## Supplementary Information for

Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma

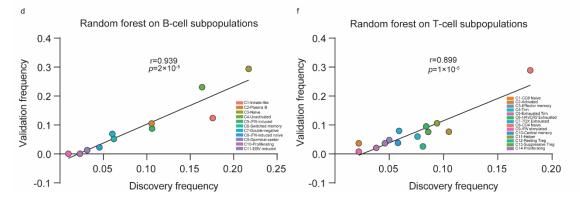
Lanqi Gong<sup>1, 2</sup>, Dora Lai-Wan Kwong<sup>1, 2</sup>, Wei Dai<sup>1, 2</sup>, Pingan Wu<sup>3</sup>, Shanshan Li<sup>1</sup>, Qian Yan<sup>1, 2</sup>, Yu Zhang<sup>2</sup>, Baifeng Zhang<sup>2</sup>, Xiaona Fang<sup>2</sup>, Li Liu<sup>4, 5, 6</sup>, Min Luo<sup>1</sup>, Beilei Liu<sup>2</sup>, Larry Ka-Yue Chow<sup>2</sup>, Qingyun Chen<sup>7</sup>, Jinlin Huang<sup>2</sup>, Victor Ho-Fun Lee<sup>1, 2</sup>, Ka-On Lam<sup>1, 2</sup>, Anthony Wing-Ip Lo<sup>8</sup>, Zhiwei Chen<sup>4, 5, 6</sup>, Yan Wang<sup>9</sup>, Anne Wing-Mui Lee,<sup>1, 2</sup> Xin-Yuan Guan<sup>1, 2, 7</sup>

<sup>1</sup>Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. <sup>2</sup>Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. <sup>3</sup>Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. <sup>4</sup>Department of Microbiology, <sup>5</sup>The AIDS Institute, and <sup>6</sup>State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. <sup>7</sup>State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China. <sup>8</sup>Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. <sup>9</sup>Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.

**Correspondence:** Xin-Yuan Guan, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China 518053. Tel: 852-3917-9782; E-mail: xyguan@hku.hk

