
Dear Prof Daniele Marinazzo, 
 
We thank you for your evaluation of our revised manuscript. We have considered the new 
comments made by the reviewers, addressing them in the attached reply. 
 
To address your remaining concern on the issue of binarization, we have clarified the 
difference between our approach and the approach taken by (Hudson PNAS 2014) in our 
response to Reviewer 2. While the question of how to define states from neural recordings is 
interesting and important, we think this is too big a question to address in our revision. We 
have thus expanded a paragraph on this question to the discussion. 
 
With this revision, our manuscript now addresses all concerns raised by the reviewers as 
you see in our attached responses. We believe our revised manuscript is now strong and 
clear and is suitable for publication in PLoS Computational Biology. 
 
Regards, 
 
Angus Leung & Naotsugu Tsuchiya 
 
  



Reviewer #1: 

The authors have satisfactorily addressed all of my points. 

We would like to thank you for taking the time to go through our manuscript, and for your 
comments which have helped us improve the manuscript. 

 

  



Reviewer #2: 

This draft of this paper is much improved over the previous draft. In particular, I 
appreciate the authors’ far more nuanced discussion of what their results imply for 
our understanding of the fly brain and for consciousness more broadly. I also 
appreciate the authors’ clearer discussion of how they computed transition probability 
matrices, and how those were statistically disconnected for all possible system cuts. 
My concerns about these points have been satisfactorily addressed. 

We would like to thank you for your time and helpful comments. We are glad that we have 
satisfactorily addressed your initial concerns. 

I am still, however, concerned with the validity of computing these matrices from 
binarized time-series, given that all of the results reported in this paper rest on the 
validity of this approach. Given that this binarization is used to compute transition 
probability matrices, the authors’ approach essentially assumes that a local field 
potential can only enter two “relevant” states, with an equal probability of being in one 
state or the other (though, on this point, I appreciate their demonstration that their 
results are consistent across different binarization thresholds). As I said in my 
previous review, this is a problematic assumption for a continuous, non-spiking 
process like a local field potential. A much more rigorous approach to the same 
problem was taken by Hudson et al, “Recovery of consciousness is mediated by a 
network of discrete metastable activity states,” PNAS (2014), where discrete 
transition probability matrices were estimated from local field potential recordings 
using k-means clustering on principal components estimated from the data. 
Moreover, given the results reported therein (i.e., that a local field potential can 
spend more time in some states than in others), a simple binarization at the median 
for both awake and anesthetized signals (which assumes equal time spent in each 
state) cannot capture the actual state transitions of the system. The authors’ 
simulation results using a nonlinear autoregressive process do alleviate my concerns 
along these lines somewhat, and as such I strongly recommend including that 
analysis in the supplement. But, I would still like to see either a more rigorous 
discretization approach (for e.g. the one taken by Hudson et al, using k-means 
clustering of principle components estimated from local field potential data), or at 
least a more detailed discussion of the limitations of the simple binarization used 
here. 

We agree that the question of how to discretise LFP states is indeed an important one. We 
would however first like to clarify several points regarding our binarization.  

Firstly, while our binarization using the median forces each individual channel to spend equal 
time in each of two states, this is not necessarily true for the states of 4 channels together 
spending equal time in each of 16 states (i.e. 2^4 = 16 possible states). Indeed, for a given 
channel set, we do observe that some of the 16 multichannel states can occur more than 
others. What integrated information tries to measure is how much of the probability for each 
of these states cannot be explained by (or reduced into) the probabilities of the constituent 
subparts of the system. IIT does so through the statistical disconnection (i.e. forced 
independence via noising) of the channels. 



Secondly, we were limited to considering channels with 2 possible states due to limitations of 
packages used for computing integrated information (PyPhi). While this limitation has very 
recently been addressed (Gomez 2020 Entropy), we note that when considering more 
states, the TPMs will potentially become very sparse. For example, if each channel can take 
3 states, then a set of 4 channels can take 3^4 = 81 states, 5 times more states than the 
binarized 4 channels (2^4 = 16). Consequently, many states or transitions may seldom be 
observed in the multichannel data, leading to unreliable estimates of transition probabilities. 
Also, this added complexity will exponentially increase computational costs of finding the 
MIP and other operations necessary to compute integrated information.  

