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The statistical analysis

Choice models assume that individuals make choices that maximise the utility to
them of the choice made.

Initially we fitted a model in which we assumed that the contribution to the utility
of a given level of a given attribute was the same for all respondents; that is, we
assumed homogeneity across individuals. Thus the utility derived by individual α
from choosing alternative i in choice sets c is given by

Uiαc = βxiαc + εiαc, i = 1, 2; α = 1, . . . , N ; c = 1, . . . , 98,

where xiαc is the vector of attribute levels for option i in choice set c, β is the common
vector of utility weights and εiαc is the idiosyncratic error which we assumed to be
distributed iid extreme value. With this notation, the probability that option 1 is
chosen is

P (option 1 is chosen) = P (U1αc > U2αc).

With our assumptions it can be shown (eg, Train (2009)) that

P (option 1 is chosen) =
exp(βx1αc)

(exp(βx1αc) + exp(βxiαc))
.

We considered two extensions of the multinomial logit model to allow for preference
heterogeneity - the mixed logit (MIXL) model and a latent class model.

In the MIXL model the utility is given by

Uiαc = (β + ηα)xiαc + εiαc, i = 1, 2; α = 1, . . . , N ; c = 1, . . . , 98,

where β is the population mean attribute utility weights and ηα is the vector of indi-
vidual specific deviations from the mean. We assumed that the ηαwere multivariate
normal with mean 0 and with covariance matrix Σ. We fitted two MIXL models - one
in which we assumed that the entries in ηα were independent (and so all off-diagonal
entries in Σ were 0) and one in which this assumption was relaxed.

We used the latent class model to investigate a discrete distribution for preference
heterogeneity. In this model each respondent is assumed to belong to one of Q latent
classes, where preferences differ between classes but are assumed to be homogeneous
within classes. The possible values for β are βq, q = 1, . . . , Q, and β = βq with
probability ωq where Σqωq = 1 and ωq > 0 ∀q.
For the model with Q = 3 classes, for instance, looking at Figure 2, we see that people
in both classes 1 and 2 feel that, all else being equal, someone with a prognosis of
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5% has a lower utility than someone with a prognosis of 50%. But in class 1 the
probability of that person being chosen is e−7.58/(1 + e−7.58) = 0.0005 whereas in
class 2 it is e−2.88/(1 + e−2.88) = 0.05.

The Bayesian Information Criterion for each of the models we fitted is given in the
table below.

Model BIC
MNL 5433.6
MIXL (uncor) 5344.4
MIXL (corr) 5603.3
LC, Q = 2 5131.8
LC, Q = 3 5096.2
LC, Q = 4 5229.4

Analysis of the follow-up questions

When asked how they decide which patient was the better recipient, 130 respondents
said that they considered all features of each patient, 121 said that they considered
those features which differed, 42 only considered features which were most important
to them and 13 used some other strategy. There was no significant difference between
the three classes.

The majority of respondents (230/306) agreed or strongly agreed that it was easy to
distinguish between the patients while 28 disagreed or strongly disagreed that it was.
There was no significant difference between the three classes.

A small majority of respondents (161/306) agreed or strongly agreed that they could
easily choose between the patients, while 81 disagreed or strongly disagreed that
they could. The observed chi-squared value is 52.6 on 2 degrees of freedom and
so significantly more people found it easy to choose than did not. There was no
significant difference between the three classes.

Random allocation of beds

The randomisation rate was significantly different by class. To establish this, we con-
structed a three-way contingency table with factors class (with three levels), prognosis
(with two levels, equal and not equal) and random allocation (with two levels, yes and
no). We fitted a model in which class, prognosis and random allocation are mutually
independent and one in which class and randomisation were dependent given the
prognosis. This was a significant improvement on the model of mutual independence
(p value less than 0.000001; AIC 107.72 cf AIC 510.08).
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