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Supplementary results 

Extended trans-eQTL results 

Trans-eQTL hotspots  
We identified four trans-eQTL hotspots, i.e. trans-eSNPs (eQTL SNPs) that are associated to 
more than five genes in trans (Supplementary Table 10). The hotspot with the largest number 
of downstream genes affected was located near ELF2 (Extended data 5A), a transcription 
factor linked to reduced proliferation1. The hotspot comprises effects of 16 individual cis-QTL 
variants at ELF2 and genes in the vicinity; these cis-QTL effects could be decomposed into 
three major blocks (between block LD < 0.67) (Extended data 5B). Variants in the different 
blocks were linked to multiple cis-QTL types, primarily affecting ELF2 RNA traits, but also the 
APA ratio of NAA15 (Extended data 5C-5F). Despite moderate LD between individual 
variants, we observed a high degree of sharing of downstream trans-eGenes between these 
cis-eSNPs (Extended data 5G). From the mediation analyses we find that 17 of the top effects 
were significantly linked to both ELF2 expression and other RNA traits, and in five instances 
ELF2 expression level was no longer significantly associated after accounting for the other 
RNA trait (i.e. splicing-ratio, APA-ratio, exon-level or transcript-ratio). The 37 downstream 
genes, linked to the ELF2 hotspot, were enriched for sequence motifs from the ELF 
transcription factor family, which have a strong sequence resemblance. Significant 
associations were observed for ELF3, ELF4 and ELF5 (p-adj: 3.3×10-7, 6.8×10-5 and 2.2×10-6 
respectively, g:Profiler2), and 20 out of the 37 trans-eGenes were also known target of ELF2 
(g:Profiler2). A second hotspot, in cis- linked to a CREB3L2 with trans- effects on 8 eGenes, 
stood out because of an enrichment for the reactome pathway: “ER to Golgi Anterograde 
Transport” (p-adj<5.6×10-5), which is consistent with previous associations between CREB3L2 
and both the ER and Golgi complex3. The remaining two hotspots are linked to multiple genes 
in trans as well as cis but none of them displayed an enrichment in the linked genes. 
 
Next, we assessed the replication rate of hotspots focusing on ELF2. First, we assessed the 
replication of the gene-level cis-eQTL that underpins the majority of the trans-eQTL effects. 
Even though ELF2 was expressed in all GTEx tissues, the iPSC cis-eQTL was “replicated”  in 
only three GTEx tissues (Esophagus Mucosa; Esophagus Muscularis and Skin (Sun Exposed 
Lower Leg). When assessing the tissue specificity of the cis-eQTL using MASHR we find that 
the iPSC cis-eQTL on ELF2 is specific to iPSC (interms of sign and ratio of effect size 
(Supplementary methods).  To gain additional insights into this trans-eQTL hotspot, we 
replicated the cis- and trans-eQTL in a single cell differentiation study, providing regulatory 
effects of differentiating iPS cells towards definitive endoderm4. We assessed the replication 
of cis- and trans-eQTL effects in the three distinct cell types: iPSC (day-0), 1 day of 
differentiation (mesendoderm) and following 3 days of differentiation (definitive endoderm). 
The gene-level cis-eQTL was not replicated in any of the cell types (nominal P>0.05), most 
likely due to the low expression levels of ELF2. However, we replicated 12 out of 37 ELF2 
linked trans-eQTL effects in iPSC (day-0), 6 trans- effects in mesendoderm and 1 effect in 
definitive endoderm cells- (Extended data 5H). 
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Relationship between GWAS variants and trans-eQTL drivers 
Complementary to the cis-eQTL colocation analysis, we assessed the overlap between 
variants that drive trans-eQTL and GWAS variants. One of the four trans-eQTL hotspots was 
found to be in high LD (>0.95) to a GWAS variant for telomere length (rs412658:C>T), the 
hotspot on chromosome 19 around ZNF257. The GWAS variant is linked to eight genes, 
(ZNF257, ZNF208, ZNF98, ZNF209P, RPL34P34, ZNF676, ZNF729 and VN1R85P) in cis- 
and seven trans-eGenes (DNAH3, MATN4, RBPJL, GALNT13, BEST2, SLC30A8 and 
S100A4). ZNF257 itself is implicated in telomere length5, however none of the downstream 
genes have previously been associated to telomere length. Another example is the GWAS 
variant (rs2277339:T>G) for age of menopause, which is in trans associated to PRIM2 
expression and to PRIM1 in cis. Consistent with this association, missense variants in PRIM1 
have previously been implicated with age of menopause6, and our data suggest an additional 
role of PRIM2.  PRIM1 and PRIM2 function in a heterodimer at the protein level., but our 
genetic analysis also identified an expression link between the two. Finally, we identified four 
GWAS variants (rs11072494:C>T, rs2289187:C>T, rs10459648:C>T, rs6495117:T>C) for 
cleft palate, cleft lip and hemifacial microsomia, which were associated to six trans-eGenes 
(GPR160, SEMA3A, MDFIC, GRIK2, FAM169A and GLB1L3). This set of genes is enriched 
for the JNK cascade and the MAPK cascade biological processes (g:Profiler p-adj: 1.0×10-2, 
2.1×10-2 respectively), with known implications in congenital craniofacial abnormalities7,8.  
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Supplementary methods 

