
Tunçgenç et al. Supplement 

 

1 

 
Computerised Assessment of Motor Imitation As a Scalable Method 

for Distinguishing Children With Autism 
 

Supplementary Information 
 
 
This PDF file includes: 
 
Supplementary Information Text 

Participants………………………………………………...………...…........ 2 
Procedure……………………………………………………………….…… 2 
Data Processing and Extraction ………………………………………........ 3 
Human Observation Coding (HOC) Scheme.……………………………...3 
Computerised Assessment of Motor Imitation (CAMI) Algorithm …..… 5 
Results ………………………………….………..……….…...........….….… 9 
Supplementary References .......................................................................... 16 

Figures S1 to S8 
Tables S1 to S3 
Equations 1 to 11 
  



Tunçgenç et al. Supplement 

 

2 

Supplementary Information Text 

Participants 

A thorough set of inclusion and exclusion criteria were applied for children in 
the ASC group. All clinical assessments, including those for autism diagnosis, were 
conducted by trained psychology associates, and the assessments were supervised and 
verified by a child neurologist (senior author S.H.M.). Participants were screened to 
exclude individuals with co-occurring neurological or medical conditions that might 
confound the results including (i) known genetic disorder (e.g., NF1, tuberous 
sclerosis), acquired neurologic disease (e.g., stroke, tumour), cerebral palsy, history of 
severe head injury, intracranial pathology or significant dysmorphology, (ii) history of 
seizures or confirmed diagnosis of epilepsy, (iii) any progressive (e.g., 
neurodegenerative) neurological disorder, (iv) history of head injury resulting in 
prolonged loss of consciousness, (v) active psychosis, major depression, bipolar 
disorder, conduct disorder, or adjustment disorder. Presence and history of psychiatric 
diagnoses were assessed using a comprehensive standardised parent interview, the 
Kiddie Schedule for Affective Disorders and Schizophrenia for School-Aged Children 
– Lifetime Version (KSADS). Children with co-occurring anxiety and attention deficit 
hyperactivity disorder (ADHD) were included due to high rates of co-occurrence of 
these disorders in autism. Children on stimulant medication had the medication held on 
the day before and on the day of testing. 

Children were included in the TD group if they: (1) did not meet published cut-
off criteria for autism spectrum disorders on the Social Responsiveness Scale (SRS-2), 
(2) did not have a history of ADHD, developmental disorder, or a psychiatric disorder 
based on maternal and child responses from the KSADS, and (3) did not have any 
immediate family members (sibling, parent) with ASC. 

Procedure 
The study took place in a room equipped with two Kinect Xbox cameras and a 

large TV screen (see Figure S1 for a schematic of the room and the video stimuli). The 
data presented in this paper was collected as part of a larger study examining motor 
imitation skills in ASC. As part of this larger study, some of the children were recorded 
using the Vicon Motion Capture Systems in addition to Kinect Xbox. As such, those 
children, such as the one shown in Figure S1, wore some sensors strapped around their 
arms, legs, waist and hips. The Vicon data were not analysed for the current paper. The 
Kinect data reported in this paper did not require children to wear any special clothing 
or sensors. 

The entire task, only a part of which is reported in this paper, comprised of 14 
movement trials that used three different movement sequences. One of these sequences 
was presented only twice (sequence-1): once at the beginning and once at the end of 
the session (Trials 1a and 1b in the paper). The other two sequences were presented at 
varying speeds across 12 trials, starting with 100% and then gradually slowing down 
before finishing at 100% speed again. To avoid potential confound of different speeds, 
in the paper, we reported only the very first trial that the children performed at 100% 
speed (sequence-2, Trial 2a in the paper) and its post-training repetition at 100% speed 
(sequence-2, Trial 2b in the paper). The whole procedure took around 40 minutes 
including set-up, task instructions and breaks to avoid fatigue. 
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Figure S1. Schematic of the study room (left) and a screen shot of the stimuli showing the 
model performing a move (right). 

Data Processing and Extraction 
The motion tracking data collected through the Kinect Xbox depth cameras was 

subjected to several processing steps before the x-y-z coordinates of the joints for each 
time frame were extracted. 

During testing, each trial’s data were saved as two separate motion files, one from 
the front camera and one from the rear camera. These two files were merged using iPi 
Recorder versions 3 and 4 with a calibration file that was recorded on day of testing. 
The merged files were then processed using iPi MoCap Studio software versions 3 and 
4. This processing entailed imposing a skeleton onto the depth data of the child obtained 
through the Kinect Xbox cameras throughout the whole movement sequence using the 
“Track” feature of the software. The skeleton was set to be the same height as the child, 
as measured on day of testing. However, due to problems with this automated tracking 
(i.e., the skeleton still not aligning with the depth data in the tracked version), all videos 
were reviewed by at least two coders who used a combination of manual editing and 
the automated tracking feature of the software. 