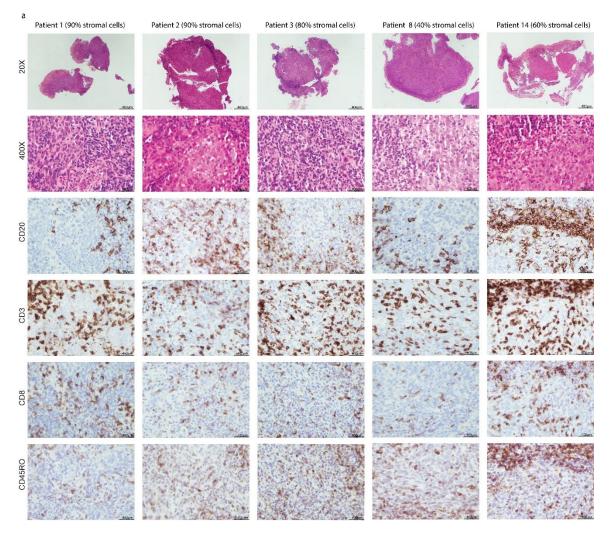
**Table of Contents** 

Supplementary Figures 1-10 Supplementary Tables 1-3 Antibody List

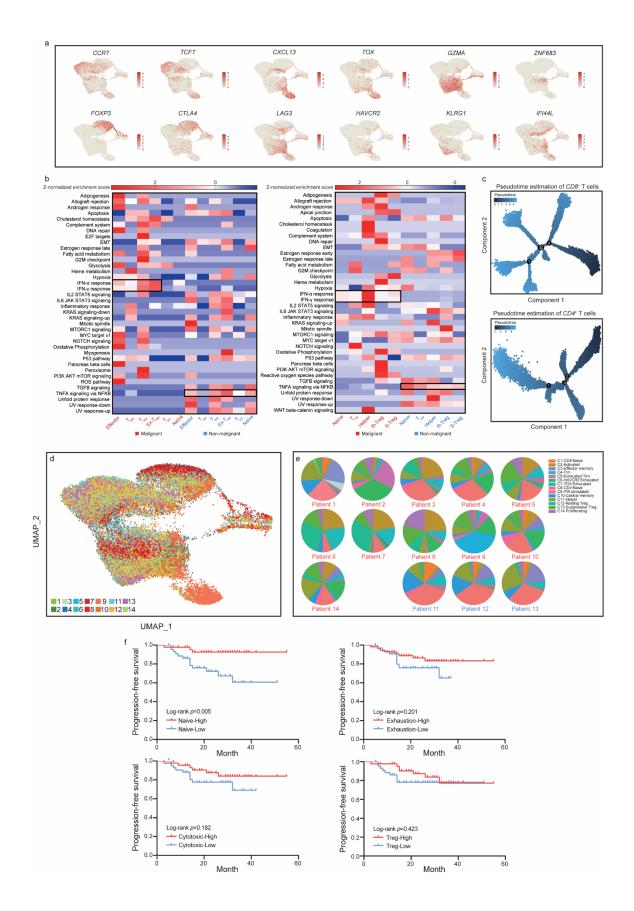

| Discovery cohort                               |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Disease Type NPC                               |             |             |             |             |             |             |             | NLH         |             |             |             |             |             |             |
| Patient ID                                     | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           | 10          | 14          | 11          | 12          | 13          |
| Estimated Number of Cells                      | 2,652       | 4,583       | 6,419       | 5,568       | 4,334       | 6,100       | 4,813       | 1,933       | 8,821       | 6,671       | 4,083       | 5,873       | 7,485       | 5,337       |
| Mean Reads per Cell                            | 182,645     | 101,428     | 75,836      | 108,071     | 122,944     | 71,949      | 92,561      | 132,696     | 53,390      | 67,921      | 156,846     | 76,830      | 63,222      | 90,004      |
| Median Genes per Cell                          | 1,331       | 1,398       | 727         | 1,185       | 1,144       | 704         | 581         | 643         | 1,760       | 1,424       | 1,300       | 1,543       | 1,602       | 1,670       |
| Number of Reads                                | 484,376,867 | 464,848,632 | 486,791,842 | 601,742,766 | 532,843,491 | 438,889,767 | 445,493,828 | 256,501,517 | 470,955,309 | 453,099,133 | 640,401,213 | 451,219,695 | 473,217,673 | 480,350,056 |
| Valid Barcodes                                 | 92.30%      | 92.40%      | 94.30%      | 89.10%      | 87.60%      | 87.20%      | 87.60%      | 87.30%      | 91.90%      | 89.30%      | 85.60%      | 90.80%      | 91.90%      | 90.70%      |
| Sequencing Saturation                          | 95.50%      | 88.60%      | 94.60%      | 90.40%      | 90.10%      | 91.80%      | 93.40%      | 100.00%     | 77.30%      | 86.90%      | 92.00%      | 86.60%      | 81.20%      | 85.20%      |
| Q30 Bases in Barcode                           | 97.10%      | 97.00%      | 96.60%      | 96.60%      | 96.70%      | 96.40%      | 96.80%      | 96.80%      | 97.30%      | 97.40%      | 96.40%      | 97.40%      | 97.40%      | 97.40%      |
| Q30 Bases in RNA Read                          | 85.90%      | 88.10%      | 90.70%      | 94.60%      | 94.50%      | 89.20%      | 92.20%      | 83.70%      | 92.10%      | 92.00%      | 91.50%      | 92.10%      | 92.20%      | 92.00%      |
| Q30 Bases in RNA Read 2                        | 91.60%      | 91.90%      | 90.40%      | 89.80%      | 90.70%      | 94.10%      | 94.30%      | 94.00%      | 92.60%      | 91.90%      | 93.10%      | 92.00%      | 92.60%      | 92.40%      |
| Q30 Bases in UMI                               | 96.90%      | 96.70%      | 96.30%      | 95.80%      | 96.00%      | 96.30%      | 96.10%      | 96.80%      | 97.20%      | 97.20%      | 96.30%      | 97.30%      | 97.20%      | 97.30%      |
| Reads Mapped to Genome                         | 89.90%      | 89.50%      | 91.10%      | 85.60%      | 91.40%      | 89.50%      | 89.20%      | 75.90%      | 92.10%      | 91.80%      | 93.30%      | 91.60%      | 90.70%      | 92.60%      |
| Reads Mapped Confidently to Genome             | 84.50%      | 80.20%      | 87.80%      | 74.90%      | 80.30%      | 81.70%      | 79.30%      | 69.30%      | 82.90%      | 81.00%      | 84.30%      | 81.70%      | 81.10%      | 84.20%      |
| Reads Mapped Confidently to Intergenic Regions | 8.80%       | 9.00%       | 4.80%       | 10.20%      | 11.20%      | 6.90%       | 4.70%       | 7.50%       | 6.90%       | 8.40%       | 9.80%       | 7.90%       | 6.90%       | 8.70%       |
| Reads Mapped Confidently to Intronic Regions   | 5.00%       | 4.80%       | 6.50%       | 6.00%       | 7.00%       | 9.20%       | 9.30%       | 11.10%      | 5.90%       | 7.40%       | 7.50%       | 6.80%       | 5.70%       | 7.10%       |
| Reads Mapped Confidently to Exonic Regions     | 73.50%      | 69.10%      | 79.20%      | 61.30%      | 64.10%      | 65.50%      | 65.30%      | 50.70%      | 72.60%      | 67.80%      | 66.90%      | 69.50%      | 70.90%      | 70.90%      |
| Reads Mapped Confidently to Transcriptome      | 68.40%      | 64.50%      | 73.70%      | 56.50%      | 58.90%      | 53.80%      | 54.60%      | 41.50%      | 67.70%      | 62.00%      | 57.00%      | 64.40%      | 66.30%      | 65.40%      |
| Reads Mapped Antisense to Gene                 | 2.70%       | 2.30%       | 2.80%       | 2.40%       | 2.70%       | 7.80%       | 6.80%       | 6.00%       | 2.60%       | 3.30%       | 5.80%       | 2.70%       | 2.40%       | 3.00%       |
| Fraction Reads in Cells                        | 89.80%      | 97.30%      | 93.00%      | 95.70%      | 78.70%      | 73.80%      | 63.40%      | 72.80%      | 93.20%      | 89.50%      | 69.50%      | 89.80%      | 95.80%      | 81.20%      |
| Total Genes Detected                           | 20,126      | 21,156      | 20,156      | 21,369      | 21,292      | 20,395      | 19,298      | 17,767      | 21,649      | 20,364      | 20,138      | 21,609      | 21,866      | 20,613      |
| Median UMI Counts per Cell                     | 3,579       | 3,322       | 1,511       | 2,851       | 2,730       | 1,266       | 1,048       | 1,173       | 4,553       | 3,833       | 3,505       | 4,602       | 4,836       | 4,911       |

