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Improved diabetic wound healing by LFcinB
is associated with relevant changes
in the skin immune response and microbiota
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Bovine lactoferricin (LFcinB) has antimicrobial and immuno-
modulatory properties; however, the effects on diabetic wound
healing remain poorly understood. The wound healing poten-
tial of LFcinB was investigated with in vitro, ex vivo, and in vivo
models. Cell migration and proliferation were tested on kerati-
nocytes and on porcine ears. A type 1 diabetic mousemodel was
also used to evaluate wound healing kinetics, bacterial diversity
patterns, and the effect of LFcinB on oxidative stress, macro-
phage phenotype, angiogenesis, and collagen deposition.
LFcinB increased keratinocyte migration in vitro (p < 0.05)
and ex vivo (p < 0.001) and improved wound healing in diabetic
mice (p < 0.05), though not in normoglycemic control mice. In
diabetic mouse wounds, LFcinB treatment led to the eradica-
tion of Bacillus pumilus, a decrease in Staphylococcus aureus,
and an increase in the Staphylococcus xylosus prevalence.
LFcinB increased angiogenesis in diabetic mice (p < 0.01),
but this was decreased in control mice (p < 0.05). LFcinB
improved collagen deposition in both diabetic and control
mice (p < 0.05). Both oxidative stress and theM1-to-M2macro-
phage ratios were decreased in LFcinB-treated wounds of dia-
betic animals (p < 0.001 and p < 0.05, respectively) compared
with saline, suggesting a downregulation of inflammation in
diabetic wounds. In conclusion, LFcinB treatment demon-
strated noticeable positive effects on diabetic wound healing.
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INTRODUCTION
Chronic non-healing wounds constitute an increasing problem
worldwide. Macrovascular and microvascular complications of
long-standing diabetes result in neuropathy and lower limb ischemia
that are critical risk factors for chronic non-healing wounds.1 Non-
healing wounds are a frequent late-diabetic complication and a major
reason for lower limb amputations.2 Cellular characteristics of dia-
betic wounds include impairments in keratinocyte function and
angiogenesis as well as chronic low-grade inflammation.3 Normal
wound healing is separated into four overlapping phases: (1) inflam-
mation, (2) proliferation, (3) migration, and (4) remodeling. Diabetic
wounds become stalled in the inflammatory phase, resulting in an
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accumulation of immune cells at the wound site, increased reactive
oxygen species (ROS) generation, and an increase in pro-inflamma-
tory cytokines.4 Altogether, this destructive micro-environment im-
pairs angiogenesis and thereby formation of healthy granulate tissue,
which in turn inhibits re-epithelialization.5 When wounds fail to
close, opportunistic pathogens colonize the wound site and drive bio-
film formation, influencing recruitment of host immune cells.6 This
leads to a negative impact on recovery by maintaining the wound
in a prolonged inflammatory phase, further impairing the healing
process. An ideal candidate for treating the non-healing wounds in
diabetic patients should therefore control pathogen infection,
improve the microenvironment, and promote continued healing.

Lactoferrin (LF) is a protein found in various secretory fluids
including milk of various mammals, including humans. Interestingly,
it has activity against bacteria,7 viruses,8 fungi,9 and cancer cells.10

Additionally, LF also affects migration, proliferation,11 and expres-
sion of pro-inflammatory cytokine.12 Furthermore, a recombinant
form of the human LF (hLF), talactoferrin, was demonstrated to
improve wound healing in vivo in a murine model.13

From the protein bovine LF (bLF), a small peptide of 25 amino acids
(aa), called bovine lactoferricin (LFcinB), has also been found to
confer antimicrobial activity.14 The activity of LFcinB was confirmed
against both Gram-positive and Gram-negative bacteria, and, inter-
estingly, LFcinB showed an increased or similar effect as bLF.15 More-
over, LFcinB has immunomodulatory properties demonstrated by its
ability to bind endotoxin.16,17 Together, this makes LFcinB a good po-
tential therapeutic candidate for diabetic wounds against infection,
boosting the wound microenvironment, and promoting continued
healing.
2021 ª 2021 The Authors.
://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omtm.2021.02.008
mailto:jenssen@ruc.dk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omtm.2021.02.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Lactoferricin (LFcinB) and bovine

lactoferrin (bLF) increase HaCaT cell migration

in vitro and decrease LPS-stimulated cytokine

mRNA transcript levels

(A) Representative images of HaCaT cell re-epithelializa-

tion at time 0 and 48 h post-scratch. The migratory po-

tential of LFcinB was evaluated on an oCelloScope. The

cells were treated with LFcinB, bLF, epidermal growth

factor (EGF), and DMEM (cell culture medium). The

scratched area (non-cell area) is markedwith black lines to

distinguish the boundaries between the gap and the cell-

covered area. (B) Quantification of HaCaT cell migration.

The effects of treatments with EGF, bLF, or LFcinB on cell

migration rate were compared with the untreated cells and

shown as percentage of migrated cells at time points 0,

12, 24, 36, and 48 h. (C) LPS-stimulated (10 ng/mL)

mRNA expression levels of tumor necrosis factor-a (TNF-

a), interleukin-6 (IL-6), and IL-8 in HaCaT cells after 24 h

treatment with LFcinB or bLF. The mRNA level of IL-6 was

not detectable (ND) after LFcinB or bLF treatments. (D)

Expression levels of monocyte chemoattractant protein 1

(MCP-1) from HaCaT cells after 24 h treatment with

LFcinB, EGF, or DMEM, with or without LPS (10 ng/mL).

The data represent normalized levels. (B–D) Mean ± SD of

3 independent experiments performed in triplicate,

comparing the difference between (B) EGF (#) and LFcinB

(*) and DMEM; (C) bLF and LFcinB and DMEM; and (D)

DMEM, bLF, EGF, and LFcinB non-treated cells and LPS

stimulated (*). *p < 0.05, **p < 0.01, ***p < 0.001,

****,####p < 0.0001.
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Here, we compared the effects of LFcinB with those of the full-length
bLF protein using in vitro cellular migration and gene-expression as-
says. We further characterized the effect of LFcinB with an ex vivo
wound healing model as well as an in vivo full-thickness wound
model comparing control and diabetic mice.

RESULTS
LFcinB enhances keratinocyte migration in vitro and decreases

cytokine expression

The migratory effect of LFcinB and the full-length bLF was investi-
gated in an immortalized keratinocyte cell line (HaCaT) (Figure 1A).
The oCelloScope was set to record the migration for 48 h and to ac-
quire images every 12th hour (Figure 1B). After 24 h, a significant in-
crease in migration was demonstrated for LFcinB (31% ± 6%
of scratch width, p < 0.05) and epidermal growth factor (EGF)
(50% ± 10%, p < 0.0001) compared with the control (19% ± 4%).
EGF is a mitogen that affects migration of proliferation of cells and
enhances wound healing.18 Surprisingly, there were no significant ef-
fects of full-length bLF onmigration (17% ± 6%, not significant [NS]).
Similarly, 48 h LFcinB (62% ± 10%, p < 0.001) and EGF (95% ± 8%,
p < 0.001) treatment significantly enhanced migration compared with
the control (38% ± 7%), while no effect of bLF on migration was
observed (34% ± 10%, NS).