The following settings were enabled on the iPi Motion Capture software before 
tracking: Head tracking, Foot tracking, Ground collisions, Shoulder: calculated from 
arm position, Spine: stiff lower spine, Tracking resolution: high, Trajectory filter: 1. 

After the depth data was ensured to align with the skeleton for the entirety of the 
movement sequence, the motion data was exported using the Biomech add-on of the 
iPi MoCap Studio software. The x-y-z coordinates of data from the following 20 joints 
were exported: Hip, LowerSpine, MiddleSpine, Chest, Neck, Head, RClavicle, 
RShoulder, RForearm, RHand, LClavicle, LShoulder, LForearm, LHand, RThigh, 
RShin, RFoot, LThigh, LShin and LFoot. Considering issues with unreliability of the 
software in tracking the extremities and body parts intersecting with the ground, we 
excluded the joints LToe, EffectorLToe, RToe and EffectorRToe. Further, due to the 
negligible informativeness of the eye or the effector head, we excluded the joints LEye, 
REye and EffectorHead. The coordinate system was set to: “Relative to center of mass” 
and the coordinates were taken in “Centimeter” units. 

Human Observation Coding (HOC) Scheme 
Each movement sequence was split into distinct movement types. Sequence-1 

had 14 movement types, and sequence-2 had 18 movement types. Each movement type 
was defined as a coherent movement unit, which could involve simultaneous movement 
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of different limbs and repetitions of a pattern. See Figure S2 for an example of a 
movement type. In sequence-1, the number of elements that made up a movement type, 
which can also be considered as that movement type’s length, varied between 5 and 29, 
with an average of 12.00 (SD = 7.48) elements. For sequence-2, the number of elements 
ranged between 2 and 19, with an average of 12.57 (SD = 5.45) elements. 

 

Figure S2. Snippet from the HOC scheme, depicting one movement type from sequence-1. The 
scoring is for illustrative purposes only. In this example, the total score obtained 
from this movement type would be equal to 4, which would then be normalised by 
the maximum possible score, yielding a score of 0.4. 

Each element of a movement type was given a score of 1 or 0 depending on 
whether it was completed or not, respectively. In addition, for each element that was 
performed on the reverse side of the body (e.g., using right leg instead of left leg), a 
score of 0.5 was deducted. Finally, some movement types were comprised of repetitions 
of an action pattern. For instance, the example in Figure S5 has two repetitions of an 
action pattern because elements 1-5 are repeated on the reverse side of the body in 
elements 6-10. If the children performed more repetitions than what was demonstrated, 
a score of 1 was deducted; this deduction was made only once per movement type. 

Children’s total HOC score was a combination of their score of the positive 
items (𝑠𝑝𝑜𝑠) and the negative items (𝑠௡௘௚). 𝑠𝑝𝑜𝑠 was comprised of scores given to 
completed elements, which could be either a 1 (completed) or 0 (not completed).  𝑠௡௘௚ 
was comprised of scores given to incorrectly performed elements (i.e., “reverse side” 
and “repetition” items), which took values of 0 (not performed on the reverse side or 
repeated more than demonstrated), -0.5 (performed, but on the reverse side) or -1 
(performed, but repeated for more times than demonstrated). A child’s HOC score for 
a given movement type was the summation of 𝑠௣௢௦ and 𝑠௡௘௚, divided by the maximum 
possible score a child could obtain from that movement type. The normalisation was 
done due to the large variance in the length of movement types. Total HOC scores were 
equal to the average of scores calculated per movement type (𝑀). If the movement types 

had 𝑘௠ elements each, where (𝑚 ൌ ሼ1,2, … ,𝑀ሽ), scm corresponded to child c’s score 
in movement type 𝑚. A child c’s total HOC score (𝐻𝑂𝐶௖) was calculated by averaging 
this child’s normalised movement type scores. Note that repetition items were not 
considered as elements of a movement type and hence were not counted towards the 
variable 𝑘௠. The equation used to calculate the children’s overall HOC score was as 
follows: 
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1
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෍ 𝑠௖௠

ெ

௠ୀଵ

ൌ
1
𝑀
෍

𝑠௣௢௦௖௠ ൅  𝑠௡௘௚௖௠ 

𝑘௠

ெ

௠ୀଵ

 (eq.1) 

Computerised Assessment of Motor Imitation (CAMI) Algorithm 

Problem formulation 
Let 𝑋஺  ∈ ℜ௄ൈ்ಲ be the matrix that contains 3D positions of 𝐽 joints (𝐾 ൌ 3𝐽ሻ 

of a model performing a dance-like sequence for 𝑇஺ time steps. The sequence performed 
by the model is composed of 𝑀 consecutive movement types, such that movement type 
𝑚 is performed in a known interval 𝛺௠ ⊆ ሾ1,2, . . . ,𝑇஺ሿ. The subsets 𝛺௠with 𝑚 ൌ
ሼ1, . . . ,𝑀ሽ form a partition of the interval 𝛺 ൌ ሾ1,2, . . . ,𝑇஺ሿ. 