In summary, while we agree with the reviewer that this issue requires further investigation, 
we see it outside the scope of the current paper which is already fairly dense. 

 

We thank you for pointing us to the methods employed in Hudson 2014 PNAS. The two main 
components in their methods regarding operationalizing states are to: 1) compute power on 
time windows, instead of at each time step (and employing PCA to reduce dimensionality 
across frequencies and regions), and 2) cluster of states (based on power spectra across 
regions). 

While we think (1) is a potentially interesting way of operationalizing states, it is somewhat 
removed from the framework of IIT. Specifically, IIT 3.0 (Oizumi 2014 PLoS Comp Bio) is 
concerned with moment-by-moment states in the time domain (e.g. voltage; which we have 
binarized using median split), rather than window-by-window states (e.g. power; however, 
we have also worked on the spectral version of the integrated information, based on IIT 2.0; 
Cohen 2020 JNsci Methods). While we think understanding how to analyse and interpret 
frequency domain data using the IIT 3.0 framework is interesting and potentially important, it 
is a substantial undertaking based on our own experience for IIT 2.0. Therefore, we consider 
it outside the scope of the current manuscript. 

Regarding (2), we considered defining the states of each channel by clustering voltages 
(rather than clustering on power). However, we found that the distributions of raw voltages 
were largely normal (as might be expected from the central limit theorem), giving no 
motivation for using clustering to define states (Fig R2-1). 

 

 



Fig R2-1​. Distributions of z-scored voltages from a representative fly. (​A​) Probability 
normalised histograms of voltages z-scored across 8 epochs of each wake (red) and 
anesthesia (blue), for the most central channel. (​B​) Cumulative distributions of z-scored 
voltages for all 15 channels from the same fly, across all 8 trials of each wake and 
anesthesia (red and blue, respectively; 30 lines in total). Voltages were z-scored per channel 
and condition. The distributions indicate that none of the channels exhibit specific voltage 
ranges which can be treated as distinct states. 

 

 

We have thus decided to expand our discussion on the limitations of our method, specifically 
regarding the defining of states. As you recommend it, we also provide the nonlinear 
autoregressive simulation result in supplementary Text S7 (Line 588). 

● Line 606 - ADD/MODIFY (relevant modifications ​bolded​): 
○ “We acknowledge, however, ​potential limitations​ underlying our recordings 

and analyses​. ​Firstly​, it is conceivable that, due to the complexity of 
numerous brain structures in the centre of the brain compared to the relative 
simplicity of fewer structures in the periphery, signals from a mix of many 
different structures may have cancelled each other at the raw LFP level. 
Nonetheless, these central structures may have been more sensitive to the 
effects of anesthesia. Indeed, we found the effects of anesthesia on 
system-level integrated information and the IIS to be slightly more reliable for 
central channel sets (Fig 5C,E). ​Secondly, our method of discretizing LFP 
voltages into binary states may not accurately represent the true space 
of real states of each of the channels, and also assumes equal 
probabilities of each state. Further, while IIT 3.0 focuses on 
moment-by-moment states, other methods, such as considering 
spectral power in time windows [Hudson 2014 PNAS] may be more 
useful in describing the states of channels, and so expanding IIT’s 
framework to consider frequency domain data potentially is a promising 
avenue for future research [Cohen 2020 JNeuroMethods].​ Thirdly, we 
note that spurious high-order correlations can be found in partially observed 
multivariate systems and Markovian approximations of non-Markovian 
systems. These three limitations can be addressed through further 
investigation, especially with recordings at higher spatial resolutions than 
LFP, such as optical imaging or neuropixel probes, and expanding of IIT’s 
theoretical framework.” 

  



Reviewer #3: 

I would like to congratulate the authors on a clear improvement of the manuscript. 
Related to my previous review, statistical reporting has substantially improved 
(Tables 1 and 2 are especially valuable), and the extra tests and model metrics 
provide much more information for readers. I am satisfied with the updated 
discussion of statistical causality, the role of the TPM and its relation with 
Oizumi2014. 