The proliferative effects of LFcinB and bLF were also investigated in
HaCaT cells. While EGF significantly increased proliferation (by
Molecular
78% ± 6%, p < 0.05), neither LFcinB (69% ± 13%, NS) nor bLF
(70% ± 16%, NS) increased the amount of HaCaT cells compared
with the control (59% ± 4%) (Figure S1). Since LFcinB significantly
enhanced migration at 24 h post-scratching compared with the con-
trol, using the in vitro scratch assay, the 24 h time point was chosen
for quantification of mRNA expression of the key pro-inflammatory
cytokines tumor necrosis factor (TNF)-a, interleukin (IL)-6, and IL-8
to investigate the immunomodulatory effects of LFcinB and bLF
following lipopolysaccharide (LPS) treatment (Figure 1C). Treatment
with LFcinB and bLF inhibited mRNA levels of TNF-a and IL-8:
TNF-a by LFcinB (0.0036 ± 0.00032, p < 0.001) and by bLF
(0.0047 ± 0.00034, p < 0.001) and IL-8 by LFcinB (0.17 ± 0.16, p <
0.001) and by bLF (0.15 ± 0.12, p < 0.001) relative to the control (Fig-
ure 1C). Interestingly, the mRNA levels of IL-6 were not detectable
(ND) post-treatment for either LFcinB or bLF, while robustly present
in the control (Figure 1C).

We investigated whether LFcinB and bLF influenced the secretion of
monocyte chemoattractant protein 1 (MCP-1) from HaCaT cells
(Figure 1D). Treatment with LFcinB did not significantly increase
MCP-1 levels (120% ± 49%, NS) compared with the control
(100% ± 31%), whereas bLF increased MCP-1 levels (192% ± 32%,
NS). When HaCaT cells were stimulated with LPS, levels of MCP-1
were significantly increased (403% ± 173%, p < 0.05) compared
with the untreated control. This was expected, as LPS activates tran-
scription factors that promote production of pro-inflammatory
Therapy: Methods & Clinical Development Vol. 20 March 2021 727
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Figure 2. Secreted cytokine levels from human

peripheral blood mononuclear cells (PBMCs) after

treatments with LFcinB and LPS

PBMCs isolated from healthy donors were treated with

LFcinB (25 mg/mL) or LPS (10, 50, or 100 ng/mL) for 24 h

and investigated by ELISA. (A) Secreted levels of TNF-a.

(B) Secreted levels of MCP-1. The graphs show the

mean ± SD for 3 independent donors in triplicate,

comparing the difference between the LFcinB and DMEM

LPS (10 ng/mL)-treated and non-treated cells (*) and LPS

response in a dose-dependent manner compared with

non-treated cells (#). *p < 0.05, **,##p < 0.01, ####p <

0.0001.
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factors.19 Co-stimulation with LPS and LFcinB led to increased levels
of MCP-1 compared with untreated control (392% ± 212%, p < 0.05).
Likewise, co-stimulation with LPS and bLF (509% ± 31%, p < 0.001)
increased MCP-1 levels compared with untreated cells. However,
LFcinB was not able to diminish the LPS-induced increase in MCP-
1 secretion from HaCaT cells (394% ± 212%, NS) compared with
LPS-only treated cells (120% ± 49%).

The impact of LFcinB on MCP-1 and TNF-a levels was also investi-
gated in peripheral blood mononuclear cells (PBMCs) isolated from
healthy donors. PBMCs were treated with LFcinB, LPS, or medium
alone (control). LPS was used at increasing concentrations (10, 50,
and 100 ng/mL) alone or in combination with LFcinB. LPS alone
caused a dose-dependent increase of 2-fold with 50 ng/mL LPS
(206% ± 36%, p < 0.01) to 4-fold with 100 ng/mL LPS (440% ±

90%, p < 0.001) of TNF-a levels secreted from PBMCs into the culture
medium from untreated control (100% ± 4%). (Figure 2A). However,
when PBMCs were co-stimulated with LFcinB and 50 ng/mL or
100 ng/mL of LPS, the TNF-a levels secreted from PBMCs were with-
drawn almost 2-fold for both concentrations (162% ± 37%, p < 0.05
and 236% ± 53%, p < 0.01, respectively) compared with 50 ng/mL and
100 ng/mL LPS stimulation only.

PBMCs were also used to measure the levels of MCP-1, with LPS (10,
50, and 100 ng/mL) and LFcinB co-stimulated with LPS and without
LPS (Figure 2B). LPS alone in media led to a 500-fold increase in
MCP-1 levels for all the tested concentrations (p < 0.0001). Co-stim-
ulation in human PBMCs showed responsiveness to 10 ng/mL LPS
and LFcinB treatment by increasing MCP-1 secretion 2-fold
(4,833% ± 1,510%, p < 0.05) compared with 10 ng/mL of LPS only
(2,567% ± 779%).

Enhancedmigration and proliferation in a porcine ex vivowound

healing model

Porcine skin has similarities to human skin with respect to fat compo-
sition, epidermal thickness, and dermal-to-epidermal thickness ra-
tios20 as well as location and identity of immune cells.21 Together,
these features make porcine skin an attractive model for wound heal-
ing.22 We treated wounded porcine ear skin ex vivo with LFcinB, con-
ventional medium (Dulbecco’s modified Eagle’s medium [DMEM]),
or free aa in the same molar ratio as LFcinB for 5 consecutive days.
728 Molecular Therapy: Methods & Clinical Development Vol. 20 March
The aa control was added because free aa are a high-energy source
and because they have previously been shown to affect wound heal-
ing.23 Samples were collected for histological analysis at days 1, 3,
and 5 post-wounding (Figure 3A) to evaluate epithelial closure (Fig-
ure 3B) and cell proliferation (Figure 3C).

After day 1 of treatment, the DMEM control presented a wound
closure of 23 ± 7% and 7% ± 8 Ki67-positive epithelial cells/mm2 (Fig-
ures 3A and 3B), which was not different for the LFcinB-treated
(31% ± 5%, 10 ± 6 Ki67-positive cells/mm2, NS) or aa control
(29% ± 8%, 8 ± 10 Ki67-positive cells/mm2) wounds. Interestingly,
at day 3, while the epithelial closure for the media treatment had
increased to 53 ± 30% (24 ± 24 Ki67-positive cells/mm2),
the LFcinB-treated wounds had reached an epithelial closure of
80 ± 27% (p < 0.01) (23 ± 22 Ki67-positive cells/mm2, NS), which
was also increased compared with the aa control (48% ± 23% closure,
12 ± 14 Ki67-positive cells/mm2, NS) (Figure 3B). Furthermore, at day
5 the epithelial closure of the LFcinB-treated ex vivo wound had
reached almost complete epithelial closure (95% ± 12%, p < 0.001),
being significantly increased compared with the DMEM control
(82 ± 32%) or the aa control (72% ± 24%) (Figure 3B). Staining for
Ki67-positive cells indicated low levels of cell proliferation until day
5 for LFcinB (132 ± 85 Ki67-positive cells/mm2), while cell prolifera-
tion was significantly lower in the DMEM control (70 ± 47 Ki67-pos-
itive cells/mm2) as well as in the aa control (36 ± 25 Ki67-positive
cells/mm2, NS) (Figure 3C).