Let 𝑋௖ ∈ ℜ௄ൈ ೎்  be the matrix that contains 3D positions of 𝐽 joints (𝐾 ൌ 3𝐽ሻ of 
child 𝑐 imitating the movements of the model for 𝑇௖ time steps. The dataset Ɗ ൌ
ሼ𝑋௖ሽ௖ୀଵ

ே  contains imitation instances from 𝑁 children. 

We considered the problem of assigning a score 0 ൑ 𝑠௖ ൑ 1 to each 𝑋௖ ∈ Ɗ, 
such that it reflects the quality of this child’s imitation. In particular, we aim to find a 
function 𝑓ሺ𝑋஺,𝑋஼ሻ ൌ 𝑠௖ that accurately and automatically assesses how well child 𝑐 
imitated the model. 

To achieve this goal, we designed a process that was divided in three steps: (1) 
pre-processing, (2) feature extraction, and (3) score computation. In the following, we 
provide a step-by-step guideline to enable the replication of our method which was 
implemented using Matlab softare version 2018a. 

1. Pre-processing 
As emphasised in previous works [1] [2], pre-processing of skeleton data is a 

fundamental step to perform any type of body motion analysis. When comparing two 
sequences, pre-processing must account for at least (i) differences in the position of the 
subjects in space, (ii) differences in body size, and (iii) differences in the spatial 
orientation of the subjects. 

To account for differences in the position of the subjects in space, we consider 
each participant’s point of reference to be their own hip for every time step. To this 
end, the position of the hip was subtracted from the position of every other joint at every 
time step.  

Since the body size and limb length of adults and children is expected to be 
different, it is important to map the model’s and the children’s data to a skeleton of a 
fixed size. The skeleton diagram used for this is shown in Figure S3; the dimensions of 
the depicted skeleton were defined by the average length of the model’s body segments 
across time steps. Given this skeleton as a reference and using the hip joint as the root, 
we applied the skeleton normalisation algorithm proposed in [3]. 
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Figure S3. Representation of the skeleton. Diagram of the localisation and connections of the 
20 joints used (left) and a tree-like representation of the same joints used to 
perform breadth-first search for the skeleton normalisation algorithm (right). 

Next, we corrected for differences in the initial spatial orientation of the child. 
A difference in the initial orientation of the child with respect to the initial orientation 
of the model could stem from the fact that the children were allowed to move in a wide, 
unrestricted space. Hence, if uncorrected, even a small difference in initial orientation 
could unduly affect the children’s imitation performance measure in subsequent time 
frames. To prevent this type of artefact, we aligned the orientation of the child and the 
model based on information from their initial position. Given that the the main variation 
between the model’s and the child’s poses was expected to be a rotation around the 
vertical axis, the vector between one’s left and right shoulders, which is orthogonal to 
the vertical axis, is considered to be representative of spatial orientation. This 
orientation correction was made only based on the first frame, because changes in 
children’s spatial orientation during the imitation task were considered as a sign of poor 
imitation performance. 

Let 𝑣௖ be the vector that describes the difference between left and right 
shoulders’ positions of child 𝑐 in the first frame, and 𝑣஺ be the equivalent for the model. 
The angle 𝜃௖ between both vectors was obtained by 

𝜃௖ ≡  𝑐𝑜𝑠ିଵ ൬
ழ௩೎ ,௩ಲவ

ห|௩೎|หమห|௩ಲ|หమ
൰, (eq.2) 

where ൏∙ ,∙൐ denotes dot product and ห|∙|ห
ଶ
 corresponds to the Euclidean norm of 

vectors. The rotation matrix 𝑅ሺ𝜃௖ሻ is defined by 
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𝑅ሺ𝜃௖ሻ ൌ ൥
cos ሺ𝜃௖ሻ 0 െsin ሺ𝜃௖ሻ

0 1 0
sin ሺ𝜃௖ሻ 0 cos ሺ𝜃௖ሻ

൩. (eq.3) 

Let 𝑥௖
௝ሺ𝑡ሻ be the vector that represents the hip-referenced and size-normalised position 

of joint 𝑗 of child 𝑐 in time step 𝑡. Then, for each time step and joint, the new coordinates 
are obtained by 

𝑥ො௖
௝  
ሺ𝑡ሻ ൌ 𝑥௖

௝ሺ𝑡ሻ ⋅ 𝑅ሺ𝜃௖ሻ, (eq.4) 

where ⋅ denotes matrix multiplication. All pre-processed joints’ positions of a child for 
a given time step,  𝑥ො௖

௝ሺ𝑡ሻ ∈ ℜଷ for 𝑗 ൌ 1,2, . . . , 𝐽, are concatenated to form a single 
vector 𝑥ො௖ሺ𝑡ሻ ∈ ℜଷ௃ ൌ ℜ௄. Finally, the column vectors 𝑥ො௖ሺ𝑡ሻ for 𝑡 ൌ 1,2, . . . ,𝑇௖ are 
stacked together to obtain the matrix 𝑋௖ ∈ ℜ௄ൈ ೎் that contains the pre-processed joints’ 
positions of child 𝑐. The same process is followed in order to obtain the pre-processed 
joints’ positions of the model 𝑋஺ ∈ ℜ௄ൈ்ಲ . 