Dataset information 

HipSci 

The Human Induced Pluripotent Stem Cells Initiative (HipSci)11,12 was established as a large, 

high-quality reference panel of human iPSC lines for the research community. In addition to 

large component of healthy individuals sampled from the population, HipSci includes 

individuals from selected rare genetic disease: Monogenic diabetes, Bardet-Biedl syndrome, 

hereditary cerebellar ataxia, hereditary spastic paraplegia, Kabuki syndrome, Usher syndrome 

and congenital eye defects, congenital hyperinsulinism, Alport syndrome, hypertrophic 

cardiomyopathy, primary immune deficiency, bleeding and platelet disorders, macular 

dystrophy, retinitis pigmentosa, Batten disease and childhood neurological diseases. iPSC 

lines were generated using a non-integrative methodology (Sendai virus), and either derived 

from fibroblasts or blood samples. All lines were genotyped using the Illumina beadchip 

HumanCoreExome-12 genotyping chip. RNA-sequencing was performed, either using a 

paired-end stranded protocol, or a single-end protocol, followed by Illumina11 sequencing. 

DNA methylation information was generated using the Illumina 450K or Illumina EPIC array. 

For a subset of the lines whole genome sequencing was perfomed. QC information on 

embryonic stem cells and the donor material (i.e. fibroblast or blood), was generated on a 

subset of the lines. In this study, we considered data from N=543 donors, more information on 

the lines and donors can be found in Supplemental Table 2 (a subset of (N=166) has been 

described previously in Kilpinen et al11). Further information on data generation can be 

obtained from Kilpinen et al11 and Streeter et al12. 
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iPSCORE 

The iPSCORE project13–15 was completed with the goal of assembling high quality iPSC lines 

derived from hundreds of ethnically diverse individuals, and profiling them with an array of 

genomics assays to provide a resource for studying functional genetics in the context of 

derived human cell lines. For 273 iPSCORE individuals, deep whole genome sequencing 

(median 48x) was performed and additionally 215 of these individuals had iPSCs created by 

reprogramming fibroblasts, on which RNA-sequencing and chip genotyping using the Illumina 

MEGA array was performed. Notably, some iPSCORE individuals are related as part of 

families of 2-14 subjects, while 167 are unrelated. Further information about this study, its 

constituents, and the generation of the sequencing data can be found in previous publications: 

Panopoulos et al15, DeBoever et al14, D’Antonio et al13. Data was downloaded using the NCBI 

SRA download tool. 

GENESiPS 

The original GENESiPS study included 201 subjects with insulin sensitivity measurement 

performed by a modified insulin suppression test in accordance with Knowles et al16. The aim 

of the study was to generate an iPSC library reflecting the broad spectrum of insulin sensitivity 

in human populations. iPSC lines were generated through a non-integrative methodology 

(Sendai virus) using erythroblasts as a starting population. iPSC grown under feeder-free 

conditions from passage 8-11 were used for RNA-sequencing on the Illumina HiSeq 2500 

system with 100 nucleotide single-end reads. Further information can be found at Carcamo-

Orive et al17. Data was downloaded using the NCBI SRA download tool. 

