESCs (n = 

3) and L-ESCs (n = 3) based on RNA-seq data. 

(E) Heatmap showing Tet1, Tet2 and Tet3 in 2i/L-ESCs (n = 3) and L-ESCs (n = 3) 

based on RNA-seq data. 

 

Figure S4. Serum Improves the Efficiency of L-ESCs Adaptation 

(A) Summary of L-ESCs derivation from 2i/L-ESCs after 5 days S/L medium culture. 

(B) Summary of AP positive cloning numbers on 2i/L-ESCs, ASCs and L-ESCs, 

when 2,000 cells were seeded into 6-well cell culture plate and 6 days culture. 

(C) Summary of L-ESCs derivation from ASCs. 

 

Figure S5. DNMTs Play an Important Role in L-ESCs Self-renew 

(A) 2i/L-ESCs were treated with 5-Aza after p10, 2i/L-ESCs retained typical 

dome-shaped clonal morphology (results of three independent experiments). Scale 

bars, 100 μm. 

(B) Relative expression of Nanog, Sox2 and Prdm14 measured by qPCR in 2i/L-ESCs 

after 3 days 5-Aza treatment. Error bars are mean ± SD (n = 3). P values were 



calculated by two tailed Student’s t-test, p < 0.05. 

(C) Western blotting analysis for DNMT3A, DNMT3B, DNMT3L and DNMT1 in 

2i/L-ESCs, L-ESCs, 5-aza treated 2i/L-ESCs and L-ESCs (results of three 

independent experiments). 

(D) Quantification of colonies number of 2i/L culture different stem cells 

(Dnmt3l-KO ESCs and Dnmt3a-KO ASCs) derived L-ESCs. Error bars are mean ± 

SD (n = 3). P values were calculated by two tailed Student’s t-test, p < 0.05. 

(E) Dnmt3a-KO cells in LIF medium could passage over ten passages, and still kept 

in self-renewal and heterogenetic state by three times FACS (results of three 

independent experiments). 

(F) Western blotting analysis for H3K27me3 and Histone 3 in 2i/L-ESCs, L-ESCs, 

5-aza treated 2i/L-ESCs and L-ESCs and S/L-ESCs (results of three independent 

experiments). 

 

Figure S6. The Pluripotency of L-ESCs in vivo and in vitro 

(A) Relative expression levels of mesoderm, endoderm and ectoderm related genes in 

2i/L-ESCs and L-ESCs before (0-day) in vitro differentiation based on RNA-seq data. 

Error bars are mean ± SD (n = 3). P values were calculated by two tailed Student’s 

t-test, p < 0.05. 

(B) Relative expression of mesoderm, endoderm and ectoderm genes measured by 

qPCR, after 2i/L-ESCs were 3 days and 6 days in vitro differentiation. Error bars are 

mean ± SD (n = 3). P values were calculated by two tailed Student’s t-test, p < 0.05. 

(C) Relative expression of mesoderm, endoderm and ectoderm genes measured by 

qPCR, after L-ESCs were 3 days and 6 days in vitro differentiation. Error bars are 

mean ± SD (n = 3). P values were calculated by two tailed Student’s t-test, p < 0.05. 

(D) Relative expression of mesoderm, endoderm and ectoderm genes measured by 

qPCR, after 2i/L-ESCs and L-ESCs were 6 days in vitro differentiation. Error bars are 

mean ± SD (n = 3). P values were calculated by two tailed Student’s t-test, p < 0.05. 
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Table S1. WGBS data coverage and conversion efficiency (Related to Fig 3A)

Sample

Total

sequenced

bases(Gb)

Total

sequenced

reads

Reads after

trimming

Unique

mapped

reads

Mapping

efficiency

Coveraged

bases (1x)

L-ESCs_rep1 23.36 155,760,956 151,382,966 98,603,675 65.14% 2,317,989,827

L-ESCs_rep2 26.20 174,654,234 168,555,054 106,718,870 63.31% 2,334,743,972

L-ESCs_rep3 24.60 163,969,284 158,835,308 103,120,363 64.92% 2,346,240,160

Sample

Fraction

of genome

covered

Bisulfite

Conversion

Rate

No.of

unique CpG

covered (1x)

No.of unique

CpG

covered (3x)

No.of

unique

CpG

covered

(5x)

