Introduction

In this work, we explore the potential of deep learning to streamline the process of
identifying new potential drugs through the computational generation of molecules
with interesting biological properties. Two deep neural networks compose our
targeted generation framework: the Generator, which is trained to learn the building
rules of valid molecules employing SMILES strings notation, and the Predictor which
evaluates the newly generated compounds by predicting their affinity for the desired
target. Then, the Generator is optimised through Reinforcement Learning to produce

molecules with bespoken properties.

The innovation of this approach is the exploratory strategy applied during the
reinforcement training process that seeks to add novelty to the generated compounds.
This training strategy employs two Generators interchangeably to sample new SMILES:
the initially trained model that will remain fixed and a copy of the previous one that
will be updated during the training to uncover the most promising molecules. The
evolution of the reward assigned by the Predictor determines how often each one is
employed to select the next token of the molecule. This strategy establishes a
compromise between the need to acquire more information about the chemical space

and the need to sample new molecules, with the experience gained so far.

To demonstrate the effectiveness of the method, the Generator is trained to design
molecules with an optimised coefficient of partition and high inhibitory power against
the adenosine A2A and k-opioid receptors. The results reveal that the model can
effectively adjust the newly generated molecules towards the wanted direction. More
importantly, it is possible to find promising sets of unique and diverse molecules, which

is the main purpose of the newly implemented strategy.

Workflow

»| Batches of SMILES |

NCCclnccsl e
Sampling of OCHN Prediction of
new SMILES cleceeclC(=0)OCC the property
P e T e - =
Softmax Layer >‘ “ - .
!‘ l 1 L PO"_Cy . Input Layer
1 DeRssitayer | 1 Gradient = z
1 . - mbedding Layer
(nbinsec | R | iaseq | | Alsorithm
| Unbiased | | Biased | LSTM Layer
|Generator | _ |Generator |
d . . LSTM Layer
! | One-HotEncode | I Dense Layer
1
"_ \. Input Layer »l 4 \\ Output Layer Y,
~ - - — 5

NCCclncesl 0.32 Predicted
OCH#N 0.85 Stalkie
cleceeclC(=0)OCC 0.12

| REWARD |

Determines which
Generator will be
more often used




Exploratory Strategy

o Softmax activation function.

e Two Generator methodology based on the evolution of the reward.

— G fN c foml A€
For each token GEXPIC":' : & : i ka " _{v_\
selection: gl One-Hot One-Hot One-Hot | * One-Hot
= biased |
€ = rand[0,1] M —b Lstm sl -l - | P
ISTM  —»  ISTM I5TM > I 1ST™
Softmax 2 Softmax Softmax 2 , Softmax
- I 2 v
yes = z = ~ /
Ife>A ¢ N < c < c < 1 £ .4 E

-
e

Softmax Softmax Softmax | Softmax

Dense Dense Dense Dense

LSTM LSTM LSTM LSTM LSTM
> LSTM LSTM LSTM LSTM LSTM
- One-Hot One-Hot f One-Hot One-Hot One-Hot
Reward evolution Explore: ek i : p
. Generator + \ t ‘ t 1 \ ‘ 1
determines A unbiased G y N c c & =

e Memory regularizer to penalize repetitive generation

Dependencies

All the code is implemented on Python. The Python version should be greater and

equal to 3.6. The following packages are necessary to install:

e Scikit-Learning (version >=0.23)

o pip install scikit-learn o pip install bunch
e Numpy (version >= 1.17) e Json (version >= 3.0)
o pip install numpy o pip install jsonschema
e Seaborn (version >=0.9) e RDKit (version >=2019.09)
o pip install seaborn o conda install -c conda-forge
e Tqdm (version >= 4.37) rdkit
o pip install tqdm e Pandas (version >= 0.25)
e Tensorflow (version >= 1.13) o pip install pandas
o Pip install tensorflow e Matplotlib (version >= 3.1.1)
e Keras (version >=2.3.1) o pip install matplotlib

o pip install Keras

e Bunch (version >= [.0)



Usage

The reproducibility of all modules that form the framework (the unbiased Generator,
the Predictor, and the Generator’s training process through Reinforcement Learning)
is completely ensured. The unbiased Generator and the necessary Predictors were
previously trained and ready to be employed. These models are placed in the folders
‘generator model’, ‘predictor_models_a2d’ and ‘predictor_models_kor, respectively.
However, they can also be obtained directly by running the respective codes present
in the ‘SmileGenerator’ and ‘Predictor’ folders:

e Unbiased Generator: Access the SmileGenerator folder and execute the
main.py file. Place the obtained files in the 'generator_model' folder.

e Predictor: Access the Predictor folder and execute the main.py file. There are
several hypotheses for the Predictor architecture and, as such, it is necessary to
choose whether to implement the Predictor based on deep-learning (‘dnn’) or
machine learning ('SVR', 'RF', or 'KNN") and whether the descriptor to employ is
'SMILES' notation or 'ECFP'. Place the obtained files in the 'predictor_models_a2d'
folder.

e Biased Generator: Execute the 'mainReinforce.py' file. It is necessary to specify a
priori what is the objective to optimize: the biological affinity for Adenosine A2A
(‘a2a"), k-opioid receptor (kor), or partition coefficient (logP). Thus, the unbiased
Generator and the respective Predictor models are loaded. Regardless of the
objective, first, a set of molecules is generated from the initial Generator, through
which Table 2 in the Results section is constructed. Then, Reinforcement Learning
is applied to obtain the biased Generator. Finally, another set of molecules is

generated to be compared with the initially generated set.

It must be emphasized that all the parameters can be adjusted by the user in the
‘configReinforce.json’ file. The default setting is the one that guaranteed the results

depicted in the paper.