| Validation cohort                              |             |             |             |             |             |  |
|------------------------------------------------|-------------|-------------|-------------|-------------|-------------|--|
| Disease Type                                   | N           | PC          | NLH         |             |             |  |
| Patient ID                                     | 9           | 10          | 11          | 12          | 13          |  |
| Estimated Number of Cells                      | 10,092      | 7,307       | 8,150       | 8,653       | 7,893       |  |
| Mean Reads per Cell                            | 63,930      | 93,319      | 92,317      | 81,248      | 88,885      |  |
| Median Genes per Cell                          | 1,701       | 1,565       | 1,713       | 1,634       | 1,696       |  |
| Number of Reads                                | 645,180,272 | 681,882,183 | 752,379,807 | 703,036,290 | 701,567,034 |  |
| Valid Barcodes                                 | 85.00%      | 82.10%      | 84.10%      | 84.70%      | 83.30%      |  |
| Sequencing Saturation                          | 75.70%      | 86.10%      | 85.20%      | 81.80%      | 82.20%      |  |
| Q30 Bases in Barcode                           | 97.10%      | 97.10%      | 97.10%      | 97.10%      | 97.10%      |  |
| Q30 Bases in RNA Read                          | 91.80%      | 91.20%      | 91.50%      | 92.00%      | 91.40%      |  |
| Q30 Bases in RNA Read 2                        | 93.10%      | 95.40%      | 95.80%      | 96.10%      | 95.70%      |  |
| Q30 Bases in UMI                               | 96.70%      | 96.70%      | 96.80%      | 96.60%      | 96.70%      |  |
| Reads Mapped to Genome                         | 92.50%      | 92.80%      | 93.30%      | 91.80%      | 93.40%      |  |
| Reads Mapped Confidently to Genome             | 84.00%      | 84.20%      | 86.20%      | 83.20%      | 85.60%      |  |
| Reads Mapped Confidently to Intergenic Regions | 7.60%       | 8.80%       | 8.00%       | 7.90%       | 8.60%       |  |
| Reads Mapped Confidently to Intronic Regions   | 18.70%      | 22.60%      | 22.60%      | 18.10%      | 22.10%      |  |
| Reads Mapped Confidently to Exonic Regions     | 57.70%      | 52.90%      | 55.60%      | 57.10%      | 54.90%      |  |
| Reads Mapped Confidently to Transcriptome      | 44.80%      | 39.40%      | 42.30%      | 44.20%      | 41.40%      |  |
| Reads Mapped Antisense to Gene                 | 9.20%       | 9.70%       | 9.30%       | 9.30%       | 9.60%       |  |
| Fraction Reads in Cells                        | 89.50%      | 88.20%      | 92.00%      | 94.70%      | 86.10%      |  |
| Total Genes Detected                           | 23,460      | 22,334      | 23,405      | 23,129      | 22,506      |  |
| Median UMI Counts per Cell                     | 3,760       | 3,556       | 4,314       | 4,158       | 4,334       |  |

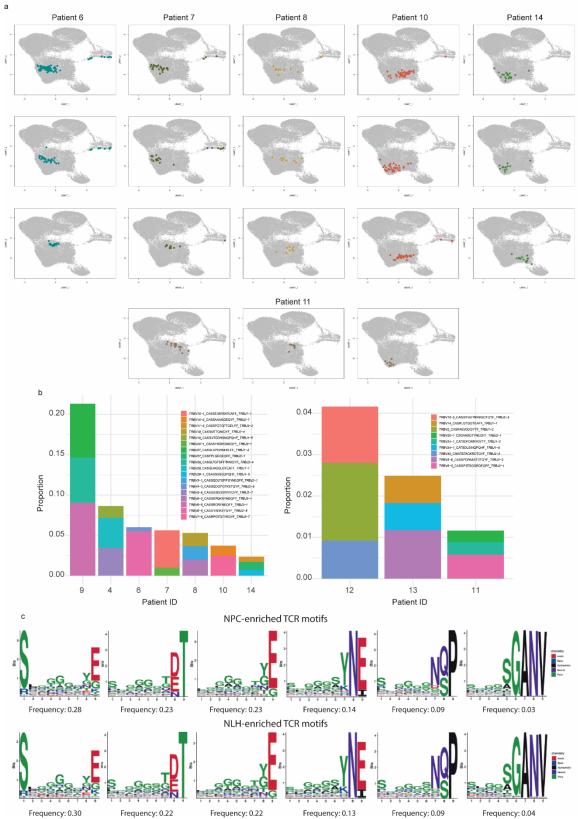
| ~ |                   |       |           |                   |       |           |                         |
|---|-------------------|-------|-----------|-------------------|-------|-----------|-------------------------|
| С |                   |       |           |                   |       |           |                         |
|   |                   |       | Bc        |                   |       |           | Clu                     |
|   | Disco             | very  |           | Valid             | ation |           | CD4 I                   |
|   | Cluster           | Count | Frequency | Cluster           | Count | Frequency | CD4                     |
|   | Unactivated       | 4501  | 0.163637  | Unactivated       | 4480  | 0.23069   | CD8 act                 |
|   | Naïve             | 5975  | 0.217225  | Naïve             | 5708  | 0.293924  | CD4 T                   |
|   | Innate-like       | 4839  | 0.175925  | Innate-like       | 2409  | 0.124047  |                         |
|   | IFN-induced       | 2918  | 0.106086  | IFN-induced       | 1705  | 0.087796  | CD4 suppre<br>CD8 HAVCR |
|   | Plasma            | 2900  | 0.105432  | Plasma            | 2044  | 0.105252  |                         |
|   | Switched memory   | 1708  | 0.062096  | Switched memory   | 1006  | 0.051802  | CD4 rest                |
|   | Double-negative   | 1658  | 0.060278  | Double-negative   | 1351  | 0.069567  | CD8                     |
|   | IFN-induced naïve | 1251  | 0.045481  | IFN-induced naïve | 439   | 0.022606  | CD8 TOX e               |
|   |                   |       |           |                   |       |           | CD4 centra              |
|   | Germinal-center   | 860   | 0.031266  | Germinal-center   | 255   | 0.013131  | CD8                     |
|   | Proliferating     | 632   | 0.022977  | Proliferating     | 10    | 0.000515  | Prolife                 |
|   | EBV-induced       | 264   | 0.009598  | EBV-induced       | 13    | 0.000669  | CD8 exha                |
|   |                   |       |           |                   |       |           |                         |