L-ESCs_rep1 85.05% 99.96% 30,757,370 14,829,901 5,277,450

L-ESCs_rep2 85.66% 99.96% 30,976,871 15,454,751 5,806,380

L-ESCs_rep3 86.08% 99.96% 31,620,932 15,560,785 5,654,681



Table S2. RT-qPCR Primers and Guide RNA sequences

Gene name Forward Primer Reverse Primer

Nanog CTTTCACCTATTAAGGTGCTTGC TGGCATCGGTTCATCATGGTAC
Prdm14 CCTGAACAAGCACATGAGA TGCACTTGAAGGGCTTCTCT
Gata4 TTCCTCTCCCAGGAACATCAAA GCTGCACAACTGGGCTCTACTT
Gata6 TGCTGGAAATTGCAACAAACC GTCACGTGGTACAGGCGTCA
Sox17 GTCAACGCCTTCCAAGACTTG GTAAAGGTGAAAGGCGAGGTG
Brachyury GAACCTCGGATTCACATCGT TTCTTTGGCATCAAGGAAGG
Evx1 CCAGTGACCAGATGCGCCGATAC TCCTTCATGCGCCGGTTCT
Hand1 TCAAAAAGACGGATGGTGGT GCGCCCTTTAATCCTCTTCT
Dnmt3a GACTCGCGTGCAATAACCTTAG GGTCACTTTCCCTCACTCTGG
Dnmt3l CGGAGCATTGAAGACATC CATCATCATACAGGAAGAGG
Sox2 GCGGCGGAAAACCAAGA CCGGGAAGCGTGTACTTATCC
Nestin CTCGAGCAGGAAGTGGTAGG TTGGGACCAGGGACTGTTAG
Sox1 GGCCGAGTGGAAGGTCATGT TCCGGGTGTTCCTTCATGTG
Pax6 GCAGATGCAAAAGTCCAGGTG CAGGTTGCGAAGAACTCTGTTT
GAPDH ATGGTGAAGGTCGGTGTGAAC TCGCTCCTGGAAGATGGTGATG

Guide RNA sequences

Dnmt3a
sgRNA1 CACCGCTCATACTCAGGCTCATCGT

Dnmt3a
sgRNA1-CS AAACACGATGAGCCTGAGTATGAGC
Dnmt3a
sgRNA2 CACCGGACCCTGCTTCTCCGACTG
Dnmt3a
sgRNA2-CS AAACCAGTCGGAGAAGCAGGGTCC

Genotyping primer

Dnmt3a
89925
Forward
Primer GCCTTGGCTGTGTGAGATTTG
Dnmt3a
90586
Reverse
Primer ATCCTGGAGCCCCAAAGAGC



Supplemental Experimental Procedures 

Mice 

Animal care and use were conducted in accordance with the guidelines of Inner 

Mongolia University, China. Mice were housed in a temperature-controlled room with 

proper darkness-light cycles, fed with a regular diet, and maintained under the care of 

the Laboratory Animal Unit, Inner Mongolia University, China. The mice were 

sacrificed by cervical dislocation. This study was specifically approved by the 

Institutional Animal Care and Use Committee, Inner Mongolia University, China. 

Oct4-ΔPE-GFP (GOF/GFP) transgenic mice (Yoshimizu et al, 1999) were used here 

with a mixed background of MF1, 129/sv, and C57BL/6J strains. 

 

Derivation of 2i/L-ESCs 

Mouse embryos blastocysts (E3.5) were isolated from 129/sv females mated with 

GOF/GFP transgenic males. Green fluorescence indicated that GFP expression of the 

reporter is under the control of Oct4 promoter and distal enhancer. This GFP 

transgene shows expression in the ICM of blastocysts and PGC in vivo, and in ESCs 

(Yoshimizu et al, 1999). ESCs culture medium consists of N2B27 medium (Life 

technology) supplemented with PD0325901 (PD, 1 μM, Miltenyi Biotec), 

CHIR99021 (CH, 3 μM, Miltenyi Biotec) and leukemia inhibitory factor (LIF, 1000 

IU/ml, Millipore), henceforth were called 2i/L medium. Zona pellucida of blastocysts 

were removed by Acidic Tyrode’s Solution (Sigma-Aldrich), and then placed to 

24-well fibronectin-coated (FN, 16.7 μg/ml, Millipore) plate with 2i/L medium. ICM 



of blastocysts cultures grew efficiently and formed outgrowing colonies in 5-7 days 

culture. The resulting colonies were further cutting into smaller pieces by glass 

needles after 5-7 days culture, and then the colonies passaged by Accutase (Life 

technology) regularly on at every 2 days interval. 