2. Feature extraction 
Unlike other comparative tasks, imitation must consider not only the shape of 

the movements performed, but also their timing relative to the model’s movements [4] 
[5]. We aimed to capture both shape and timing differences by extracting three features 
based on dynamic time warping (DTW): one related to the spatial distance between the 
child’s positions and the model’s positions, and two others related to the timing 
differences between the child’s and the model’s sequence of movements. 

Firstly, we compute DTW to find the optimal alignment path 𝜑∗ሺ𝑋௖ ,𝑋஺ሻ that 
minimises the Euclidean distance between the child’s movements 𝑋௖  and the model’s 
movements 𝑋஺ (details on the constraints and solvers of this optimisation problem can 
be found in [6]):  

𝜑∗ሺ𝑋௖ ,𝑋஺ሻ ൌ argmin
ఝሺ௑೎,௑ಲሻ

    ෍ || 𝑥ො௖ሺ𝑛௖ሻ െ   𝑥ො஺ሺ𝑛஺ሻ||ଶ.
ሺ௡೎,௡ಲሻ∈ఝሺ௑೎,௑ಲሻ

  (eq.5) 

The distance minimised above considers each joint and each time step as equally 
important. This is problematic for our purposes of assessing imitation in a sequence of 
naturalistic movements because (1) some joints are more relevant than others for a 
given movement type, and (2) each movement type should contribute equally to the 
overall score regardless of the length of that particular movement type. To achieve this, 
we define the distance between 𝑋௖ and 𝑋஺ as: 

𝑑 ሺ𝑋௖ ,𝑋஺ሻ ൌ
  1  
𝑀

෍
1

|𝜑௠|
  ෍ ෍  

   𝛼௝௠  

√3
 ฮ𝑥ො௖

௝ሺ𝑛௖ሻ  െ 𝑥ො஺
௝ሺ𝑛஺ሻฮଶ  

௃

௝ୀଵሺ௡೎,௡ಲሻ∈ ఝ೘

,

ெ

௠ୀଵ

 (eq.6) 

where 𝜑௠ ≡ ൛ ൫𝑛௖,𝑛஺൯ ∈  𝜑∗ሺ𝑋௖ ,𝑋஺ሻ 𝑠. 𝑡.  𝑛஺  ∈  𝛺௠ൟ corresponds to the subset of the 
optimal alignment path that corresponds to movement type 𝑚; 𝛺௠ is the set containing 
the time steps in which the model performs movement type 𝑚;  𝜑∗ሺ𝑋௖ ,𝑋஺ሻ is the 
optimal temporal alignment path as defined in (eq. 5); |𝜑௠| is the cardinality of the set; 
𝛼௝௠ is a scalar that represents the relevance of joint 𝑗 in movement type 𝑚;  𝑥ො௖

௝ሺ𝑛௖ሻ ∈

ℜଷ is the position of joint 𝑗 of child 𝑐 in time step 𝑛௖; 𝑥ො஺
௝ሺ𝑛஺ሻ ∈ ℜଷ is the position of 

joint 𝑗 of the model in time step 𝑛஺; 𝐽 is the total number of joints; and 𝑀 is the total 
number of movement types in the sequence.  
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To automatically assess the relevance of each joint for a given movement type, 
we follow the idea presented in [7], in which the relevance of each joint is characterised 
by its displacement during a given movement type. Then, we define the normalised 
displacement of joint 𝑗 in movement type 𝑚 as 

𝐷௝
௠ ൌ

∑ ฮ𝑥ො஺
௝ሺ𝑛஺ሻ െ 𝑥ො஺

௝ሺ𝑛஺ െ 1ሻฮ௡ಲ∈ஐ೘ ଶ

𝑚𝑎𝑥 ௝ ∈ ሾଵ ,௃ ሿ ቄ∑ ฮ𝑥ො஺
௝ሺ𝑛஺ሻ െ 𝑥ො஺

௝ሺ𝑛஺ െ 1ሻฮ௡ಲ∈ஐ೘ ଶ
ቅ
 , (eq.7) 

from which the relevance factors 𝛼௝௠ are computed using a sigmoidal transformation 

𝛼௝௠ ൌ
1 െ  𝑒

ି
஽ೕ
೘

ఙವ

∑ ൭1 െ  𝑒
ି
஽ೕ
೘

ఙವ ൱௃
௝ୀଵ

, (eq.8) 

where 𝜎஽corresponds to the standard deviation of all normalised displacements, 
considering all joints and all movement types. 