LFcinB improves wound healing in a mouse model of type 1

diabetes and modulates wound bacterial diversity

To investigate the effect of LFcinB on wound healing in vivo, we
applied the LFcinB peptide topically to full-thickness excisional
wounds in a type 1 diabetes mouse model as well as in non-diabetic
control mice. Two different peptide doses were used (12.5 and
25 mg/wound) (Figure 4). In diabetic mice, LFcinB treatment consis-
tently accelerated wound closure, specifically at days 5 and 7–9,
compared with the saline treatment for both doses (p < 0.05). How-
ever, in non-diabetic mice, the low dose of LFcinB inhibited wound
healing significantly at days 4–5 (p < 0.05) (Figures 4A and 4B).

To analyze themodulatory effect of LFcinB on aerobic resident micro-
biota, we cultured, isolated, and identified bacteria from swabs from
2021



Figure 3. Treatment with LFcinB increases

migration and proliferation in an ex vivo porcine

wound healing model

Ears from freshly slaughtered pigs were cleaned,

wounded, and sampled into a 12-well plate with sterile

gauze. The skin samples were treated with LFcinB, free

amino acids, or DMEM every day for 5 continuous days.

Samples were collected at days 0, 1, 3, and 5 for histo-

logical analysis of cell migration and proliferation. (A)

Representative images after Ki67 staining. The zoom

shows a clear separation of the epithelium and dermis

layers, where the Ki67-positive cells are located in the

epithelial layer. Scale bars, 200 mm and 400 mm. (B)

Quantification of epithelial closure calculated as percent-

age of closure compared to the size of the wound bed. (C)

Quantification of Ki67-positive cells in the epithelial layer of

the wound bed. The graphs demonstrate the mean ± SD

of 2 independent experiments performed in 8 replicates

of each treatment for each collection day. **p < 0.01,

***p < 0.001.
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the wound bed at days 0, 5, and 10. The overall community composi-
tion analysis at the phylum and genus levels showed a higher diversity
of bacterial strains cultivated from diabetic mice compared with non-
diabetic mice (Figures 4C and 4D).Most of the species recovered from
the swabs belonged to the Staphylococcus genus, one of the most com-
mon bacterial groups colonizing skin and wounds. Treatment of dia-
betic wounds with LFcinB promoted an apparent reduction in bacte-
rial diversity compared with saline treatment. From non-diabetic
mice, strains of only three major bacterial populations were identified
on the skin before wounding. At days 5 and 10, only E. coli was iden-
tified in all LFcinB-treated samples, while an unidentified strain was
observed for the saline treatment. The E. coli was not expected to be
eradicated, as the minimal inhibition concentration (MIC) for the
strain has been reported to be 64 mg/mL.24 A higher concentration
would therefore be necessary to eradicate the species from the wound.
For the diabetic mice eight different bacterial strains were identified at
day 0, and one was unidentifiable. Treatment with LFcinB decreased
strain diversity in the wounds for both concentrations (Figure 4C),
and B. pumilus completely disappeared after LFcinB treatment.
S. aureus levels seemed to decrease after treatment with both concen-
trations of LFcinB (day 5), an observation that seemed to bemore pro-
nounced at day 10 for the lowest LFcinB concentration (Figure 4C).
Concomitantly, LFcinB treatment led to an increase in levels of
commensal S. xylosus (day 5) and of S. epidermidis (day 10), which
suggests that the effect of LFcinBmay also involve an antimicrobial ac-
tivity against the Staphylococcus spp. and a stimulating effect on the
commensal species.

Anti-inflammatory properties of LFcinB in diabetic wounds

Histological analysis shows that treatment with LFcinB leads to a
lower abundance of inflammatory cells in diabetic skin compared
Molecular
with healthy skin. These results agree with the wound healing kinetics
results, indicating that diabetic wounds treated with LFcinB heal
faster because of lower inflammation at the wound site and at the
peri-wound area, with the presence of infiltrate highly enriched in
migrating fibroblasts and macrophages (Figure S2). Furthermore, us-
ing TNF-a as the M1 macrophage marker and CD206 as the M2
macrophage marker, we investigated macrophage polarization to-
ward the pro-inflammatory or the anti-inflammatory phenotype.
We evaluated M1 (Figures 5A and 5E) and M2 (Figures 5A and 5F)
macrophage numbers in skin wounds from diabetic mice and from
healthy controls (Figures 5B and 5G) as well as the ratio between
M1 and M2 macrophages in diabetic mouse (Figure 5I) and non-dia-
betic mouse (Figure 5K) skin wound biopsies harvested 10 days after
excisional wounding. In diabetic wounds, there was no difference in
the numbers of pro-inflammatory M1 macrophages between LFcinB-
and saline-treated wounds (NS) (Figure 5E), while the number of M2
macrophages was increased by low (8.5 ± 2.6 cells/field, p < 0.05), or
high (8.7 ± 1.5 cells/field, p < 0.05) LFcinB dose compared with the
saline treatment (4.7 ± 0.8 cells/field) (Figure 5E). Accordingly, the
M1/M2 ratio was decreased 2.1-fold (0.6 ± 0.2 cells/field, p < 0.05)
and 2.3-fold (0.5 ± 0.2 cells/field, p < 0.05) after treatment with low
and high doses of LFcinB compared with saline (1.2 ± 0.3 cells/field),
respectively (Figure 5I). This indicates an anti-inflammatory effect of
LFcinB in diabetic skin wounds. On the other hand, healthy wounds
presented decreased M1 macrophages for the high LFcinB dose treat-
ment (10.3 ± 1.9 cells/field, p < 0.01) compared with saline (20.6 ± 4.9
cells/field) and M2 macrophages (3.1 ± 0.4 cells/field, p < 0.01)
compared to saline (4.6 ± 0.2 cells/field). The differences between
the two macrophage phenotypes were also found between the high
and the low treatment doses, with a significantly increased number
of M1 with the low dose (18.8 ± 1. 9 cells/field, p < 0.05) compared
Therapy: Methods & Clinical Development Vol. 20 March 2021 729
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Figure 4. LFcinB enhances wound healing in

diabetic but not in healthy mice

Diabetic mice (left) or healthy non-diabetic mice (right)

were treated with either saline or a low (12.5 mg/wound) or

high (25 mg/wound) dose of LFcinB for 10 days. Bacterial

swabs were collected from the wound bed before

wounding at day 0 and post-wounding at days 5 and 10,

for all 3 treatment groups, followed by plating on solid

media. Colonies with different morphology, size, or color

were collected and identified by MALDI-TOF mass spec-

troscopy. (A) Diabetic mice had significantly improved

wound healing at days 5 and 7–9, when treated with both

low and high concentrations of LFcinB, compared with

the saline treatment. (B) Healthy mice demonstrated no

overall significant effects on wound closure after the

LFcinB treatment. (C) A higher diversity of bacterial spe-

cies was identified in the skin of diabetic mice, with

E. faecalis being the most dominant group. (D) Low bac-

terial diversity was retrieved from the skin of healthy mice,

with the isolated strains belonging to only 3 identifiable

species, as well as an isolate of an unidentified species

recovered at day 10. Treatment with LFcinB did not affect

the cultured microbiome in our experimental conditions.