 

Derivation of L-ESCs 

1×10
5 

2i/L-ESCs were switched on fibronectin-coated (16.7 μg/ml, Millipore) 24-well 

cell culture plate containing L-medium which are N2B27 medium supplemented with 

leukemia inhibitory factor (1000 IU/ml, Millipore), and we call these cells as L-ESCs. 

Dependent on cell growth, L-ESCs were passage every other day in the early stage. 

After being cultured for different passages, GOF/GFP positive and negative L-ESCs 

were purified by flow-cytometry sorting by BD FACSAria (BD Biosciences) and 

further analysis. GOF/GFP positive purified L-ESCs were passage every other day 

treated with Accutase (Life technology). L-ESCs were capable of self-renewal for 

over 40 passages. For inhibitor treatment experiment, we added JAK inhibitor I (0.6 

μM, Calbiochem) or 5-Aza (6 μM, Sigma) into L-ESCs culture medium. 

 

Derivation of S/L-ESCs 

2i/L-ESCs were switch to fibronectin-coated plate with standard ES medium 

(Knockout DMEM; Knockout Dulbecco’s modified Eagle’s medium) supplemented 

with 20% fetal calf serum, 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine, 0.1 mM 



non-essential amino acid, 50 U/ml Penicillin/Streptomycin and 1000U/ml LIF without 

feeder cells, we named these cells as S/L-ESCs. 

 

Flow Cytometry 

GOF/GFP ESCs were harvested by Accutaes and sorting by BD LSRFortessa. Green 

fluorescence indicated that GFP expression of the reporter is under the control of Oct4 

promoter and distal enhancer. This GFP transgene shows expression in the ICM of 

blastocysts and PGCs in vivo, and in ESCs. No GOF/GFP ESCs were used for FACS 

gating negative control. Measure fluorescence (detector 488 nm channel for GFP) by 

flow cytometer. Gating out of residual cell debris and measure diploid and tetraploid 

DNA peaks. A region representing GFP-positive cells were used to identify living 

cells and collected. 

 

Alkaline Phosphatase (AP) Staining 

AP staining was carried out using AP staining kit from Sigma (86R-1KT) according 

to manufacturer’s instructions. Briefly, the cells were fixed by 4% paraformaldehyde 

for 10 min, and then were stained by AP staining solution for overnight at room 

temperature. 

 

Cell Differentiation 

2i/L-ESCs and L-ESCs were cultured in N2B27 medium for 3 to 6 days withdrawal of 

PD0325901, CHIR99021 and LIF, and LIF respectively. 



Colony Formation Assay 

Single 2i/L-ESCs and L-ESCs were seeded at a fibronectin-coated 96-well plates 

using mouth pipette, containing 2i/L and L-medium, respectively. The cells were 

cultured for 10 days and the number of colonies was assessed. 

 

Generation of Dnmt3a Knockout ASCs Lines 

Guide RNA sequences were cloned into the plasmid px459 (Addgene, 62988). px459 

containing Dnmt3a gRNAs were co-transfected into digested ASCs by Lipofectamine 

2000 (Thermo Fisher). Single cell derived colonies were picked and expanded 

individually in ABC/L (N2B27 basic medium added with Activin A, BMP4, 

CHIR99021 and LIF) medium with puromycin. Genomic DNA of colonies was 

extracted using the DNeasy Blood & Tissue Kit, which was further analyzed by 

genomic PCR. Colonies with the deletion of Dnmt3a locus were identified. Dnmt3a 

knockout ASCs (Dnmt3a
-/-

 ASCs) were cultured in ABC/L medium without 

puromycin. Guide RNA sequences and genotyping primer sequences used are given 

in Table S2. 

 

Teratomas Formation 

The 2i/L-ESCs and L-ESCs were disaggregated using Accutase, and 1×10
6 

cells were 

injected into under epithelium of NOD–SCID mice. Three to five weeks after 

transplantation, tumor(s) were collected and fixed with 4% paraformaldehyde, and 



processed for paraffin sectioning. Sections were observed following Hematoxylinand 

Eosin staining. 