а

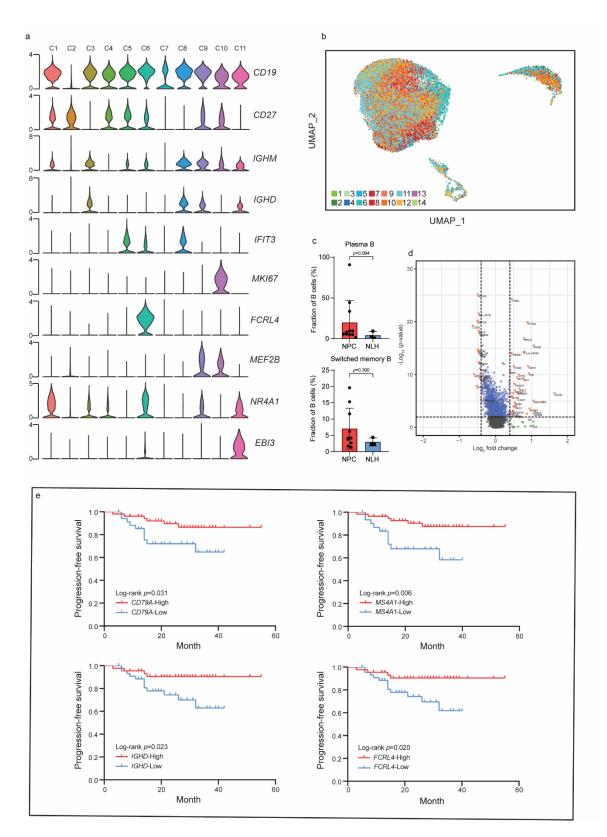
| T cell               |       |           |                      |       |           |  |  |
|----------------------|-------|-----------|----------------------|-------|-----------|--|--|
| Discov               | ery   |           | Validati             | on    |           |  |  |
| Cluster              | Count | Frequency | Cluster              | Count | Frequency |  |  |
| CD4 naïve            | 5875  | 0.179906  | CD4 naïve            | 5022  | 0.28887   |  |  |
| CD8 naïve            | 728   | 0.022293  | CD8 naïve            | 649   | 0.037331  |  |  |
| CD8 activated        | 3434  | 0.105157  | CD8 activated        | 1337  | 0.076905  |  |  |
| CD4 Thelper          | 3065  | 0.093857  | CD4 T helper         | 1844  | 0.106068  |  |  |
| CD4 suppressive Treg | 2807  | 0.085957  | CD4 suppressive Treg | 1317  | 0.075755  |  |  |
| CD8 HAVCR2 exhaustec | 2739  | 0.083874  | CD8 HAVCR2 exhausted | 1654  | 0.095139  |  |  |
| CD4 resting Treg     | 2645  | 0.080996  | CD4 resting Treg     | 456   | 0.02623   |  |  |
| CD8 Trm              | 2471  | 0.075668  | CD8 Trm              | 1044  | 0.060052  |  |  |
| CD8 TOX exhausted    | 1941  | 0.059438  | CD8 TOX exhausted    | 1399  | 0.080472  |  |  |
| CD4 central memory   | 1884  | 0.057692  | CD4 central memory   | 669   | 0.038481  |  |  |
| CD8 Tem              | 1622  | 0.049669  | CD8 Tem              | 837   | 0.048145  |  |  |
| Proliferating        | 1504  | 0.046056  | Proliferating        | 651   | 0.037446  |  |  |
| CD8 exhausted Trm    | 1228  | 0.037604  | CD8 exhausted Trm    | 369   | 0.021225  |  |  |
| CD4 IEN-stimulated   | 713   | 0 021834  | CD4 /FN-stimulated   | 137   | 0.00788   |  |  |




**Supplementary Fig. 1 Quality control reports for each sequenced sample and independent validation via the random forest.** (a) The summary of single-cell sequencing quality control report in the discovery cohort. (b) The summary of single-cell

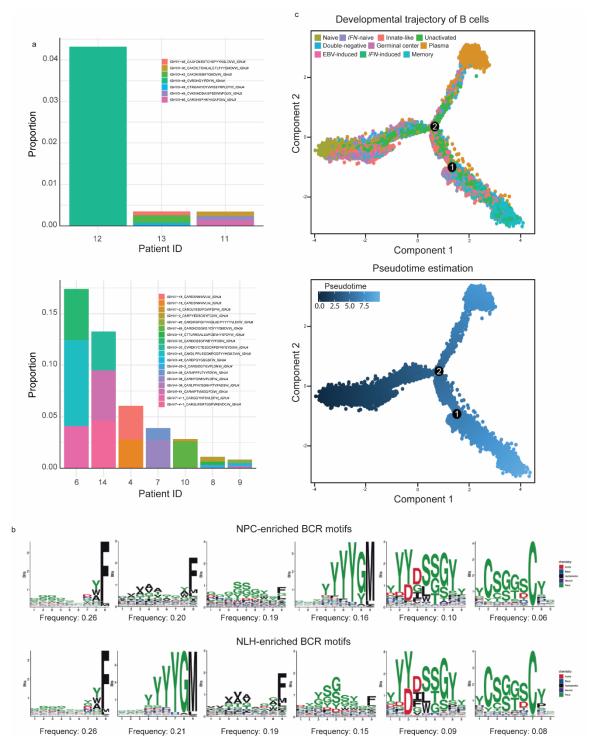

sequencing quality control report in the validation cohort. (c) The random forest analysis performed on B cells (d) The Pearson correlation between the frequency of B cell subpopulations in the discovery cohort and validation cohort, color-coded by the patient ID. (e) The random forest analysis performed on T cells (f) The Pearson's correlation between the frequency of T cell subpopulations in the discovery cohort and validation cohort, color-coded by the patient cohort, color-coded by the patient ID. Source data are provided as a Source Data file.