The distance 𝑑ሺ𝑋௖ ,𝑋஺ሻ has an inverse relationship with imitation performance: 
the smaller the distance, the better the imitation performance. To make the 
interpretation of this variable more intuitive, the distances are transformed into scores 
by an exponential function 

𝑠ௗ௜௦௧ሺ𝑋௖,𝑋஺ሻ ൌ 𝑒
ିఒ

 ௗ మ ሺ௑೎,௑ಲ ሻ
ఙ೏మ , (eq.9) 

where 𝜎ௗଶ is the variance of the distances, and 𝜆 is a parameter to be determined (see 
Parameter Learning section below for more details). After this transformation, the 
resulting 𝑠ௗ௜௦௧ score has a positive relationship with imitation performance, where 
higher scores indicate better imitation performance. 

The optimal alignment path 𝜑∗ሺ𝑋௖ ,𝑋஺ሻ computed in (eq. 5) contains relevant 
information regarding the timing differences between the movements of child 𝑐 and the 
model. Using the optimal alignment path 𝜑∗ሺ𝑋௖ ,𝑋஺ሻ, we computed the percentage of 
time the child was delayed with respect to the model 𝑡ௗ௘௟௔௬ሺ𝑋௖ ,𝑋஺ሻ and the percentage 
of time the child moved in advance of the model  𝑡௔ௗ௩ሺ𝑋௖,𝑋஺ሻ by following the 
definitions presented in [8].  

3. Score computation 
The performance of child 𝑐 is characterised by the score associated with spatial 

discrepancies 𝑠ௗ௜௦௧ሺ𝑋௖,𝑋஺ሻ, the proportion of the time that the child was delayed with 
respect to the model 𝑡ௗ௘௟௔௬ሺ𝑋௖ ,𝑋஺ሻ, and the proportion of time that the child moved in 
advance of the model 𝑡௔ௗ௩ሺ𝑋௖,𝑋஺ሻ. The imitation performance coefficient 𝑖ሺ𝑋௖ ,𝑋஺ሻ of 
child 𝑐 is modelled as a weighted linear combination of these features, as shown in (eq. 
10). The values of the weights ሺ𝑊ௗ௜௦௧,𝑊ௗ௘௟௔௬,𝑊௔ௗ௩ሻ were determined in a data-driven 
manner, as described in detail in the Parameter Learning section. 

𝑖ሺ𝑋௖,𝑋஺ሻ  ൌ  𝑊ௗ௜௦௧ 𝑠ௗ௜௦௧ሺ𝑋௖ ,𝑋஺ሻ  ൅  𝑊ௗ௘௟௔௬ 𝑡ௗ௘௟௔௬ሺ𝑋௖ ,𝑋஺ሻ  
൅  𝑊௔ௗ௩ 𝑡௔ௗ௩ሺ𝑋௖ ,𝑋஺ሻ. 

(eq.10) 

To ensure that the imitation scores of the children lie in a reasonable and 
interpretable range, we computed the imitation performance coefficient of a “best 
imitation” and a “worst imitation” scenario. The “best imitation” case (𝑋௕௘௦௧ሻ was 
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obtained by comparing the model’s performance to the sequence performed by the lead 
experimenter (third author, R.R.), who had extensive experience observing the 
movements and analysing them through the creation of the HOC scheme and 
performing HOC. This “best imitation” scenario enabled establishing a reasonable 
upper bound to the performance of the children. The “worst imitation” case (𝑋௪௢௥௦௧) 
was defined as not performing any imitation, i.e., staying still for the whole duration of 
the sequence. This “worst imitation” scenario was quantified by repeating the model’s 
position in the first time-step for the whole duration of the experiment and calculating 
the distance between this case and the model. All children’s scores were then fit within 
the range of “worst imitation” and “best imitation” cases by 

𝑠௖ ൌ 𝑚𝑖𝑛 ൜𝑚𝑎𝑥 ൜
𝑖ሺ𝑋௖ ,𝑋஺ሻ െ 𝑖ሺ𝑋௪௢௥௦௧ ,𝑋஺ሻ
𝑖ሺ𝑋௕௘௦௧,𝑋஺ሻ െ 𝑖ሺ𝑋௪௢௥௦௧,𝑋஺ሻ

, 0ൠ , 1ൠ ∈ ሾ0,1ሿ. (eq.11) 

Parameter Learning 
The method described above requires finding a set of four parameters: 𝜆 ൐ 0 to 

transform distances to scores in (eq.9), and ሼ𝑊ௗ௜௦௧,𝑊ௗ௘௟௔௬,𝑊௔ௗ௩ሽ to define the 
performance coefficient in (eq.10). We calculated these parameters in two ways: (i) 
using 3-fold cross-validation, and (ii) using the whole dataset to learn a single set of 
parameters (more details can be found in the Results section below). 