 

Immunostaining 

Cultured ESCs were briefly washed with PBS and fixed in 4% paraformaldehyde in 

PBS for 15 min at room temperature. Cells were permeabilized for 30 min with 1% 

BSA and 0.1% Triton X-100 in PBS. Antibody staining was carried out in the same 

buffer at 4°C for overnight. The slides were subsequently washed three times in 1% 

BSA, 0.1% Triton X-100 in PBS (5 min each wash), were incubated with secondary 

antibody for 1h at room temperature in the dark, washed once for 5 min in 1% BSA, 

0.1% Triton X-100 in PBS and twice for 5 min in PBS. The slides were then mounted 

in Vectashield with DAPI (Vector Laboratories) and imaged using a Olympus 

FV1000 confocal microscope. Primary antibodies used were: anti-OCT4 (BD 

Biosciences, Catalog Number: 611203, 1:200), anti-NANOG (eBioscience, Catalog 

Number: 14-5761, 1:500), anti-SOX2 (Santa cruz, Catalog Number: sc-17320, 1:200), 

anti-H3K27me3 (Upstate, Catalog Number: 07-449, 1:500), anti-ZSCAN4 (Abcam, 

Catalog Number: ab106646, 1:200), anti-MERVL (HuaAn Bio, Catalog Number: 

ER50102, 1:100), anti-DNMT3A (abcam, Catalog Number: ab79822, 1:500), 

anti-NESTIN (BOSTER Bio, Catalog Number: BM4494, 1:50), anti-BRACHYURY 

(R＆D Systems, Catalog Number: AF2085, 1:100) and anti-SOX17 (R＆D Systems, 

Catalog Number: AF1924, 1:100). All secondary antibodies used were Alexa Fluor 

highly crossed adsorbed (Molecular Probes). 



Western Blot 

Cells were collected with Accutase (Life technology), washed three times with DPBS, 

and lysed in buffer that contained 20 mM Tris (pH 8.0), 137 mM NaCl, 100 g/l 

glycerol, 50 g/l Triton X-100, and 4 g/l EDTA; 1 μl PMSF (0.1 M) and 10 μl 

phosphatase inhibitor (10 g/l) were added per 1 ml lysis buffer immediately before 

use. Proteins were denatured with 2 × SDS at 95 °C for 5 min. A total of 20 μg 

denatured protein was run on 8% or 10% SDS–PAGE gel and transferred to 

polyvinylidene difluoride (PVDF) membrane. Membranes were blocked with 5% 

nonfat milk in 1 × TBS with 0.05% Tween-20 (TBST) for 1h. Samples were probed 

with primary antibodies overnight at 4°C. The primary antibodies used were 

anti-DNMT3A (CST, 3598S; dilution 1:1,000), anti-DNMT3B (Abcam, ab78922; 

dilution 1:2,000), anti-DNMT3L (Abcam, ab3493; dilution 1:2,500), anti-DNMT1 

(Abcam, ab19905; dilution 1:1,000), anti-H3K36me3 (Abcam, ab9050; working 

concentration, 1 μg/ml), anti-phospho-p44/p42 MAPK (p-ERK1/2) (Cell Signaling 

Technology, 4370; dilution 1:2,000), anti-p44/p42 MAPK (ERK1/2) (Cell Signaling 

Technology, 4695; dilution 1:1,000), anti- β-CATENIN (Cell Signaling Technology, 

8480; dilution 1:1,000) and anti-β-ACTIN (Abcam, ab8227; dilution 1:5,000). Blots 

were rinsed with TBST. Membranes were incubated with HRP-conjugated secondary 

antibodies for 60 min at room temperature, and proteins were detected by ECL plus 

reagent. After rinsing with TBST, Clarity
TM

 Western ECL Substrate (BIO-RAD) was 

used for visualization, and ChemiDoc
TM

 MP Imaging System (BIO-RAD) was used 

for band detection. 



Real-Time PCR 

Total RNA was isolated with the RNeasy Plus Mini Kit (Qiagen) and reverse 

transcribed into cDNA using the Reverse Transcription System (Promega) according 

to the manufacturer’s instructions. Quantitative real-time PCR (qRT-PCR) was 

conducted using a LightCycler® 96 Instrument (Roche Molecular Systems) and 

qRT-PCR reaction was performed with KAPA SYBR FAST qPCR kit (KAPA 

Biosystems). At least triplicate samples were assessed for each gene of interest, and 

GAPDH was used as a control gene. Relative expression levels were determined by 

the 2
-ΔΔCt

 method. Primer sequences used are given in Table S2. 