PhLiPS 

The PhLiPS Study (Phenotyping Lipid traits in iPSC-derived hepatocytes Study) aimed to 

create a library of iPSC lines and iPSC-derived hepatocytes of diverse genotypes for metabolic 

profiling and lipid trait genetic screening. Detailed methods and data descriptions can be found 

in Pashos et al18. As a part of the Next Generation Genetic Association Studies (Next Gen) 

program, PhLiPS ascertained 91 subjects who were free of cardiovascular disease and in 

generally good health. Peripheral blood samples obtained from the subjects were used for 

genome-wide genotyping, blood lipid measurements and for generating iPSC lines. Infinium 

Human CoreExome-24 BeadChip (Illumina) was used for all sample genotyping. Extracted 

RNA with a minimum RNA integrity number (RIN) 7.5 were sequenced on HiSeq 2000/2500 

systems (Illumina) with paired-end, 100-bp/125-bp read lengths with a target read-depth of 50 

million reads per sample. Data was downloaded using the NCBI SRA download tool. 
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Banovich 

The Banovich et al study19 investigated the use of iPSCs to study the impact of genetic 

variation on gene regulation. A panel of iPSC lines were derived from 58 Yoruba (YR) 

lymphoblastoid cell lines (LCLs), originally generated from the YRI samples within the 1000 

Genomes (1000G) projects. LCLs were reprogrammed using an episomal approach described 

in Okia et al.20. RNA-sequencing was performed using 50-bp, single-end libraries using the 

Illumina TruSeq kit, sequenced on an Illumina HiSeq 2500. More information on the iPSC 

generation and RNA-sequencing can be found in Banovich et al19. Genotype information was 

taken from the illumina arrays generated in the 1000G project21. Data was downloaded using 

the NCBI SRA download tool. 

Stanford Center for Undiagnosed Diseases 

Fibroblast culture: primary skin fibroblasts were obtained from five patients currently enrolled 

at the Stanford Center for Undiagnosed Diseases. Fibroblasts were grown from a skin punch 

biopsy and maintained in DMEM medium (Sigma-Aldrich) supplemented with 10% FBS 

(ThermoFisher). When cells reached confluency, cells were removed from culture medium 

washed with PBS (Mg++ and Ca++ free), and 0.05% trypsin/EDTA was added in sufficient 

quantity to cover the dish. Cells were trypsinized in a 37C, CO2 incubator for 3 minutes. One 

ml of culture medium was used to stop trypsin, pipetted up and down to break the cells to 

single cells. Cells were transferred into 15 ml or 50 ml tubes depending on the amount and 

cells. Culture dish was washed once with 5 ml culture medium and transferred to the same 

tube. Tubes were spun at 270g (1000 rpm) for 5 minutes and the medium was discarded by 

pipetting (making sure no cells were discarded). Tube was finger-flicked to loosen up the cell 

pellet and cells were resuspended completely in 1-2 ml culture medium. Cells were diluted 

with additional culture medium to the density according to the size of the dish to be plated on. 

Dishes were plated into a 37C, CO2 incubator until confluency for further passaging or 

reprogramming. 

  

Fibroblast-iPSC reprogramming: iPSCs were reprogrammed with Sendai Virus from patient 

biopsy skin fibroblast. It took 26-30 days to form the iPSC colonies. Once the iPSC colonies 

were formed and ready to be picked, pipette tips were used to pick the colonies under a 

microscope. The iPSC colonies were then cultured in serum-free/feeder free medium-

hStemSFM (Stemmera, ST02001) on matrigel coated plates for around 20 passages. 
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Genotyping information 