We assume there exist 𝑉 datasets (Ɗ௩ for 𝑣 ൌ ሼ1,2, … ,𝑉ሽ), with data from 
different sequences or imitation instances (e.g., first, second or third time that the 
children are exposed to a given sequence). These datasets have been coded by human 
observers; for every 𝑋௖ ∈ Ɗ௩, for 𝑐 ∈ ሼ1,2, … ,𝑁ሽ and 𝑣 ൌ ሼ1,2, … ,𝑉ሽ there exists a 
corresponding 𝐻𝑂𝐶௖ as given by (eq.1). 

In order to find 𝜆 we do an exhaustive search in the range ሾ0, 0.1ሿ and we choose 
the one that maximises the average correlation between distance scores 𝑠ௗ௜௦௧ and human 
observed codes 𝐻𝑂𝐶 (average computed across datasets). Once 𝜆 has been set, we 
perform gradient ascent with a learning rate of 𝜖 ൌ 0.01 and random initialisation to 
find the 3-tuple ሼ𝑊ௗ௜௦௧ ,𝑊ௗ௘௟௔௬,𝑊௔ௗ௩ሽ that maximises the average correlation (across 
datasets) between human observed codes 𝐻𝑂𝐶 and the performance coefficients 𝑖 as 
computed by (eq.10).  The optimal parameters are normalised such that 𝑊ௗ௜௦௧

ଶ ൅
𝑊ௗ௘௟௔௬

ଶ ൅𝑊௔ௗ௩
ଶ ൌ 1. 

Results 
 

1. Learnt parameters of the CAMI method 
The model of the CAMI method has four parameters that need to be learnt from 

the data (i.e., λ and three weight parameters for s_dist, t_delay and t_adv as defined in 
the Parameter Learning section). To learn these parameters, we first applied 3-fold 
cross-validation by splitting the dataset into 3 groups and using these groups to form 3 
folds, each one consisting of 2 groups for training and 1 group for testing. We then 
obtained the parameters from the training examples of each fold, yielding three sets of 
parameters. In addition, to learn a single set of parameters that can be used in future 
research, we used the whole data set. The parameters obtained in every instance of the 
cross-validation procedure and in the case where the whole dataset is used for training 
are reported in Table S1. The fact that for all cases 𝑊ௗ௜௦௧ ൐ 0 confirms that children 
with higher distance scores get higher performance coefficients. Similarly, the fact that 
𝑊ௗ௘௟௔௬,𝑊௔ௗ௩ ൏ 0 is expected because timing differences with respect to the model are 
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indicative of poorer imitation performance, and hence lead to lower performance 
coefficients. 

Table S1. Parameters learnt using 3-fold cross-validation and whole dataset 
analysis. 

 𝝀 𝑾𝒅𝒊𝒔𝒕 𝑾𝒂𝒅𝒗 𝑾𝒅𝒆𝒍𝒂𝒚 
Split     

1 0.0260 0.7825 -0.5051 -0.3641 
2 0.0240 0.6542 -0.7203 -0.2306 
3 0.0300 0.6601 -0.4583 -0.5952 

Whole dataset 0.0270 0.7200 -0.4667 -0.5137 

The CAMI scores obtained using 3-fold cross-validation and whole-data set 
were significantly similar to each other (Trial 1a: r(43) = .99, Trial 1b: r(40) = .96, 
Trial 2a: r(46) =. 99, Trial 2b: r(39) =. 99, all ps < .0001). 

2. Including time-related features improved CAMI algorithm’s performance 
 We checked whether including temporal information (t_adv and t_delay 
variables) in addition to the spatial distance information (s_dist) improved the CAMI 
model’s correlation with the HOC scores. Figure S4 illustrates the findings for each 
trial and for the average of all three trials, which reveal higher (or similar, in case of 
Trial 2a) correlations. Notice that the distances alone (before maximising correlation 
with HOC), as well as the distances scores already yield good correlation (coefficients 
> .70) between the HOC and CAMI methods, while adding temporal information 
further improves the CAMI method’s detection of imitation ability. This experiment 
supports the idea that temporal information is an important component when assessing 
imitation.  