 

RNA Extraction and Sequencing 

Total RNA were extracted from approximately one million to two million cells using 

RNeasy Mini Kit (QIAGEN) according to the recommendation of manufacturer and 

then NEBNext® Poly (A) mRNA Magnetic Isolation Module was used to isolate 

mRNA from total RNA. Using mRNA as input, the first and second strand cDNAs 

were synthesized by NEBNext® RNA First Strand Synthesis Module and NEBNext® 

Ultra II Non-Directional RNA Second Strand Synthesis Module, respectively. Final 

libraries were prepared using KAPA Hyper Prep Kits (8 PCR cycles) and sequenced 

on HiSeq4000 platform. 

 

 

 



RNA-seq Data Analysis 

Before alignment, raw data were first trimmed to remove reads with more than 10% 

low quality bases and to trim adaptors. Then the clean reads were mapped to mouse 

reference genome (mm10) with Tophat (2.0.12) with default settings (Trapnell et al, 

2009). HTSeq (0.6.1) was used to do the reads counting, and then RefSeq gene 

expression level was estimated by RPKM method (Reads per kilobase transcriptome 

per million reads). Data of RNA-seq of S/L-ESCs and EpiSCs (GSE119985) were 

downloaded from previous study (Wu et al, 2020). In vivo data of mouse embryos 

E2.5-E5.5 were downloaded from ArrayExpress (E-MTAB-2958) (Boroviak et al, 

2015). Differentially expressed genes (DEGs) in different samples were determined 

by edgeR package with fold-change ≥ 2 and p value ≤ 0.5 (Robinson et al, 2010). 

Unsupervised hierarchical clustering (UHC) analysis was performed by the R hclust 

function. Heatmaps of select genes were performed using R heatmap.2 function. 

Principal component analysis (PCA) analysis was performed with the R prcomp 

function. Gene ontology analysis was performed using Metascape 

(http://metascape.org). Trend analysis of DEGs was performed using Short 

Time-series Expression Miner (STEM) software (Ernst & Bar-Joseph, 2006). 

 

Genomic DNA Isolation and WGBS Library Preparation 

Following the manufacturer’s instructions, genomic DNA was extracted from stem 

cells using the DNeasy Blood & Tissue Kit (Qiagen). Remaining RNA was removed 

by treating with RNase A. Three replicated samples from each of these stem cells 



were used for library preparation to ensure repeatability of experiment. In short, 2 μg 

of genomic DNA spiked with 10 ng of lambda DNA were fragmented to about 300 bp 

with Covaris S220. Next, end repair and A-ligation were performed to the DNA 

fragments. Methylated Adaptor (NEB) was then ligated to the DNA fragments. In 

order to reach >99% bisulfite conversion, the adaptor-ligated DNA was treated twice 

using EZ-96 DNA Methylation-Direct™ MagPrep (Zymo Research). The resulting 

single-strand DNA fragments were amplified by 4 PCR cycles using the KAPA HiFi 

HotStart Uracil+ ReadyMix (2×). At last, the libraries were sequenced on HiSeq4000 

platform to generate 150-bp paired-end reads. 

 

DNA Methylation Analysis 

Whole genome bisulfite sequencing reads were trimmed with Trim Galore (v0.3.3) to 

remove adaptors and low quality bases. Then we used Bismark (v0.7.6) (Krueger & 

Andrews, 2011) to map the clean reads to mouse reference genome (mm10) with a 

paired-end and non-directional model, then the unmapped reads were realigned to the 

same genome with a single-end and non-directional model. PCR duplications were 

removed with command ‘samtools rmdup’ (v0.1.18). WGBS data of 2i/L-ESCs 

(GSE119985) (Wu et al, 2020) and S/L-ESCs (GSE98517) (Hackett et al, 2017) were 

downloaded from previous study and identically processed. The global DNA 

methylation level, estimated using a 2 kb window across the genome, and DNA 

methylation level in each genomic regions was estimated based on 3x CpG sites 

(CpGs covered more than 3 times). Only regions with more than 3 CpGs covered 



were retained. Genomic annotation, like exons, introns and repeat regions were 

downloaded from UCSC genome browser. Promoters were regions 1 kb upstream and 

0.5 kb downstream of transcription start sites (TSS). Imprint control regions (ICR) 

were obtained from previous study (Xie et al, 2012), for the low coverage of 

published S/L-ESCs data, DNA methylation level on ICRs were estimated based on 

1x CpG sites. Locations of ICRs were converted with UCSC LiftOver from mm9 to 

mm10. 
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