The graph represents mean ± SD of an experiment per-

formed with 4 mice (2 wounds/mouse) per treatment.

*p < 0.05.
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with the high dose (10.3 ± 1.9 cells/field). An increased number of M2
was likewise shown with the low dose (3.7 ± 0.56 cells/field, p < 0.05)
compared with the high LFcinB dose (3.1 ± 0.4 cells/field). While
there were clear anti-inflammatory effects of LFcinB treatment in
diabetic wounds, in the non-diabetic settings the M1/M2macrophage
ratio was increased 1.6-fold (5.2 ± 0.7 versus 3.3 ± 0. 7 cells/field, p <
0.05) between low and high LFcinB dosage, showing a pro-inflamma-
tory polarization of macrophages in non-diabetic wounds treated
with low-dose LFcinB (Figure 5K).

Furthermore, the TNF-a mRNA expression pattern observed in the
skin collected at days 0 and 10 post-wounding in both healthy and dia-
betic experimental groups corresponds to those already described in
the literature.4,25 At the baseline (day 0) the untreated skin from the
diabetic mice had a significantly increased level of TNF-a mRNA
(9.9 ± 0.4-fold) compared with non-diabetic mice (3.0 ± 1.9-fold,
p < 0.001) (Figure S3). Treatment with LFcinB in non-diabetic mice
markedly downregulated the TNF-a expression levels (0.006 ± 0.005
for low and 0.005 ± 0.001 for high concentration, p < 0.001) compared
with saline treatment (1.0 ± 0.7). For diabetic mice, LFcinB had no ef-
fect on themRNA levels of TNF-a (1.4± 1-fold, NS; 5.7± 5.6-fold, NS)
at either low or high LFcinB dose compared with the saline treatment.

Levels of ROS in diabetic wounds were significantly increased from
day 0 to day 10 independent of the treatment: saline (2.7 ± 0.6, p <
0.01), low LFcinB dose (2.7 ± 0.4, p < 0.01), and high LFcinB dose
(2.4 ± 0.6, p < 0.05) compared with day 0 (Figure 5J). ROS production
730 Molecular Therapy: Methods & Clinical Development Vol. 20 March
in wounds of healthy animals at day 10 was decreased by LFcinB low-
dose treatment (1.7 ± 0.7, p < 0.001) compared with saline (4.1 ± 0.8,
p < 0.001), but this was not the case with LFcinB high-dose treatment
(3.4 ± 0.7, NS). (Figure 5L).

LFcinB enhances angiogenesis and restores collagen structure

in the skin of diabetic mice

LFcinB significantly enhanced angiogenesis in wounds of diabetic
mice (Figure 6A), at both the lower dose (3.1 ± 1.0, p < 0.05) and
the higher dose (3.6 ± 0.6, p < 0.01), compared with saline (1.6 ±

0.3) (Figure 6E). While treatment with LFcinB increased angiogenesis
in diabetic wounds, it had no effect on non-diabetic wounds (Figures
6B and 6G). The average number of new blood vessels in healthy an-
imals was significantly decreased with the low-dose of LFcinB (1.1 ±
0.03, p < 0.05) compared with saline (1.8 ± 0.3), and no significant ef-
fect was shown for the higher dose (1.5 ± 0.4, NS) (Figure 6G).

The final phase of wound healing involves collagen remodeling,
providing the integrity and strength of the tissue and collagen fiber-
enriched scar.26 With the Masson’s trichrome stain (Figures 6C and
6D), collagen deposition and other skin structures like adipose tissue
and hair follicles were visualized in the wounded skin. The collagen
fibers were restored in both diabetic (3.0 ± 0.7, p < 0.05) and non-dia-
betic (3.8 ± 1.2, p < 0.05) animals treated with 12.5 mg/wound LFcinB
compared with saline-treated diabetic animals (1.7 ± 0.3) and healthy
controls (1.5 ± 0.8), while there was no effect of 25 mg/wound
LFcinB on collagen restoration for either the diabetic or healthy
2021



Figure 5. Immunofluorescence analysis of macrophage abundance and phenotype and production of reactive oxygen species (ROS) in diabetic and non-

diabetic mouse skin treated with LFcinB

Diabetic mice (left) or healthy non-diabetic mice (right) were treated either with saline or with a low (12.5 mg/wound) or high (25 mg/wound) dose of LFcinB for 10 days. (A andB)

Representative confocal microscopy images of CD68/TNF-a (M1 macrophages) and CD68/CD206 (M2 macrophages) positive stained cells in diabetic and healthy mouse

skin sections. (C and D) Representative images of ROS production in murine wound skin measured by dihydroethidium (DHE) staining in diabetic or healthy animals. (E–H)

The number of macrophages was quantified as the average number of CD68 positive cells co-stained with TNF-a for M1 and CD206 for M2 macrophages. (I and K) Pro-

inflammatory/anti-inflammatory phenotype evaluated as M1/M2 ratio for diabetic or healthy mice. (J and L) ROS were measured as integrated density gray value after

detection of the red signal of DHE staining in diabetic or healthy skin sections. Magnifications, 400� for CD68/TNF-a and CD68/CD206 and 200� for DHE. Scale bars,

100 mm for CD68/TNF-a and CD68/CD206 and 200 mm for DHE. The graph represents mean ± SD of an experiment (n = 4 animals per group), comparing the difference

between the saline and treatment groups or between treatment groups (*) and the comparison of saline to baseline (#).*,#p < 0.05, **p < 0.01, ***p < 0.001.
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mice (1.7 ± 0.4 and 1.5 ± 0.8, respectively) (Figures 6F and 6H).
Together, these findings are in concordance with the observed wound
healing effect (Figure 4) and the change to an anti-inflammatory
macrophage polarization in diabetic animals (Figure 5).