Array-based genotyping 

The generation of the genotype data is described in the original publications, but were 

homogeneously reprocessed in this study. For all eQTL analyses, we considered 

homogeneously imputed genotypes using a per-sample imputation and phasing pipeline 

based on IMPUTE2 v2.3.122 for imputation and SHAPEIT2 v2.r79023 for phasing. Imputation 

and phasing were performed using a combined genotyping reference, encompassing the 

haplotypes from the UK10K cohorts and 1000G Phase 1 data23,24. The imputation was run in 

chunks with an average size of 5 Mb and 300 kb buffer regions on each side, and used the 

following MCMC options (-Ne 20000 -k 80) for autosomes. SHAPEIT2 was run without MCMC 

iteration (-no-mcmc) so that each sample is phased independently. Single-sample VCFs were 

merged and subsequent QC was performed using Genotype Harmonizer25 (v1.5) and 

BCFtools26 (v.1.31). After imputation, data from each study were combined and cohort-, and 

therefore chip-, wise SNP-QC was performed using Genotype Harmonizer. SNPs with either 

a call rate below 90% or imputation quality (Mach R2) below 0.4 were discarded. After study-

wide QC, we merged the datasets and performed a combined SNP QC filtering, considering 

a minimum call rate of 1.0 and an imputation score of 0.4. The final dataset for the QTL 

analyses spanned 2,533 samples and 7,188,631 variants. 

Super population assignment 

All imputed samples were assigned to 1000G super-populations by projecting genotypes onto 

principal components from the genotype matrix of individuals from the 1000 Genomes Project 

(phase 321). Briefly, we selected variants with a minor allele frequency (MAF) of at least 5% 

within 1000G (phase 3)21 and that passed QC in the joint imputed i2QTL genotype dataset. 

We then performed principal component analysis on the 1000G samples and considered the 

first 40 components to project i2QTL samples onto the calculated principal components. Next, 

for each i2QTL samples, we calculated the distance between the sample and the centroid 

value for each 1000G super-population. 40 components were chosen as leave-one out cross 

validation on the 1000G samples showed this to be the optimal number. 
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Whole genome sequencing 

For a subset of the samples obtained from HipSci and iPSCORE, whole genome sequencing 

(WGS) data were available. Within the HipSci consortium whole genome sequencing data was 

available from fibroblasts from 201 donors, iPSC lines of  152 donors (out of the 201) were 

also sequenced using WGS, a total of 242 iPSC lines were WGS sequenced within the HipSci 

project. From iPSCORE, 273 individuals had whole genome sequencing data available from 

blood (254 donors) or fibroblasts (19 donors). We reprocessed the WGS data from both 

cohorts, calling both SNVs and structural variants, as described in Jakubosky et al27. Briefly, 

we: (1) called SNPs and short indels using GATK’s best practices for genotype calling; (2) 

called duplications, deletions, inversions, reference mobile element insertions (rMEI) and 

other novel adjacencies referred to as “breakends” using SpeedSeq (LUMPY/CNVnator); (3) 

called duplications, deletions and multiallelic copy number variants (mCNVs) using Genome 

STRiP; and (4) called mobile element insertions using MELT. After calling the structural variant 

classes, subsequent quality control and a stitching and merging procedure was used to derive 

a non-redundant high-quality set of variants. In the outlier analyses a total of 34,804,470 SNPs 

and 4,721,392 indels were called in 716 high-quality samples, 425 of these samples had iPSC 

RNA-seq. 

RNA-sequencing  

RNA-sequencing feature quantification 

Raw RNA-seq data from all studies were obtained from EGA, dbGaP and SRA 

(Supplementary Table 1). Depending on the data formats provided by the respective source 

study, the starting files were provided in either CRAM, BAM or FASTQ format. To ensure 

uniform processing, CRAM and BAM files were converted to FASTQ files. Reads were 

trimmed to discard adapters and low-quality bases, as well as low quality reads. Trimming was 

performed using Trim Galore! (https://github.com/FelixKrueger/TrimGalore, v0.6), a wrapper 

around Cutadapt28 and FastQc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Trimmed and QC reads were aligned using STAR (version: 020201)29, employing the two-

pass alignment mode and the parameters as proposed by ENCODE (c.f. STAR manual). 