I have recommended the paper for acceptance, although I very strongly suggest the 
authors consider two further points which have not been addressed so far: 

We thank you again for your time and comments which have helped us improve our 
manuscript. We are glad that we have satisfactorily addressed your initial concerns. 

- Most importantly, on the topic of 1-channel mechanisms: the authors should 
mention (and possibly explore further in future work) the relation between 1-channel 
\phi and single-channel auto-correlation. Could a change in auto-correlation between 
conditions explain (some of) the observed results? 

We directly compared differences (wake minus anesthesia) in 1-channel φ and difference in 
single-channel autocorrelation (Fig R3-1). To compute autocorrelation for a given channel, 
we correlated each LFP time series (of 2.25 s) with itself, shifted by \tau = 4 ms 
(corresponding to \tau = 4 ms for our integrated information results). Fig R3-1A plots 
autocorrelation values against 1-channel φ values for one fly during wakefulness. Note that 
each channel only has one autocorrelation value but multiple 1-channel φ values (each from 
a different set of 4 channels; 14 choose 3 = 364 channel sets containing the channel; error 
bars in Fig R3-1A are standard deviations across 364 1-channel φ values). As you can see, 
some fixed autocorrelation value (x-axis of Fig R3-1A) of a given channel corresponds to 
multiple, highly varied 1-channel φ values (y-axis). ​This is expected theoretically, because 
1-channel ​φ​ has to reflect on how the channel is embedded in and interacts with the other 
three channels. 

 



 

Fig R3-1​. Relationship between 1-channel integrated information and autocorrelation, at \tau 
= 4 ms. (​A​) Single channel autocorrelation plotted against 1-channel integrated information, 
for a representative fly during wakefulness. Each point corresponds to 1-channel. Error bars 
are standard deviations of 1-channel ​φ for a given channel (each channel is contained in 364 
out of all 1365 sets of 4 channels). Title gives the correlation coefficient between 
autocorrelation and 1-channel φ for the fly. (​B​) Difference (wake - anesthesia) in Fisher ​z 
transformed single-channel autocorrelation (Δ autocorrelation) plotted against difference in 
1-channel integrated information (Δφ), for the same fly. Title gives the correlation coefficient 
between Δ autocorrelation and Δφ for the fly. (​C​) Correlation coefficients between Δ 
autocorrelation and Δφ for each individual fly. Solid line indicates the average correlation 
coefficient across flies (coefficients were averaged after Fisher ​z​ transform, plotted is inverse 
transform of the mean). 

 

 

We next subtracted Fisher ​z​ transformed autocorrelation values during anesthesia from 
those during wakefulness (Δ autocorrelation). Fig R3-1B shows Δ autocorrelation plotted 
against Δφ (wake φ minus anesthetised φ), for the same fly as Fig R3-1A. ​Correlations at 
each fly, between ​Δ autocorrelation and average Δφ values of each channel, indicated that 
there is some positive correlation between the two measures at the group level (Fig R3-1C). 
We confirmed this using a one-sample t-test comparing Fisher ​z​ transformed correlation 
coefficients to 0 (M = 0.424, SD = 0.443, t(12) = 4.308, p = .001). In summary, while there 
seems to be some relationship between the two measures, it is clearly not 1-to-1. As this 
may be an important characteristic of 1-channel integrated information, and by extension the 
integrated information structure, we have decided to include these results as new 
supplementary Text S8, referred to in the discussion (Line 655). 

● Line 655 - ADD 



○ “While further investigation is necessary to understand our finding regarding 
1-channel integrated information ​(e.g. such as 1-channel integrated 
information being potentially related to autocorrelation; see Text S8)​ our 
main results regarding the IIS are unaffected, as we verified that 1-channel 
mechanisms were not driving its classification performance (Text S6).” 