DISCUSSION
Current attempts to promote healing in chronic wounds are many,27

and antimicrobial treatments yield promising results.28 Beyond direct
Molecular
antimicrobial activity, antimicrobial peptides (AMPs) also induce
strong anti-inflammatory response to bacterial toxins like LPS (endo-
toxins) for Gram-negative or lipoproteins and for Gram-positive bac-
terial strains.29

Only a few studies have investigated the role of LFcinB in wound heal-
ing, and to the best of our knowledge no study has investigated its ef-
fects on keratinocyte migration. While LFcinB robustly increased
Therapy: Methods & Clinical Development Vol. 20 March 2021 731
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Figure 6. Topical treatment with LFcinB improves vascular network and collagen deposition in mouse wounds

Diabetic (left) and non-diabetic animals (right). (A and B) Angiogenesis was assayed as immunofluorescence of CD31-positive cells in skin sections after LFcinB treatment in

diabetic and non-diabetic mice. (C and D) Representative photomicrographs of theMasson trichrome staining of (C) diabetic and (D) non-diabetic mouse skin, harvested after

10 consecutive days of treatment with saline or LFcinB at 12.5 mg/wound or 25 mg/wound. (E and G) Quantification of CD31 staining showing the mean number of newly

formed blood vessels in (E) diabetic animals or (G) non-diabetic controls. (F and H) Collagen bundles were quantified and presented as themean signal and integrated density

gray values of blue channel in (F) diabetic and (H) healthy mice. Magnifications, 200� for CD31 and 100� for Masson’s trichrome staining. Scale bars, 200 mm for CD31 and

500 mm for Masson’s trichrome. The graphs represent mean ± SD of an experiment (n = 4 animals per group), indicating the difference between the saline and treatment

groups on day 10 (*) and the saline and peptide treatments in comparison to baseline (#). *p < 0.05, **p < 0.01.
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HaCaT cell migration, bLF had no effect (Figures 1A and 1B), as pre-
viously demonstrated.30 We did not observe an effect of LFcinB on
HaCaT cell proliferation (Figure S1). These data are concordant
with previous observations in cancer cells,31 and in an endothelial
cell line,32 showing that LFcinB does not affect proliferation in con-
centrations below 200 mg/mL. However, for proliferation conflicting
data have been reported: Some studies show effects,30,33 while others
do not.34,35 During wounding, there often is a loss of tissue, and there-
fore an increase of proliferation would help the close and re-form the
lost tissue. A previous study observed that hLF and LFcinB had
different uptake and distribution in eukaryotic cells. hLF was taken
into the cell by endocytosis, whereas LFcinB was freely distributed
in the cytoplasm without signs of endosomes.8 Interestingly, the
hLF was mainly found on the cell surface and some in the cytoplasm,
but captured in an endosome, which could explain the difference in
HaCaT migration. hLF and bLF are 69% homologous and share
many conserved regions and functions.36 It is therefore possible
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that the different migratory effects between bLF and LFcinB are
due to the different uptake and release inside the cells. In our studies,
we observed LFcinB to potently stimulate migration at a concentra-
tion of just 25 mg/mL with no associated cell toxicity.

Chronic wounds in patients with diabetes are described as stalled in a
persistent inflammatory condition stamped by increment of pro-in-
flammatory molecules. A variety of chemokines and cytokines de-
tected at the wound site upon injury are important chemoattractants
for leukocytes, although not all appear to have critical roles during
wound healing.37

Our findings show significant reduction in mRNA expression levels
for TNF-a, IL-6, and IL-8 in HaCaT cells upon 24 h treatment with
either LFcinB or bLF (Figure 1C). Previous studies indicate
that EGF treatment reduces the levels of pro-inflammatory cyto-
kines.38–40 TNF-a, a crucial cytokine for wound healing, during the
2021



www.moleculartherapy.org
first 24 h post-injury was found upregulated in chronic wounds41

along with IL-8.42 TNF-a secretion from PBMCs was found increased
in the presence of LPS. Moreover, upon co-stimulation with LFcinB
and LPS the TNF-a levels secreted from human primary PBMCs
were found to be significantly decreased compared with LPS-only
treated control (Figure 2A).

Analysis of chronic wound fluids found significantly elevated levels of
pro-inflammatory cytokines IL-1, IL-6, and TNF-a.43 Interestingly,
the levels of these cytokines are restored to basal levels during the later
phases of wound healing.43,44 These pro-inflammatory cytokines are
deregulated in diabetic patients.45 Reducing the levels of these mark-
edly expressed cytokines, like IL-6 and IL-8, is necessary for the
proper healing of wounds.46,47 Moreover, the strong reduction of
TNF-a could potentially mediate the inhibition of IL-8, as TNF-a
has been shown to upregulate IL-6, IL-8, and TNF-a itself.48

Decreased levels of MCP-1 play a role in modulating several processes
involved in wound healing, such as delayed re-epithelialization,
dysfunctional angiogenesis, and impaired collagen formation.49,50

Given the importance of monocytes/macrophages for their response
during early and late phases of healing under diabetic conditions,
increased levels of MCP-1 have been implicated in chronic wounds
by stimulating macrophage migration toward the wound site.37,50

LFcinB has previously been reported to bind LPS51,52 and other nega-
tively charged molecules.53 Here, we demonstrate that LFcinB could
not diminish LPS-induced levels of MCP-1 secreted from HaCaT
(Figure 1D) and PBMCs (Figure 2B). Conversely, LPS-stimulated hu-
man PBMCs released significantly higher levels of MCP-1 upon addi-
tion of LFcinB (Figure 2B).

In addition to in vitro experiments, we tested the effect of LFcinB
treatments using an ex vivo model of porcine ears and in vivo in
mice using a model of impaired wound healing, comparing the pep-
tide effects on healthy and diabetic animals.

The porcine skin model has been considered the best model for hu-
man skin because of its similarities,54 having similar anatomy and
composition,20 ease of transdermal drug delivery,55–57 and immune
cell responses.58 Additionally, pig skin resembles human skin, with
tightly connected skin layers, whereas rodents have loosely connected
skin. Pigs have similar host defense peptides such as LF and LFcinB,
but they also express peptides not found in humans.59,60 LFcinB pro-
moted epithelial closure in this ex vivo wound healing model of pri-
mary porcine keratinocytes, which was accompanied by subsequent
increase in epithelial cell proliferation from day 3 to day 5 (Figure 3C).
Thus, the ex vivomodel showed an increase in proliferation, whereas
the in vitro model did not (Figure S1). The reason behind these con-
tradictory results is not clear, and further investigation is necessary.
However, cationic peptides have previously been demonstrated to
enhance key growth factors that are crucial for healing.61

The streptozotocin-induced diabetic mouse has some advantages
with regard to chronic wound studies. These mouse wounds share
Molecular
fundamental similarities with wounds in diabetic patients. Diabetic
mouse wounds present reduced peripheral nerve function, blood
vessel numbers, granulation tissue formation, and collagen composi-
tion, making them a widely accepted in vivomodel for diabetic wound
healing.62,63 Moreover, previous findings that murine skin heals by
contraction whereas human skin heals by re-epithelialization, during
which keratinocytes populate the granulation tissue to close the
wound, have been revised, showing that mice heal by both contrac-
tion and re-epithelialization, making them valid models of human
wound healing.64 Upon in vivo topical treatments in our pre-clinical
model, it was evident that LFcinB improved wound healing only un-
der diabetic and not normoglycemic conditions. Such divergent ef-
fects of AMPs in diabetic wound healing have been observed before.65

This was further associated with modulation of bacterial diversity,
possibly toward a more commensal profile in diabetic but not healthy
animals (Figures 4A and 4B). A possible explanation for these appar-
ently contradictory effects on wound healing and bacterial diversity
could be the altered immune or inflammatory response observed in
diabetic mice, as AMPs often play immunomodulatory roles.