Alignments were performed using the GRCh37 reference genome and Ensembl 75 genome 

annotations30. Based on the aligned reads, we quantified gene-level RNA expression for all 

samples. For the subset of paired-end stranded data, we additionally quantified transcript-

ratios, exon-level, alternative polyadenylation ratios and splicing-ratios.  



9 

Gene-level RNA expression was quantified from the STAR alignments using featureCounts 

(v1.6.0)31, which was applied to the primary alignments using the “-B” and “-C” options in 

stranded mode if applicable. When multiple RNA-seq runs were available for a given iPSC 

line, count matrices were summed to obtain a consensus gene count table per line. Read 

counts were normalized by gene length and adjusted for library size using edgeR32 (V3), 

yielding adjusted transcript per million counts (TPM). The same workflow and normalization 

procedure was used to quantify exon expression levels. Given that Ensembl exons can 

overlap we chose to first merge (strand-specific) overlapping exons into meta-exons and 

quantified these meta-exons instead of the individual exons. 

To facilitate comparisons with GTEx v733, we performed a second gene-level quantification 

using RNA-SeQC34 (v.1.1.8) using the gencode v19 annotation matching the GTEx 

quantification pipeline. RNA-SeQC was run on the read and sample QC, and STAR settings 

as described above; therefore, it should be noted that the processing is not completely 

matching the GTEx pipeline. This RNA-SeQC gene-level quantification was used for analyses 

that compare i2QTL data to GTEx. Specifically, these data were used for the alignment of 

gene expression profile across studies (Figure 1A), as well as the GTEx outlier comparison 

(Figure 2B). 

Transcript ratios were quantified by determining transcript isoform levels using Salmon35 

(version: 0.8.2). The Salmon transcript database was built based on transcript information 

from Ensembl (v75). Salmon directly operates on quality controlled FASTQ data; the transcript 

quantification options “seqBias”, “gcBias” and “VBOpt” were used. Transcript count 

quantifications as returned by Salmon were normalized analogous to the approach taken for 

gene-level RNA abundance above. Subsequently, we transformed transcript levels to ratios 

per gene, by dividing the count of an individual transcript by the transcript sum per gene. 

Alternative polyadenylation (APA) quantification was performed following a workflow 

described in Zhernakova et al.36. In brief: first, overlapping 3’UTRs for transcript isoforms from 

the same gene were merged by taking the union of overlapping regions, such that the set of 

3’UTRs for each gene was a set of disjoint genomic regions. Next, these regions were 

extended by considering the most distal available polyadenylation site for each 3’UTR region, 

as present in the APADB37. For each 3’UTR, the set of alternative polyadenylation sites within 

each region were identified by taking the union of all annotated APA sites from the APADB, in 

addition to the annotated end of the 3’UTR given by the Ensembl annotation. These APA sites 

then subdivide each 3’UTR into a set of windows. The depth of RNA-seq in each window was 

then computed by using the samtools bedcov function. Finally, the read depth in each window 

was expressed as a fraction of read depth in the window immediately upstream. 
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Finally, we quantified splicing levels using leafcutter38 (v0.2.8). Quantifications of splice-events 

were calculated as described in the leafcutter manual. Junction reads were extracted from the 

source BAM files, after which leafcutter clusters junction reads into introns. Subsequently, the 

intron counts were transformed into ratios per cluster and we linked the intron locations to 

genes.  

RNA quality control  

After feature quantification, low quality RNA-seq samples were identified based on quality 

metrics from Picard39 (V2.9.0) and VerifyBamID40 (V1.1.3), as well as gene expression 

statistics. Briefly, we consider the following minimum QC values: > 15 million reads, > 30% 

coding bases, > 65% coding mRNA bases, a duplication rate lower than 75%, median 5‘ bias 

below 0.4, a 3’ bias below 4, a 5’ to 3’ bias between 0.2 and 2, a median coefficient of variation 

of coverage of the 1000 most expressed genes below 0.8, a free-mix value below 0.05. 

Additionally, we discarded samples that had low expression correlations (<0.6) to the average 

iPSC expression values across all samples as measured per chromosome. This resulted in 

1,367 iPSC lines derived from 948 donors for analysis, all of which also have genetic 

information available. We further used 98 samples from Choi et al41 and non-iPSC samples 

from HipSci11,12 which are included as reference (Supplementary Table 2). 