 

Figure S4. Correlation between HOC and CAMI scores in conditions when CAMI scores 
are calculated using only the distances (blue), s_dist variable (red), s_dist and 
t_adv variables combined (green), and s_dist, t_delay and t_adv variables 
combined (purple). Higher distances (blue) indicate worse imitation, while 
higher s_dist indicates better imitation. A correlation coefficient of 1 indicates 
perfect positive association, a correlation coeffieicnt of -1 indicates perfect 
negative association, while a correlation coefficient of 0 indicates no 
association. 
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3. Continuous scores improved the CAMI model’s diagnostic classification 
performance as compared to discrete scores 
There is a quantisation error associated with any discretisation process. Thus, 

in general, continuous variables contain more information than discrete ones. To 
illustrate this premise in the context of the imitation scores obtained from the HOC and 
CAMI methods, we discretised the scores and computed the area under the curve 
(AUC) of the receiver operating characteristic (ROC) curve as a measure of 
discriminative ability when classifying the subjects according to their diagnosis. 

Figure S5 depicts the AUC of the ROC curve as we increase the number of 
discrete levels allowed in the discretisation process. In this curve, larger values indicate 
better discriminative ability. The discretisation is carried out in quantiles, which means 
that the scores are sorted in ascending order, and then the sorted continuous scores are 
divided into the desired number of discrete levels, each one containing approximately 
equal number of samples. As observed in Figure S5, although there is some variability 
inherent to empirical data, there is a clear trend in which discretising the scores into a 
smaller number of levels leads to poorer discriminative ability in terms of the AUC. 
This supports the idea that continuous scores are more expressive, and in this case are 
more informative than discrete scores to classify the participants into diagnostic groups. 

 
Figure S5. Area under the curve (AUC) of receiving operating characteristic (ROC) curves vs 

the number of discrete levels in which the continuous scores are discretised. The 
ROC curves are formed by true positive rates vs false positive rates as the 
classification threshold is varied. Larger AUC indicates better diagnostic ability 
of the method (best possible AUC is 1, meaning 100% true positives and zero false 
positives). “Continuous” indicates the AUC values when no discretisation is 
applied. 

4. CAMI method successfully detected important joints automatically 
In order to assess the validity of the CAMI method’s automatic assessment of 

joint importance, we used the HOC scheme to manually determine the top five most 
important joints for each of the 18 movement types of sequence 1. This analysis was 
done blindly, without reference to the CAMI method. Then, the joint weights as 
determined by CAMI were ranked from highest (most important joint) to lowest (least 
important joint) for each movement type. The top five joints as determined by the 
HOC method and the CAMI method were compared. This comparison revealed that, 
on average, the two methods identified the same joints as among the most important 
five joints in 91.67% of the time (see Table S2). 
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Table S2.  Percent agreement between HOC and CAMI in terms of the top five most 
important joints for each of the 18 movement types of sequence 1 

Movement 
Type 

Percent 
agreement 

Movement 
Type 

Percent 
agreement 

Movement 
Type 

Percent 
agreement 

1 80% 7 80% 13 80% 
2 100% 8 100% 14 100% 
3 100% 9 80% 15 80% 
4 100% 10 100% 16 100% 
5 80% 11 100% 17 100% 
6 100% 12 100% 18 100% 

MEAN OVERALL AGREEMENT = 91.67% 

Figure S6 shows an example movement type and its top important joints as 
identified by the HOC and CAMI methods. When the two methods had disagreement, 
one of the top five joints as determined by the HOC method was not within the top five 
of the CAMI method. However, in all of those cases, that remaining joint was ranked 
among the top eight joints according to the CAMI method. Therefore, based on the 
results of this experiment, we can conclude that the automatic detection of important 
joints in the CAMI method is in line with human observations. 

 

 
Top 5 joints – HOC: LHand, RHand, LForearm, RForearm, LFoot 
Top 8 joints – CAMI: LHand, RHand, LForearm, RShoulder, LFoot, RForearm, 

LShin, Head 
Figure S6. Snapshots of movement type #15 and the top joints as determined by the HOC 

and CAMI methods. 

5. Demographic and clinical characteristics of children correctly and 
incorrectly diagnosed by CAMI 

As reported in the main article, a Support Vector Machine (SVM) approach using the 
CAMI scores of children in three one-minute imitation trials could correctly diagnose 
the children into ASC vs TD groups with 87.2% accuracy. This meant that out of the 
27 children with ASC, only two of them were misdiagnosed. In Table S3, we report 
how these two children differed from the correclt diagnosed children on a range of 
dimensions. As can be seen, the correctly diagnosed children were very similar to the 
incorrectly diagnosed children in terms of age, IQ and autism severity as assessed by 
SRS-2 and ADOS-2. Due to the large difference in the number of correctly (n = 25) 
and incorrectly diagnosed children (n = 2), we did not conduct a statistical comparison 
between the two groups. 
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Table S3. Means and standard deviations of demographic information and core autism 
symptoms for children correctly vs incorrectly diagnosed by SVM using CAMI scores.  