Culture-based methods are biased toward microorganisms that are
best adapted to laboratory settings and are only a representative snap-
shot of the total diabetic foot ulcer colonizers that often also include
diverse fastidious microorganisms, anaerobes, and fungal commu-
nities.66 Nevertheless, this approach allows the interpretation of
observed changes in the microbial community structure resulting
from the effect of a single antimicrobial agent. Considering that the
murine and human microbiomes are different in diversity and struc-
ture,67 and that colonization depends on particular environmental
factors, the results reported here represent only a fraction of the
mouse skin microbiome68 and are therefore not representative of
the human skin microbiome. However, our results clearly indicate
that the improved wound healing observed in the diabetic wounds
is accompanied by a decrease in the complexity and composition of
the bacterial species populating the wounds.

A higher diversity of bacterial strains was obtained from diabetic mice
compared with non-diabetic mice (Figures 4C and 4D). Cultivated
strains included species from the Firmicutes (Staphylococcus spp., Ba-
cillus spp.) and from Proteobacteria (Escherichia sp., Enterobacter
spp.) phyla, commonly present in the human skin environment. It
has been reported that diabetic patients have increased bacterial di-
versity, in which decreased Staphylococcus spp. levels are observed
compared with healthy controls.69

Treatment with LFcinB decreased strain diversity in the wounds at
both concentrations (Figure 4C). Of note, B. pumilus, often identified
in clinical isolates,70 was only identified in diabetic and not in non-
diabetic wound beds. In addition, this species completely disappeared
with the LFcinB treatment. LFcinB is a known AMP active against
various bacteria with MIC/minimal bactericidal concentration of
32/64 mg/mL and 16/32 mg/mL against E. coli and S. aureus, respec-
tively, and 6/16 mg/mL against B. subtilis.24 Notably, the relative
abundance of S. aureus levels seems to decrease after treatment
Therapy: Methods & Clinical Development Vol. 20 March 2021 733
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with both concentrations of LFcinB (day 5), an observation that
seemed to be more pronounced at day 10 for the lowest LFcinB con-
centration (Figure 4C). Concomitantly, LFcinB treatment led to an
increase of the relative levels of commensal S. xylosus (day 5) and
of S. epidermidis (day 10), which suggests that the apparent positive
effect of LFcinB in the multifactorial process of diabetic wound heal-
ing may also involve a combined antimicrobial effect toward the path-
ogenic species of Staphylococcus and a stimulating effect on the
commensal species. Although these remain to be experimentally veri-
fied, the hypothesis underlines that the microbiome of diabetic
wounds remains poorly understood, highlighting that additional
and more comprehensive studies in this unique ecosystem are
required.

AMPs possess antimicrobial and anti-toxin activity as well as immu-
nomodulatory features, which are often physiologically relevant.
AMPs may also facilitate pathogen eradication by modulating cellular
immune responses, such as downregulating the levels of pro-inflam-
matory cytokines, altering chemokine expression and ROS and reac-
tive nitrogen species, stimulating angiogenesis, improving wound
healing, and activating and/or differentiating skin immune cells.71

In our studies, LFcinB treatment affected most of these aspects of
wound healing.

Inflammatory cell infiltration, alongwith the proliferation offibroblasts
and endothelial cells, is a critical component of the healing process.72

Our histological evaluations showed improved structure of granulation
tissue in the dermis of diabetic mice at a higher rate than in the healthy
animals. Sections of wounded tissue at day 10 post-wounding showed
increased infiltration of macrophages/fibroblasts and edematous and
hemorrhagic spots in saline- and LFcinB-treated healthy animals. In
contrast, no edema, lower polymorphonuclear neutrophil density,
andhighermacrophage/fibroblast abundancewere observed in diabetic
animals treated with LFcinB compared with the saline diabetic group
andhealthy control animals (Figure S2).Wehaveobserved similarfind-
ings with significantly decreased TNF-a levels with LFcinB and LPS
secreted from PBMCs and increased secretion of MCP-1 triggered by
LPS stimulation, which may partially explain the reduced bacterial
load and better control of wound bed inflammatory status uponLFcinB
treatment.51–53

Wound healing deterioration by aberrant macrophage regulation is
one of the crucial pathologies associated with diabetic wounds.73 The
resolution of inflammation requiring the conversion from pro- to
anti-inflammatory state will thus delay the inflammatory phase if aber-
rantM1-to-M2macrophage shift occurs.74–76 Pro- and anti-inflamma-
tory phenotypes of highly abundant macrophages, recognized with
routine histological staining, were further distinguished with immuno-
labeling with specific antibodies. The improved diabetic wound healing
we have observed in our animal model with diabetic animals was
marked by a higher number of M2 over M1 macrophages (Figure 5).

High TNF-a levels were observed comparing the diabetic and healthy
animals at the baseline (Figure S3). The persistent chronic inflamma-
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tory environment within chronic wounds results in high oxidative
stress77,78 and low oxygen levels.79,80 High and sustained levels of
ROS have been detected in humans and have been described as the
permanent obstacle of cellular function and correct wound repair
in chronic, non-healing wounds.77,81 The full-length bLF is an anti-
oxidant82 and it was therefore relevant to assess the effect of LFcinB
on ROS levels in diabetic as well as non-diabetic wounds. Although
the downregulation of intracellular ROS levels by bLF has been docu-
mented in other studies,83 for LFcinB decreased ROS levels were only
observed with the low LFcinB dose (Figure 5); however, more studies
are needed to fully investigate this.

The decreased inflammatory environment following LFcinB treat-
ment of diabetic mouse wounds was accompanied by increased
angiogenesis and increased collagen deposition reflecting improved
progression through the phases of wound healing (Figure 6).
Numerous studies propose insufficient angiogenesis as an underlying
defect involved in the pathology of wound healing under diabetic con-
ditions.84–88 In the proliferative phase, angiogenesis and epithelializa-
tion are of particular importance.89,90

LFcinB has previously been demonstrated to inhibit growth factors,
such as vascular endothelial growth factor (VEGF), in vitro,27 poten-
tially explaining the positive effect on the ex vivo and diabetic wound
models.

The interaction with macrophages at the inflammation site restrains
the production of inflammatory cytokines,91 which further promotes
establishment of the environmental niche for neovascularization.85

Here, we report improved angiogenesis by treatment with LFcinB;
however, this proposed mechanism remains to be further
investigated.

A significant difference in the collagen density and organization in the
healing dermis was observed between diabetic and healthy animals
upon LFcinB treatment (Figure 6). Notably, the presence of thick,
well-organized collagen bundles in the diabetic group treated with
lower-dose LFcinB was comparable to the higher-dose and saline
groups and the effect of the peptide in healthy animals. These findings
illustrate that LFcinB can improve the density and deposition of
collagen structure in diabetic wound healing through reinforcing
the function of skin cells.