After RNA QC, the sample identity was validated using VerifyBamID, whereby for each RNA-

sample, the best matching genotype was identified based on the read information and 

compared to the expected match. This approach identified 36 sample swaps (between 0-26 

mismatches per study), and 33 unmatched RNA-seq samples. Where possible, sample swaps 

were corrected (N=34) and others the corresponding samples were discarded (N=2).  

eQTL annotation 
The i2QTL genetic maps were annotated by overlapping the eQTL signals with information 

taken from published eQTL maps, including the source iPSC studies11,14,17–19, GTEx33 and 

BIOS36. 

To assess the replication of the eQTL effects in the original iPSC studies11,14,17–19, we assessed 

the replication of published eQTL variants at P<0.05 in our study, and assessed effect the 

consistency of effect direction (Extended data 1). When assessing the replication within the 

iPSCORE study we exclusively considered SNP effects and excluded the effects of structural 

variants.  
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To assess the similarity of eQTL identified for different RNA traits, we assessed the pairwise 

replication between the corresponding eQTL maps. We quantified the replication at the level 

of individual genes, i.e. by mapping the eQTL types to the respective gene and considering 

the most significant association (at gene-level FDR) if multiple traits were tested for a given 

gene. If an eQTL effect discovered in the first eQTL type was replicated at FDR 10% in a 

second eQTL type, the eQTL was considered to be replicated (Figure 1D). 

To identify eQTL specific to iPSCs, we first considered the overlap of eGenes using eQTL 

maps from GTEx33 and BIOS36  (Figure 1E; at FDR<5% as provided by the respective studies 

(i.e. gene selection and FDR methods are taken as reported in the original studies). As a more 

refined measure of eQTL sharing, we used MASHR42 (V0.2.21) to probe for shared eQTL 

effects of individual variants. For this analysis, we considered genes expressed in i2QTL and 

each of the 48 GTEx tissues (n=11,682), as well as variants tested in both studies. We ran 

MASHR on the lead eQTL variant per gene, as determined by the largest absolute beta per 

gene across the assessed tissues, and included four random eQTL per genes for the 

calculation of the local false sign ratio (LSFR). Using the posterior beta’s and the LSFR values 

we estimated pairwise sharing levels between tissues. eQTL effects were considered as 

shared if they were deemed significant in both tissues (LSFR<0.05), and if the respective effect 

sizes had the same sign and were within a factor of two of each other. This analysis was 

performed twice: i) considering i2QTL iPSC eQTL and eQTL maps from 48 GTEx tissues, ii) 

additional considering single cell eQTL maps from Cuomo et al.4 (Extended data 3).  

We assessed the link between MSigDB gene sets and tissue specificity of eQTL signals from 

the MASHR analyses using the GSEA tool43,44 (V4.1), using GSEA MSigDB (v7.1) for gene 

annotation. Specifically, we used the pre-ranked mode of the tool on the sign only comparison 

of the MASHR eQTL specificity, linking gene sets with the level top eQTL sharing.  

Trans-eQTL replication 

We assessed replication of trans- eQTL associations using both expression and DNA-

methylation information. First, we considered bulk RNA-seq profiles from other holdout 

samples (n=186 donors, n=253 lines) Supplementary Table 2, to assess the replication of 

the identified trans-eQTL in independent data. Second, we considered DNA methylation data 

available for a subset of lines (n=572 donors, n=841 lines) and performed cross-omic 

replication of the identified trans-eQTL. Third, we considered replication based on the Cuomo 

et al.4 single-cell RNA-seq (scRNA-seq) data across multiple days of iPS differentiation 

towards definitive endoderm to assess the tissue specificity of trans-eQTLs. 
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The replication of the trans-eQTL using holdout bulk RNA-seq data as well as scRNA-seq data 

from Cuomo et al.28 was performed using the same workflow as used for trans-eQTL discovery 

analysis, with the exception of the adjustment for PEER factors. To rule out the any risk of 

synthetic associations by adjustment for PEER factors in the bulk replication, only known 

factors were considered to adjust for confounding: inferred ancestry (from genotyped data), 

sequencing type (paired-end (yes/no), stranded (yes/no)) and hot-encoded vectors describing 

the dataset of origin. For the scRNA-seq replication, we reprocessed the reads analogously 

to the bulk RNA-seq data and we quantified expression with featureCounts. QC steps and the 

aggregation strategy of cells from the same cell state and line as well as the batch correction 

were implemented according to Cuomo et al4. We deemed trans-eQTL as replicated if the raw 