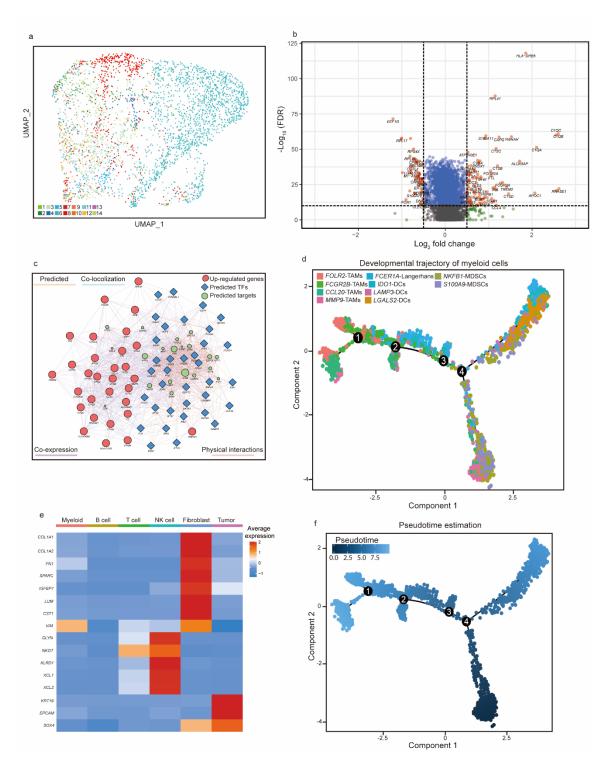

Supplementary Fig. 2 Degree of stromal infiltration in NPC patients determined by pathological examination. (a) The representative H&E (20X and 400X) and IHC staining (400X) pictures of NPC patients, showing the degree of stromal infiltration, evaluated by a group of professional pathologists. Three independent experiments were performed and generated similar results. Scale bar =  $400 \,\mu$ m.



Supplementary Fig. 3 T-cell associated signatures and correlations to progressionfree survival. (a) The expression of marker genes for T cell subpopulations defined in fig. 2a. (b) The GSEA hallmark pathways enriched in  $CD8^+$  and  $CD4^+$  T cell subpopulations derived from the malignant and non-malignant microenvironment. (c) The pseudotime estimation in the developmental trajectory of  $CD8^+$  and  $CD4^+$  T cells. (d) The patient distribution plot within the T cell subpopulations, color-coded by the patient ID. (e) The inter-patient distribution of T cell subpopulations, shown by the percentage of total T cells. (f) The progression-free survival for 88 NPC patients, stratified for the naïve, cytotoxic, Treg and exhaustion scores (binary: high score vs. low score), calculated by the corresponding linear models, respectively. The *p*-values were evaluated by the two-sided log-rank test. Source data are provided as a Source Data file.

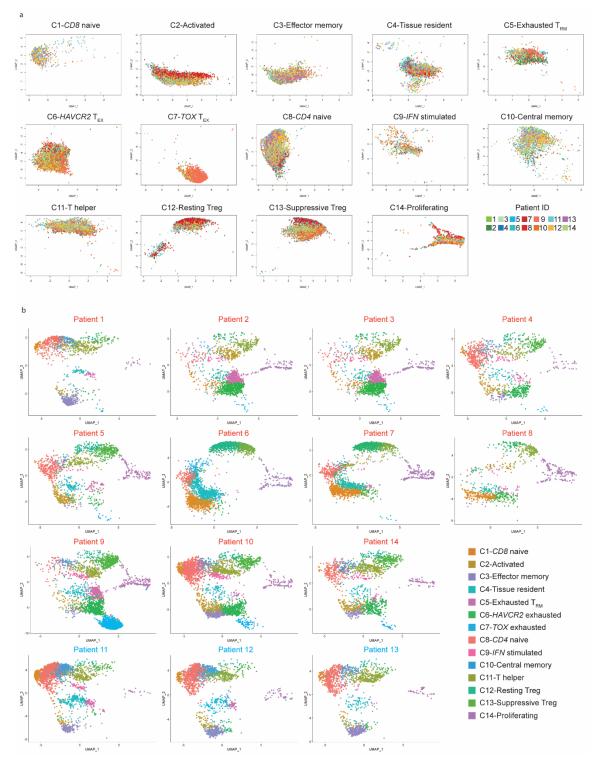



Supplementary Fig. 4 Identification of T cell clonality and T cell receptor motifs. (a) UMAP plot of the top 3 largest clones in patients with their corresponding clonotypes. (b) The proportion of the top 3 frequent clonotypes in patients, color-coded by associated clonotypes. (c) The enriched amino acid motifs on the TCR- $\beta$  chains of NPC and NLH-derived T cells, ordered by the frequency, color-coded by the biochemical property, scaled by enrichment score.

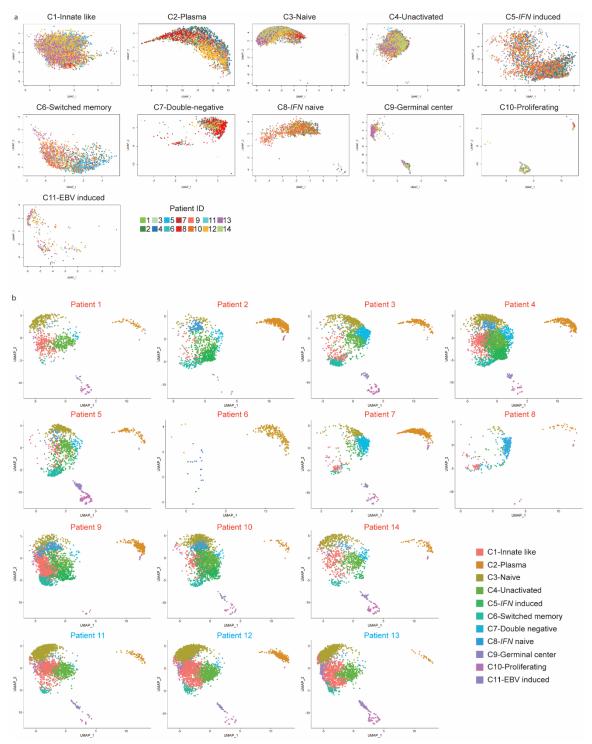



Supplementary Fig. 5 B-cell associated signatures and correlations to progressionfree survival. (a) Violin plots showing the average expression of marker genes and