The exact mechanism behind the observed improvement of wound
healingmediated by LFcinB as observed in in vitro, ex vivo, and in vivo
models could in part be explained by its combined ability to enhance
migration and cell proliferation, to modulate the bacterial composi-
tion in the wound, and by its ability to diminish LPS- or wound-
induced pro-inflammatory cytokine expression as seen for TNF-a
both in vitro and in vivo. Although we propose a possible association
between the microbial-modulating and immunomodulatory proper-
ties of LFcinB, additional studies are needed in order to obtain further
knowledge on the molecular mechanisms underlying these
properties.
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MATERIALS AND METHODS
Peptides

bLF was purchased from Sigma (146897-68-9, USA), and LFcinB was
kindly received from Dr. Ron Marschke from the Center for Food
Technology (Australia). All peptides were dissolved in saline (sterile
H2O with 0.85% NaCl).
Migration and proliferation of HaCaT cells

Immortalized keratinocytes (HaCaT cells)92 were kindly donated
from Bispebjerg Hospital. The HaCaT cell line was maintained in
DMEM with 25 mM glucose, containing GlutaMAX (31966-021,
Thermo Fisher, USA), 10% FBS (10270, Gibco, USA), and 100
units/mL penicillin and streptomycin (P0781, Sigma-Aldrich,
USA). The cells were cultured in T75 flasks, and sub-cultured twice
weekly. The migration assay was performed exactly as described pre-
viously.93 Briefly, 7.5 � 104 cells were transferred to a 48-well plate
and allowed to adhere overnight at 37�C in a 5% CO2 incubator.
The cells were mitomycin C (3258, Tocris, UK) (10 mg/mL) treated
to inhibit proliferation for 2 h as previously demonstrated.94 Scratches
were made with a 200 mL pipette tip in PBS. LFcinB and EGF (Sigma-
Aldrich) were diluted in DMEM to final concentrations of 25 mg/mL
and 100 ng/mL, respectively. Migration of the cells was monitored
with an automated optical camera (oCelloScope, BioSense,
Denmark), at 37�C and 5% CO2. The oCelloScope was set to follow
wells for 48 h and acquire images every 12th hour. The migratory ef-
fects were calculated as a percentage of the gap closure. Proliferation
was likewise performed in a 48-well plate with 1� 104 cells/well (10%
confluence). After adhesion, the same treatments were administered,
the plate was incubated in the oCelloScope, and cell growth wasmoni-
tored. Proliferative effects were calculated as a percentage of increased
amount of HaCaT cells compared to the initial number of cells.
Quantitative RT-PCR for detection of gene expression

HaCaT cells were harvested with TRI Reagent (Sigma-Aldrich), and
RNA was isolated, followed by clean-up (RNeasy Plus Mini Kit,
74104, QIAGEN, USA) and cDNA synthesis (High-Capacity cDNA
Reverse Transcription Kit, 4368814, Applied Biosystems, USA) as
previously described.95 Quantitative PCR (qPCR) was performed
with the QuantiTect SYBR PCR Kit (204141, QIAGEN, USA) accord-
ing to the protocol of the manufacturer with a Stratagene MX3005P
(Agilent). The data were normalized to the reference gene RPLP0, a
ribosomal gene shown to be stable in most tissues.96 Relative gene
expression was obtained according to theDDCTmethod97. Primer ol-
igonucleotides have been described previously.95
Isolation of PBMCs and enzyme-linked immunosorbent assay

(ELISA)

PBMCs were isolated from healthy donors with Ficoll-Paque PLUS
(GE Healthcare, USA). After isolation, 5 � 105 cells were transferred
to a 48-well plate and kept in Roswell Park Memorial Institute
(RPMI)-1640 medium containing 10% FBS and 100 units/mL
penicillin and streptomycin. PBMCs were treated with LFcinB at
25 mg/mL with or without LPS stimulation (from Pseudomonas aeru-
Molecular
ginosa, PA01) at 10, 50, or 100 ng/mL for 24 h. The media supernatant
was collected after centrifugation for 3 min at 300 � g. The levels of
TNF-a (88-7346-76) and MCP-1 (88-7399-76) were measured with
an ELISA according to the protocol provided by the manufacturer
(Invitrogen, USA). The secreted levels of TNF-a and MCP-1 were
quantified on a spectrophotometer at 570 nm, and the background
(450 nm) was subtracted. The data were normalized to cells treated
with media only.

Ex vivo porcine skin wound healing model

Porcine ears, donated by the Roskilde slaughterhouse (Denmark),
were collected from freshly slaughtered pigs. The ears were immedi-
ately stored on ice and thoroughly washed before use. Wounding of
the skin was made as previously described.98 Briefly, a 4 mm punch
biopsy tool, a tweezer, and a scalpel were used for wounding. The
wounded skin biopsies were cut to 1 cm2 pieces, washed in 70%
ethanol as previously described,99 and transferred to sterile gauze in
12-well plates. The samples were stored in 1 mL of DMEM medium,
containing 10% FBS and 100 units/mL penicillin and streptomycin,
and treated with LFcinB at 25 mg/mL for 5 days post-wounding.
For controls, regular media or free aa in the samemole ratio as LFcinB
were used. The skin biopsies were washed twice daily in PBS before
new treatments were added.

In vivo wound healing on diabetic and non-diabetic mice

Male C57BL/6 mice (25–30 g) (Charles River Corporation, Spain)
were housed under a 12 h day/night cycle with water and commercial
pellet food ad libitum. The experiment was approved by the Institu-
tional and Governmental Research Ethical Board and was in accor-
dance with European Community law for Experimental Animal
Studies (86/609/CEE and 2007/526/CE).

Diabetic and healthy non-diabetic mice were used, where diabetes was
induced 6 weeks prior to the wounding with 50 mg/kg streptozotocin
(Sigma-Aldrich, USA) injected intraperitoneally for 5 consecutive days
as previously described.74 Mice with glucose levels >250 mg/dL were
considered diabetic.100 Three days pre-wounding, mice were separated
into individual cages. Subcutaneous analgesics were given (0.1 mg/kg
buprenorphine) before wounding and every 6–8 h up to 48 h after
wounding. The mice were anesthetized with 2.5% isoflurane combined
with oxygen (0.5 L/min). Dorsal hair was removed, skin was sterilized
with Betadine, and two full-thickness wounds were made with a 6 mm
punch biopsy tool. The mice were separated into three treatment
groups: low (12.5 mg/wound) and high (25 mg/wound) LFcinB doses
and saline. The doses were chosen according to the MIC of LFcinB
and previous wound healing studies with cationic AMPs.24,101 The
wounds were treated topically over 10 consecutive days; twice the first
2 days and then once daily. Wound size was monitored daily and is
given as percentage of closure compared to day 0. At day 10 mice
were sacrificed, and skin samples were harvested for analysis.

Identification of bacterial strains in murine wounds

The recovery of bacteria from skin/wounds of animals was performed
with swabs (Sarstedt) at day 0 (intact skin, before the mice were
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shaved) and at days 5 and 10 post-wounding, before treatments. To
maximize bacterial recovery the swabs were incubated in 1 mL of
brain heart infusion broth (Becton Dickinson) with gentle agitation
(120 rpm) for 3 h at 37�C. From the inoculates, 100 mL was plated
on nonselective lysogeny broth (LB), chocolate agar (BD, blood
agar No. 2 Base) for fastidious bacteria and on mannitol salt agar
(MSA) plates for selective recovery of Staphylococcus spp. Colonies
of different morphology (size, color, or texture) were isolated, the pu-
rity of cultures was examined, and they were stored in 15% glycerol at
�80�C. Identification of bacterial species was performed by MALDI-
TOF mass spectrometry (Bruker) analysis with a single colony, no
older than 24 h, overlaid with Galaxy HCCA matrix (Bruker). Sam-
ples with a value of 1.70 or above were accepted.102 Unidentified sam-
ples were re-run overlaid with a combination of 70% formic acid and
Galaxy HCCAmatrix to break themembrane and increase ionization.

