Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer

Sudath Hapuarachchige^{1*}, Colin T. Huang¹, Madeline C. Donnelly¹, Cyril Bařinka², Shawn E. Lupold³, Martin G. Pomper^{1,3,4}, and Dmitri Artemov^{1,4*}

¹The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA ²Laboratory of Structural Biology, Institute of Biotechnology, Prumyslova 595, 252 50 Vestec Czech Republic

³The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA

⁴Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

1. MALDI-TOF analysis of components.

Samples of components were prepared following standard protocol for MALDI analysis using sinapinic acid as the matrix. MALDI-TOF spectra were taken following standard protocol optimized for protein analysis. Figure S1 shows embedded MALDI-TOF spectra of initial protein and protein after modification.

Figure S1. MALDI-TOF analysis of components. Embedded MALDI-TOF spectra of (a) 5D3 mAb and 5D3(TCO)₈, (b) F(ab')₂ fragment and F(ab')₂(TCO)₈, and (c) Albumin (ALB), ALB(MCC)₇, ALB(DM1)_{3.3}, and ALB(DM1)_{3.3}(PEG₄-Tz)₁₀.

2. Dynamic light scattering (DLS) analysis of components

Samples of components (~1.0 mg/mL) were prepared in PBS (pH 7.2) and hydrodynamic diameter of components was measured using a MALVERN-Nano series Zetasizer. Slight changes of hydrodynamic diameter were observed in all components after modification but were not statistically significant. Graphs of Volume % distribution of sizes (nm) are shown in Figure S2.

Figure S2. DLS analysis of components.

3. Internalization of anti-PSMA 5D3 mAb and F(ab')2

Figure S3. Internalization of anti-PSMA 5D3 mAb. (**a**) Fluorescence images of $5D3(AF-488)_2$ internalization in PSMA(+) PC3-PIP cells (Scale bar: 20 µm). (**b**) Change of the fluorescence intensities of $5D3(AF-488)_2$ and $F(ab')_2(AF-488)_2$ in the cytoplasm and cell surface.

4. ALB(PEG₄-Tz)₁₀(Rhod)₂ in PC3-PIP cells

PC3-PIP cells grown in 4-well chamber slides as describes in the Method 2.8 were treated with $ALB(DM1)_{3.3}(PEG_4-Tz)_{10}(Rhod)_2$ (150 µL of 50 µg/mL in DPBS) at 37 °C for 30 min. After the washing step, DPBS was replaced by the growth medium and the incubation was continued for 2 h. After cells were fixed by 4% PFA for 20 min at 4 °C and washed with deionized H₂O. Cells were counterstained with Hoechst 33342 and imaged using the Zeiss AxioObserver confocal fluorescence microscope with LSM700 confocal module and analyzed using NIH ImageJ.

Figure S4. Fluorescence images of PSMA(+) PC3-PIP cells treated with ALB(PEG₄-Tz)₁₀(Rhod)₂ without pretargeting components.