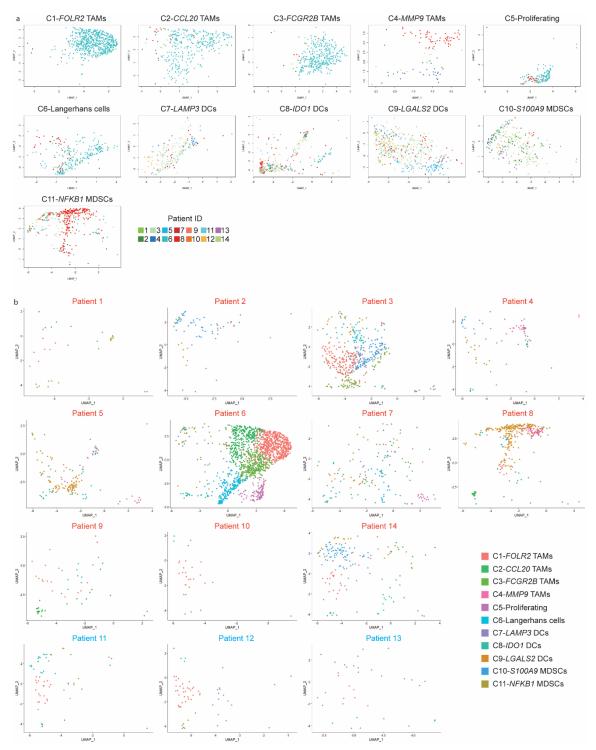
functional signatures in the B cell subpopulations defined in fig. 5a. (b) The patient distribution plot within the B cell subpopulations, colored by the patient ID. (c) The relative abundance of plasma B cells and switched memory B cells in the NPC (n=11 biologically independent samples) and NLH (n=3 biologically independent samples) microenvironment. Each dot represents one patient. *p*-values were evaluated using two-sided Student's t-test. Data are presented as mean values  $\pm$ SD. (d) The differentially expressed genes (log<sub>2</sub> fold change $\geq$ 0.4, *p*-values $\leq$ 5×10<sup>-2</sup>) in NPC-derived and NLH-derived B cells identified by the MAST analysis. (e) The progression-free survival for 88 NPC patients, stratified for the normalized average expression (binary: high expression vs. low expression) of a selected set of B-cell signature genes. *p*-values were evaluated by the two-sided log-rank test. Source data are provided as a Source Data file.




Supplementary Fig. 6 Identification of B cell clonality and B cell receptor motifs. (a) The proportion of the top 3 frequent clonotypes in patients, colored by associated clonotypes. (b) The enriched amino acid motifs on the BCR- $\beta$  chains of NPC and NLH-derived B cells, ordered by the frequency, colored by the biochemical property, scaled by enrichment score. (c) The pseudotime developmental trajectory of B cells based on the expression of the top 50 marker genes in each subpopulation.




Supplementary Fig. 7 Genetic signatures in myeloid cells, NK cells, fibroblasts and tumor cells. (a) The patient distribution plot within the myeloid subpopulations, color-coded by the patient ID. (b) The differentially expressed genes ( $\log_2$  fold change  $\geq 0.5$ , FDR  $\leq 1 \times 10^{-20}$ ) in NPC-derived and NLH-derived myeloid cells identified by the MAST analysis. (c) The gene regulatory network constructed by Cytoscape, color-coded by the associated


gene type (red: top 30 up-regulated genes from NPC-derived myeloid cells, blue: the upstream transcription factors predicted by RegNetwork, green: the targeted genes predicted by GeneMANIA). (d and e) The pseudotime developmental trajectory of myeloid cells based on the expression of the top 30 marker genes in each subpopulation. (f) Heatmap showing the differentially expressed genes in fibroblasts, NK cells and tumor cells.



**Supplementary Fig. 8 Patient and cell-type distribution within T cells.** (a) UMAP plot showing the patient distribution in each T cell subtype, color-coded by the patient ID. (b) UMAP plot showing the T cell distribution in each patient, color-coded by the cell subtype.



**Supplementary Fig. 9 Patient and cell-type distribution within B cells.** (a) UMAP plot showing the patient distribution in each B cell subtype, color-coded by the patient ID. (b) UMAP plot showing the B cell distribution in each patient, color-coded by the cell subtype.



**Supplementary Fig. 10 Patient and cell-type distribution within myeloid cells.** (a) UMAP plot showing the patient distribution in each myeloid cell subtype, color-coded by the patient ID. (b) UMAP plot showing the myeloid cell distribution in each patient, color-coded by the cell subtype.

| Patient ID | EBV status | Stage  | Differentiation type |
|------------|------------|--------|----------------------|
| 1          | Negative   | III    | Undifferentiated     |
| 2          | Positive   | III    | Undifferentiated     |
| 3          | Positive   | III    | Undifferentiated     |
| 4          | Positive   | IV     | Undifferentiated     |
| 5          | Negative   | Ι      | Undifferentiated     |
| 6          | Positive   | IVB    | Differentiated       |
| 7          | Negative   | III    | Undifferentiated     |
| 8          | N/A        | IVA    | Undifferentiated     |
| 9          | Positive   | III    | Undifferentiated     |
| 10         | Positive   | III    | Undifferentiated     |
| 11         | Normal     | Normal | Normal               |
| 12         | Normal     | Normal | Normal               |
| 13         | Normal     | Normal | Normal               |
| 14         | Negative   | III    | Undifferentiated     |