P-value of the association was below 0.05 & the effect direction was matching to the effect 

observed in the trans-eQTL map. 

The replication within the DNA methylation data was similarly matched as closely as possible. 

We started with a joint normalization of the Banovich et al19 and HipSci11,12 DNA methylation 

arrays. As the data was generated on two different Illumina methylation arrays, the Illumina 

450K and Illumina EPIC array, we started with sub-selecting the CpG probes that are present 

on both. After this we normalized the DNA methylation profiles, as described previously45, 

based on the DASEN46 normalization. After joint normalization, we corrected the data for the 

first 20 PCs to account for batch effects in the DNA methylation data. In order to replicate the 

trans-eQTL in DNA methylation data, we linked CpG probes to genes. We chose to do so by 

linking a gene to all DNA methylation probes inside the gene and CpG probes that were within 

250Kb of the gene TSS and TES, i.e. our cis-eQTL window. Given that we test a multitude of 

CpG’s per trans-eQTL gene, we determine the number of independent DNA methylation 

probes per gene (R2<0.2) and used the Bonferroni procedure to correct for the number of 

independent probes that were tested per gene. We deemed trans-eQTL as replicated in DNA 

methylation when the CpG corrected replication p-value was below 0.05.  

To assess if we replicated more effects than expected by chance, we repeated the trans-eQTL 

and trans-meQTL replication on random trans-eQTL pairs. To match the trans-eQTL 

characteristics, we chose to link the trans-eQTL variant to a gene with matched expression 

characteristics, by selecting the ten genes per trans-gene with the closest average and 

variance levels. The same random pairs were used for the trans-meQTL replication as well as 

the single cell replication. 
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Supplementary Tables 
Supplementary Table 1. Overview of study name, data types, and accession IDs for source 

studies that are contained in the i2QTL resource 
Supplementary Table 2. Metadata for iPSCs contained in the i2QTL resource 
Supplementary Table 3. Summary statistics of lead gene-level cis-eQTL. Beta and beta_se 

obtained using a linear mixed model with P-values obtained from a likelihood ratio test, 

empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 
Supplementary Table 4. Summary statistics of lead trans-cript cis-eQTL. Beta and beta_se 

obtained using a linear mixed model with P-values obtained from a likelihood ratio test, 

empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 

Supplementary Table 5. Summary statistics of lead exon cis-eQTL. Beta and beta_se 

obtained using a linear mixed model with P-values obtained from a likelihood ratio test, 

empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 
Supplementary Table 6. Summary statistics of lead splicing cis-eQTL. Beta and beta_se 

obtained using a linear mixed model with P-values obtained from a likelihood ratio test, 

empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 
Supplementary Table 7. Summary statistics of lead APA cis-eQTL. Beta and beta_se 

obtained using a linear mixed model with P-values obtained from a likelihood ratio test, 

empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 
Supplementary Table 8. GSEA enrichment results for the tissue specificity of eQTL in iPSC 

as derived from the MASHR analysis on GTEx and i2QTL. 

Supplementary Table 9. Lead gene-level trans-eQTL identified in the i2QTL study. Beta and 

beta_se obtained using a linear mixed model with P-values obtained from a likelihood ratio 

test, empirical P-values are derived from gene-level permutations and global P-values are 

corrected for the number of features tested using Storey’s Q  (Methods). 
Supplementary Table 10. Full gene-level trans-eQTL identified in the i2QTL study.  Beta and 

beta_se obtained using a linear mixed model with P-values obtained from a likelihood ratio 

test, empirical P-values are derived from gene-level permutations and global P-values are 
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