Immunohistochemistry and histology of porcine andmurine skin

Porcine skin was fixated in 4% paraformaldehyde (PFA) for histolog-
ical analysis at days 0, 1, 3, and 5, paraffin embedded, and cut in 3 mm
sections. Sections were stained for re-epithelialization and the num-
ber of proliferating cells with Ki67 antibody (1:800, Abcam, UK).
Re-epithelialization was calculated as the percentage of epithelium
covering the wound bed, whereas proliferation was calculated as the
number of Ki67-positive cells per area of the epithelial layer.

Themurine skin sections were preserved in cryoprotectant and fixed in
buffered formalin and were cut in 10 mm (immunofluorescence)/5 mm
(histology) sections. Immunohistochemical analysis was done as previ-
ously described103 to estimate the polarization direction of the macro-
phages and to measure the rate of angiogenesis following the wound-
ing. Rabbit polyclonal anti-CD68 (ab955, Abcam, UK), rabbit
polyclonal anti-TNF-a (PA5-19810, Thermo Scientific, USA), rat
monoclonal anti-CD206 (MR5D3) (sc-58987, Santa Cruz, USA), and
rat monoclonal anti-CD31 (PECAM-1) (CBL1337, Merck Millipore,
Germany) antibodies were diluted 1:100 in 2%BSA and 1% goat serum
(Novex, Life Technologies, USA) in PBS. Anti-rat (conjugated to Alexa
Fluor 568, Invitrogen) and anti-rabbit (Alexa Fluor 468 conjugated, In-
vitrogen) antibodies were diluted 1:500 in 5%BSA and 5%normal goat
serum in PBS, with 0.1 volume % Triton X-100 (pH 7.4). The skin sec-
tions were fixed in ice-cold acetone for 10 min and blocked with 5%
BSA for 30 min. For the primary antibody, the samples were incubated
at 4�C overnight, washed in PBS, and incubated with secondary anti-
body and with nuclear counterstain (DAPI) (Sigma-Aldrich). Positive
staining was indicated as intense red (TNF-a, CD31, CD206) or bright
green (CD68) positive colored cells or vessel branches. Fluorescent im-
ages were obtained with a confocal microscope (Zeiss LSM 510 Meta),
using 200� and 400� magnifications. The number of cells (n = 3 se-
lections/6 pictures/sample) or vessels (n = 5 images/sample) expressing
fluorescent signal was quantified as average number per field with Fiji
software and normalized to average number of cells/vessels in biopsies
at the baseline as previously reported.74

Hematoxylin and eosin (H&E) (Merck Millipore, Germany) and a
Masson-Goldner trichrome staining kit (Carl Roth, Germany) were
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used for staining of murine skin as previously described104 and
were performed using 5 mm paraffin sections, according to the in-
structions of the manufacturer. The sections were imaged with a
transmission microscope (Karl Zeiss Axio Observer Z1) at 100�
and 200�magnification. Collagen density was measured as the inten-
sity of the blue color channel, which represents the collagen, using co-
lor deconvolution in Fiji software and comparing the collagen inten-
sity under the wound area to normal dermis at 100�magnification, as
previously described105.

Dihydroethidium assay for ROS detection

Cryopreserved skin sections (30 mm) were incubated with 10 mM di-
hydroethidium (DHE) (Invitrogen, USA) in a humidified dark cham-
ber at 37�C for 30 min, followed by fixation with 4% buffered PFA for
5 min at room temperature and counterstaining with DAPI. Fluores-
cent images were acquired with a confocal microscope (Zeiss LSM
510 Meta) using 200� magnification (6 pictures/3 random square
fields per picture for each sample). Densitometry analysis was done
with Fiji software, and the DHE signal was presented as the integrated
density gray mean values. Data were normalized to average integrated
density values in biopsies at the baseline.

Data analysis and statistics

Statistical analyses of difference between the groups were performed
with one-way ANOVA with Tukey’s post hoc test or two-way
ANOVA using Tukey’s or Sidak’s multiple comparisons tests, as
appropriate. GraphPad Prism 8 was used to evaluate statistical signif-
icance. The results are expressed as means ± SD, and p <0.05 was
considered statistically significant.
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Supplementary Table 1: List of primer sequences and annealing temperatures 

Primers Sequence (5’→3’) Annealing 

temperature 

RPLP0 

forward 

GCTTCCTGGAGGGTGTCC 52°C 

RPLP0 reverse GGACTCGTTTGTACCCGTTG 52°C 

IL-6 forward TACATCCTCGACGGCATCTC 60°C 

IL-6 reverse ACCAGGCAAGTCTCCTCATTG 60°C 

IL-8 forward CACCGGAAGGAACCATCTCA 60°C 

IL-8 reverse TTGGGGTGGAAAGGTTTGGAG 60°C 

TNFα forward TTCCTGATCGTGGCAGGC 60°C 

TNFα reverse GAGCTGCCCCTCAGCTTG 60°C 

 

  



 

Supplementary Figure 1. Lactoferricin (LFcinB) and bovine lactoferrin (bLF) effect on HaCaT cell 

proliferation in vitro. The proliferation potential of LFcinB and bLF at 25 µg/ml were evaluated on 

the oCelloScope which was set to record the proliferation for 48 hours. Images acquired every 12th 

hour were used to quantify the proliferation rate. Epidermal growth factor (EGF), mitomycin C and 

DMEM were used as the positive and negative controls. * = p<0.05.  



 

Supplementary Figure 2. Inflammatory response and tissue regeneration after dermal treatments with 

LFcinB. A) Representative photomicrographs of skin wound biopsies from diabetic animals 

following the treatment with saline and LFcinB, stained with standard hematoxylin and eosin. 

 B) Representative photomicrographs of skin wound biopsies from non-diabetic animals following 

the treatment with saline and LFcinB, stained with standard hematoxylin and eosin. a) Influx of 



immune cells (fibroblasts and macrophages) b) Granulation tissue c) Blood vessels d) Inflammatory 

infiltrate e) Infiltrate enriched in neutrophils due to acute inflammation f) Hemorrhagic spots in the 

dermal area g) Visible granulation tissue and less inflammation.  

Magnifications=50× and 200× for boxed areas. Scale bars=1000 µm and 200 µm for boxed areas. 

Black arrows indicate the morphological changes (n=4 animals per group). 

  



 

 

Supplementary Figure 3. LFcinB alters mRNA cytokine levels in diabetic and healthy mouse skin 

wounds. The pro-inflammatory cytokine tumor necrosis α (TNFα) mRNA levels were measured by 

qPCR in skin wounds collected from diabetic and healthy mice. Skin wounds from three treatments 

groups: Low and high dose bovine lactoferricin (12.5 and 25 μg/wound) or saline were harvested 

before the wounding d (0) and 10 days post-wounding d (10). *** = p<0.001. 
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