**Supplementary Table 1** The clinical information of 14 patients enrolled in the present study.

| Patient   | EBV reads | Stage | Grade                     | Event               | Status | Time to event (m) |
|-----------|-----------|-------|---------------------------|---------------------|--------|-------------------|
| GZNPC_747 | 8815      | NA    | undifferentiated, round   | Last follow-up      | 0      | 30                |
| GZNPC_748 | 3829      | IV    | NA                        | Last follow-up      | 0      | 21                |
| GZNPC_749 | 2583      | III   | mixed (round & spindle)   | Disease progression | 1      | 21                |
| GZNPC_750 | 4719      | NA    | mixed (round & spindle)   | Last follow-up      | 0      | 23                |
| GZNPC_751 | 1703      | II    | differentiated            | Last follow-up      | 0      | 29                |
| GZNPC_753 | 3099      | IV    | mixed (round & spindle)   | Last follow-up      | 0      | 27                |
| GZNPC_754 | 6288      | NA    | differentiated            | Last follow-up      | 0      | 39                |
| GZNPC_756 | 2675      | III   | undifferentiated, round   | Disease progression | 1      | 6                 |
| GZNPC_757 | 20678     | IV    | differentiated            | Last follow-up      | 0      | 40                |
| GZNPC_758 | 5661      | NA    | mixed (round & spindle)   | Last follow-up      | 0      | 38                |
| GZNPC_760 | 3903      | III   | mixed (round & spindle)   | Last follow-up      | 0      | 35                |
| GZNPC_761 | 1143      | NA    | differentiated            | Last follow-up      | 0      | 31                |
| GZNPC_762 | 8294      | IV    | undifferentiated, spindle | Last follow-up      | 0      | 22                |
| GZNPC_763 | 8185      | III   | undifferentiated, round   | Disease progression | 1      | 6                 |
| GZNPC_764 | 4526      | III   | undifferentiated, round   | Last follow-up      | 0      | 27                |
| GZNPC_765 | 1662      | NA    | undifferentiated, round   | Last follow-up      | 0      | 25                |

| GZNPC_766 | 19424 | III | mixed (round & spindle)   | Last follow-up      | 0 | 36 |
|-----------|-------|-----|---------------------------|---------------------|---|----|
| GZNPC_767 | 4848  | III | mixed (round & spindle)   | Last follow-up      | 0 | 29 |
| GZNPC_768 | 2349  | III | mixed (round & spindle)   | Disease progression | 1 | 8  |
| GZNPC_769 | 3231  | NA  | differentiated            | Last follow-up      | 0 | 36 |
| GZNPC_771 | 17135 | III | undifferentiated, round   | Last follow-up      | 0 | 9  |
| GZNPC_772 | 712   | III | undifferentiated, spindle | Last follow-up      | 0 | 42 |
| GZNPC_773 | 3525  | III | NA                        | Last follow-up      | 0 | 15 |
| GZNPC_774 | 2479  | III | mixed (round & spindle)   | Last follow-up      | 0 | 29 |
| GZNPC_775 | 17316 | NA  | undifferentiated, round   | Last follow-up      | 0 | 18 |
| GZNPC_777 | 5290  | IV  | undifferentiated, round   | Last follow-up      | 0 | 34 |
| GZNPC_778 | 2050  | IV  | mixed (round & spindle)   | Last follow-up      | 0 | 13 |
| GZNPC_779 | 2600  | NA  | mixed (round & spindle)   | Last follow-up      | 0 | 12 |
| GZNPC_780 | 2345  | III | mixed (round & spindle)   | Last follow-up      | 0 | 37 |
| GZNPC_781 | 8757  | III | undifferentiated, round   | Last follow-up      | 0 | 39 |
| GZNPC_782 | 2322  | IV  | mixed (round & spindle)   | Last follow-up      | 0 | 23 |
| GZNPC_783 | 2329  | IV  | undifferentiated, round   | Disease progression | 1 | 11 |
| GZNPC_784 | 3601  | IV  | NA                        | Disease progression | 1 | 14 |
| GZNPC_785 | 93    | III | mixed (round & spindle)   | Last follow-up      | 0 | 20 |
| GZNPC_786 | 20875 | NA  | differentiated            | Last follow-up      | 0 | 33 |
| GZNPC_787 | 1720  | III | mixed (round & spindle)   | Last follow-up      | 0 | 51 |
| GZNPC_788 | 2827  | NA  | undifferentiated, round   | Disease progression | 1 | 15 |
| GZNPC_789 | 5719  | III | mixed (round & spindle)   | Last follow-up      | 0 | 32 |
| GZNPC_790 | 2955  | III | mixed (round & spindle)   | Last follow-up      | 0 | 21 |
| GZNPC_791 | 3939  | III | undifferentiated, spindle | Disease progression | 1 | 9  |
| GZNPC_792 | 441   | Π   | NA                        | Last follow-up      | 0 | 27 |
| GZNPC_794 | 10076 | NA  | mixed (round & spindle)   | Last follow-up      | 0 | 37 |
| GZNPC_795 | 5176  | NA  | undifferentiated, spindle | Last follow-up      | 0 | 16 |
| GZNPC_796 | 4986  | IV  | undifferentiated, spindle | Disease progression | 1 | 32 |
| GZNPC_797 | 4664  | III | differentiated            | Last follow-up      | 0 | 18 |
| GZNPC_798 | 3985  | IV  | mixed (round & spindle)   | Last follow-up      | 0 | 13 |
| GZNPC_799 | 4148  | IV  | undifferentiated, round   | Last follow-up      | 0 | 31 |
| GZNPC_800 | 4607  | III | mixed (round & spindle)   | Last follow-up      | 0 | 29 |
| GZNPC_802 | 3323  | IV  | NA                        | Last follow-up      | 0 | 37 |
| GZNPC_803 | 17771 | III | undifferentiated, spindle | Last follow-up      | 0 | 40 |
| GZNPC_804 | 36680 | NA  | undifferentiated, round   | Last follow-up      | 0 | 23 |
| GZNPC_805 | 2180  | III | mixed (round & spindle)   | Last follow-up      | 0 | 20 |
| GZNPC_806 | 5499  | Ι   | mixed (round & spindle)   | Last follow-up      | 0 | 20 |
| GZNPC_809 | 4779  | III | undifferentiated, spindle | Last follow-up      | 0 | 17 |
| GZNPC_810 | 2784  | III | undifferentiated, round   | Last follow-up      | 0 | 12 |
| GZNPC_811 | 8904  | III | mixed (round & spindle)   | Last follow-up      | 0 | 36 |
| GZNPC_812 | 544   | NA  | mixed (round & spindle)   | Last follow-up      | 0 | 27 |
|           |       |     |                           |                     |   |    |