- I find the claims about feedforward systems rather overstated: it is possible to have 
spurious high-order correlations in multivariate systems when they are partially 
observed, or when a non-Markovian system is approximated through a Markovian 
assumption (as is the case here). In this sense, the simulation the authors provided 
as a reply to Reviewer #2 does not really address the reviewer's concerns, since it is 
not a non-linear, non-Markovian, or partially observed system. 

We agree that partially observed multivariate systems and Markovian approximation of 
non-Markovian systems can appear to have high-order correlations. We would like to clarify 
that our simulation is non-linear (specifically, a threshold which must be met before a node 
can influence another node), which is the original point that we tried to address in this 
simulation. We are planning future work using simulations to assess how integrated 
information behaves with the other two conditions (partially observed systems and 
Markovian approximation of non-Markovian systems), and for now will include these 
important considerations as limitations in the discussion along with the nonlinear 
autoregressive simulation results (as Reviewer 2 recommended) in the new supplementary 
material Text S7. 

● Line 588 - ADD 
○ “...as system-level integrated information by design should be greater for 

those areas which have stronger recurrent connectivity as a whole (see Text 
S7)” 

● Line 606 - ADD/MODIFY (relevant modifications ​bolded​): 
○ “We acknowledge, however, ​potential limitations​ underlying our recordings 

and analyses​. ​Firstly​, it is conceivable that, due to the complexity of 
numerous brain structures in the centre of the brain compared to the relative 
simplicity of fewer structures in the periphery, signals from a mix of many 
different structures may have cancelled each other at the raw LFP level. 
Nonetheless, these central structures may have been more sensitive to the 
effects of anesthesia. Indeed, we found the effects of anesthesia on 
system-level integrated information and the IIS to be slightly more reliable for 
central channel sets (Fig 5C,E). Secondly, our method of discretizing LFP 
voltages into binary states may not accurately represent the true space of real 
states of each of the channels, and also assumes equal probabilities of each 
state. Further, while IIT 3.0 focuses on moment-by-moment states, other 
methods, such as considering spectral power in time windows [Hudson 2014 
PNAS] may be more useful in describing the states of channels, and so 
expanding IIT’s framework to consider frequency domain data potentially is a 
promising avenue for future research [Cohen 2020 JNeuroMethods]. ​Thirdly, 
we note that spurious high-order correlations can be found in partially 
observed multivariate systems and Markovian approximations of 
non-Markovian systems. These three limitations can be addressed 
through further investigation, especially with recordings at higher 



spatial resolutions than LFP, such as optical imaging or neuropixel 
probes, and expanding of IIT’s theoretical framework.​” 

As a minor comment, the argument that the authors didn't consider \tau > 6ms 
because of limited data is rather poor -- increasing \tau by 1ms only reduces the 
amount of data by 1 sample (judging by the 1kHz sampling frequency), which is not a 
huge reduction. The authors are free to keep this argument if they like, but I suspect 
informed readers will find it unpersuasive. 

You are correct here. We initially used downsampling as a way of varying \tau, which 
significantly reduces the number of samples (i.e. halving the sampling rate halves the 
number of samples). However, in the end, we used the time-sample-skipping scheme. The 
latter method does not reduce the number of available samples much. We have updated the 
text to remove this reasoning, and to explicitly mention computational cost as the limiting 
factor. 

● Line 817 - REPLACE: 
○ Old: “, and larger 𝜏 reduces the number of transitions that we can use to 

compute the TPM (but see Text S2 for repeated analyses also at 𝜏 = 2 ms 
and 6 ms)” 

○ NEW​: “. A comprehensive search across 𝜏 values is infeasible due to 
computational cost (but see Text S2 for repeated analyses also at 𝜏 = 2 ms 
and 6 ms)” 

● Text S2 Para 1 - REPLACE: 
○ Old: “Also, given the limited amount of our time series data, larger 𝜏 values 

reduce the number of transitions we can observe in order to build the TPM. 
Thus we chose 4 ms as our timescale.” 

○ NEW​: “Thus we chose 4 ms as our timescale. A comprehensive search 
across 𝜏 values is infeasible due to the computational cost of system-level 
integrated information.” 

 