 ASC – correctly diagnosed 
ASC – not correctly 

diagnosed 
 Mean (SD) Mean (SD) 

Chronological age (years)  10.36(1.41) 11.90(1.24)  

SRS-2 SCI sub-scale  73.21(7.50)  68.50(14.89) 

SRS-2 RRB sub-scale  74.74(9.99)  77.50(6.36) 

SRS-2 total score  74.84(7.53)  74.00(11.31) 

ADOS-2 SA sub-scale  11.80(3.33)  10.00(--)* 

ADOS-2 RRB sub-scale  3.75(2.02)  2.00(--)* 

ADOS-2 total score  15.55(3.73)  12.00(--)* 
WISC-V 

Full scale IQ 
 99.95(17.88)  97.00(1.41) 

Gender (Boys/Girls)  18/2 2/0  

* One of the two misdiagnosed children’s ADOS data is unavailable, and hence the ADOS values reported here 
belong to a single child. 

6. Replication of the results using 10-fold cross-validation scheme 
To study the potential disadvantages of using a small number of folds in the k-

fold cross-validation scheme, the model of the CAMI method was also trained in a  10-
fold cross-validation scheme. The parameters obtained in every instance of the cross-
validation procedure are reported in Table S4. The fact that for all cases 𝑊ௗ௜௦௧ ൐ 0 
confirms that children with higher distance scores get higher performance coefficients. 
Similarly, the fact that 𝑊ௗ௘௟௔௬,𝑊௔ௗ௩ ൏ 0 is expected because timing differences with 
respect to the avatar are indicative of poorer imitation performance, and hence lead to 
lower performance coefficients. 

Table S4. Parameters learnt using 10-fold cross-validation scheme. 
 𝝀 𝑾𝒅𝒊𝒔𝒕 𝑾𝒅𝒆𝒍𝒂𝒚 𝑾𝒂𝒅𝒗 

Split     
1 0.0300 0.7693 -0.4705 -0.4321 
2 0.0310 0.7383 -0.4919 -0.4614 
3 0.0250 0.6040 -0.1271 -0.7868 
4 0.0220 0.7028 -0.5096 -0.4963 
5 0.0270 0.6810 -0.5964 -0.4249 
6 0.0270 0.7024 -0.5582 -0.4417 
7 0.0250 0.6963 -0.5538 -0.4565 
8 0.0280 0.7350 -0.4900 -0.4688 
9 0.0300 0.7580 -0.4278 -0.4923 
10 0.0300 0.7366 -0.5154 -0.4379 

The CAMI scores obtained using 10-fold cross-validation and 3-fold cross-
validation method were significantly similar to each other (Trial 1a: r(43) = .98, Trial 
1b: r(40) = .96. Trial 2: r(46) =. 98, all ps < .0001). As can be seen in Figure S7, the 
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correlations between CAMI and HOC methods in all three trials was significant, with 
a slight improvement being observed as compared to the 3-fold scheme. 

 
Figure S7. Correlations between the 10-fold cross-validated CAMI scores and HOC scores, 

showing strong correspondence between the two methods. A correlation value of 
r = 1 indicates perfect positive association, r = 0 indicates no association r = -1 
indicates perfect negative association. 

 

Using the 10-fold CAMI scores, the CAMI method’s diagnostic classification ability 
was assessed using the same receiver operating characteristic (ROC) and support vector 
machine (SVM) approaches reported in the main text. This analysis revealed a slight 
improvement in the classification ability (see Figure S8), though the variability of the 
SVM accuracy increased considerably due to the small number of samples left for the 
test sets. In particular, the SVM accuracy of the CAMI scores ranged between 75% and 
100% in the 10-fold scheme (SD = 12.2%), while the range was between 84.6% and 
92.1% in the 3-fold scheme (SD = 3.6%). Similarly, the variability of the SVM accuracy 
of the HOC scores increased in the 10-fold scheme. Namely, while the SVM accuracy 
of the HOC scores ranged between 50% and 100% in the 10-fold scheme (SD = 15.8%), 
the range was between 61.5% and 84.6% in the 3-fold scheme (SD = 9.6%). 
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(B) 

 
Figure S8. Diagnostic classification ability of the CAMI and HOC methods (CAMI scores 

obtained using 10-fold cross-validation). 

(a) Receiving Operating Characteristic (ROC) curves: true positive rate versus false 
positive rate as classification threshold is varied. The Area Under the Curve (AUC) 
indicates the diagnostic ability of the method (blue lines for HOC, orange lines for 
CAMI method) in each of the three trials (best possible AUC is 1, meaning zero false 
positives and 100% true positives). 

(b) 3D plots of the CAMI scores and HOC scores in which Trial 1a, Trial 1b, and 
Trial 2 scores correspond to the respective axes. Each marker represents one subject, 
and the reported accuracy (Acc) corresponds to average classification accuracy in 10-
fold cross-validation of a linear SVM classifier (best possible Acc is 1, meaning 
100% accuracy). 
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