| GZNPC_817 | 1930  | Ι   | NA                        | Last follow-up      | 0 | 29 |
|-----------|-------|-----|---------------------------|---------------------|---|----|
| GZNPC_818 | 3244  | NA  | undifferentiated, round   | Last follow-up      | 0 | 27 |
| GZNPC_819 | 7618  | IV  | differentiated            | Disease progression | 1 | 14 |
| GZNPC_821 | 4725  | III | NA                        | Last follow-up      | 0 | 55 |
| GZNPC_822 | 1506  | III | undifferentiated, round   | Last follow-up      | 0 | 38 |
| GZNPC_823 | 2898  | III | mixed (round & spindle)   | Last follow-up      | 0 | 33 |
| GZNPC_824 | 479   | III | NA                        | Disease progression | 1 | 3  |
| GZNPC_825 | 5582  | Ι   | undifferentiated, round   | Last follow-up      | 0 | 31 |
| GZNPC_826 | 2671  | NA  | undifferentiated, round   | Last follow-up      | 0 | 7  |
| GZNPC_829 | 3903  | IV  | mixed (round & spindle)   | Last follow-up      | 0 | 14 |
| GZNPC_830 | 5026  | III | mixed (round & spindle)   | Last follow-up      | 0 | 42 |
| GZNPC_832 | 288   | Ι   | undifferentiated, round   | Last follow-up      | 0 | 26 |
| GZNPC_835 | 293   | III | mixed (round & spindle)   | Last follow-up      | 0 | 5  |
| GZNPC_836 | 5739  | NA  | undifferentiated, round   | Last follow-up      | 0 | 13 |
| GZNPC_837 | 13799 | NA  | undifferentiated, round   | Last follow-up      | 0 | 37 |
| GZNPC_839 | 2725  | NA  | undifferentiated, round   | Disease progression | 1 | 15 |
| GZNPC_840 | 6979  | IV  | mixed (round & spindle)   | Disease progression | 1 | 14 |
| GZNPC_841 | 12539 | IV  | differentiated            | Disease progression | 1 | 26 |
| GZNPC_842 | 328   | IV  | NA                        | Last follow-up      | 0 | 23 |
| GZNPC_843 | 1967  | III | undifferentiated, round   | Last follow-up      | 0 | 22 |
| GZNPC_844 | 2427  | III | undifferentiated, round   | Last follow-up      | 0 | 30 |
| GZNPC_845 | 3648  | IV  | undifferentiated, round   | Disease progression | 1 | 14 |
| GZNPC_848 | 5199  | IV  | mixed (round & spindle)   | Last follow-up      | 0 | 27 |
| GZNPC_849 | 2927  | III | undifferentiated, spindle | Last follow-up      | 0 | 21 |
| GZNPC_850 | 4903  | IV  | differentiated            | Last follow-up      | 0 | 18 |
| GZNPC_852 | 2450  | IV  | undifferentiated, round   | Last follow-up      | 0 | 17 |
| GZNPC_853 | 14604 | III | undifferentiated, round   | Last follow-up      | 0 | 19 |
| GZNPC_855 | 2678  | III | undifferentiated, round   | Last follow-up      | 0 | 25 |
| GZNPC_856 | 4119  | III | mixed (round & spindle)   | Last follow-up      | 0 | 28 |
| GZNPC_858 | 216   | Ι   | NA                        | Last follow-up      | 0 | 12 |
| GZNPC_859 | 2566  | III | mixed (round & spindle)   | Disease progression | 1 | 7  |
|           |       |     |                           |                     |   |    |

**Supplementary Table 2** The clinical information of 88 patients enrolled in GSE102349.

| Patient | Stage |
|---------|-------|
| 701T    | III   |
| 702T    | III   |
| 704T    | III   |
| 706T    | III   |
| 707T    | III   |
| 708T    | III   |
| 710T    | III   |
| 711T    | III   |
| 712T    | III   |
| 713T    | III   |
| 714T    | III   |
| 716T    | III   |
| 718T    | III   |
| 719T    | III   |
| 720T    | III   |
| 722T    | III   |
| 723T    | III   |
| 724T    | III   |
| 725T    | II    |
| 728T    | III   |
| 729T    | III   |
| 730T    | III   |
| 731T    | II    |
| 732T    | III   |
| 733T    | Π     |
| 735T    | III   |
| 736T    | Π     |
| 737T    | III   |
| 740T    | Π     |
| 741T    | III   |
| 743T    | II    |
| 744T    | III   |
| 746T    | III   |
| 747T    | III   |
| 748T    | III   |
| 749T    | III   |
| 751T    | III   |
| 752T    | III   |
| 754T    | III   |
| 755T    | III   |
|         |       |

| III |
|-----|
| III |
| NA  |
| NA  |
| NA  |
|     |

## **Supplementary Table 3** The clinical information of 45 patients enrolled in GSE68799.

## Antibody List

| Antibody                         | Company     | Catalog No.  | Dilution |  |  |  |
|----------------------------------|-------------|--------------|----------|--|--|--|
| IHC st                           | aining      |              |          |  |  |  |
| anti-CD20                        | Dako        | M0755        | 1:2400   |  |  |  |
| anti-CD3                         | Leica       | CD3-565-L-CE | 1:50     |  |  |  |
| anti-CD8                         | Dako        | M7103        | 1:160    |  |  |  |
| anti-CD45RO                      | Dako        | M0742        | 1:500    |  |  |  |
| IF staining (primary antibody)   |             |              |          |  |  |  |
| anti-PD1                         | Abcam       | ab52587      | 1:50     |  |  |  |
| anti-CD8                         | Abcam       | ab4055       | 1:200    |  |  |  |
| anti-FOXP3                       | Abcam       | ab450        | 1:500    |  |  |  |
| anti-CD3                         | AbD Serotec | MCA 1477     | 1:100    |  |  |  |
| IF staining (secondary antibody) |             |              |          |  |  |  |
| Goat anti-mouse IgG, Alexa 488   | Invitrogen  | A-10680      | 1:1000   |  |  |  |
| Goat anti-rabbit, Alexa 568      | Invitrogen  | A-11011      | 1:1000   |  |  |  |
| Goat anti-rat IgG, Alexa 488     | Invitrogen  | A-11006      | 1:1000   |  |  |  |
|                                  |             |              |          |  |  |  |