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Supporting Information

A. Proofs

Theorem 1: aACP-BAC achieves uniform control of BACW (⋅) at level α, i.e.

BACW (T ) ≤ α T = 1,2, ... (1)

Proof. At each time point, aACP-BAC launches a set of hypothesis tests comparing f̂t to

models with indices M̂t = {Â1, ..., Ât, Ât +1, ..., t−1}. Let the F̃t-measurable random variable

Gt indicate the indices of the true null hypotheses, i.e.

Ĝt = {j ∈ M̂t ∶ f̂j ↛ε f̂t} .

It is easy to see that the number of bad approvals is upper bounded by the number of

incorrect rejections of the launched null hypotheses, i.e.

T

∑
1∨(T−W )

1{∃t′ = 1,⋯, t − 1 s.t. f̂Ât′ ↛ε f̂Ât}

≤
T

∑
1∨(T−W )

1{∃j ∈ Ĝt,∃t
′ = 1,⋯,∆t, s.t. reject f̂j ↛ε f̂t at time t + t′} .

(2)

Taking the expectations on both sides, BACW (T ) is upper-bounded by

T

∑
1∨(T−W )

Pr (∃j ∈ Ĝt,∃t
′ = 1,⋯,∆t, s.t. reject f̂j ↛ε f̂t at time t + t′) . (3)

Since the hypothesis tests are tested using a gatekeeping procedure, each probability in (3) is

equal to the probability of rejecting the first true null hypothesis in the gatekeeping sequence.

Thus,

Pr (∃j ∈ Ĝt,∃t
′ = 1,⋯,∆t, s.t. reject f̂j ↛ε f̂t at time t + t′) (4)

=Pr (Ĝt ≠ ∅,∃t
′ = 1,⋯,∆t, s.t. reject f̂min Ĝt

↛ε f̂t at time t + t′) (5)

≤E [Pr (Ĝt ≠ ∅,∃t
′ = 1,⋯,∆t, s.t. reject f̂min Ĝt

↛ε f̂t at time t + t′ ∣ F̃t)] (6)

≤E [α̂t1{Ĝt ≠ ∅}] . (7)
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Summing together the probabilities within the window, we have

BACW (T ) ≤ E

⎡
⎢
⎢
⎢
⎢
⎣

T

∑
1∨(T−W )

α̂t

⎤
⎥
⎥
⎥
⎥
⎦

≤ α, (8)

where the last inequality follows from the fact that α̂t is always selected such that

T

∑
1∨(T−W )

α̂t ≤ α.

Theorem 2: aACP-BABR achieves uniform control of meBARW (⋅) and meBBRW (⋅)

at levels α and α′, respectively, i.e.

meBARW (T ) ≤ α ∀T = 1,2,⋯ (9)

meBBRW (T ) ≤ α′ ∀T = 1,2,⋯ (10)

Proof. For all T , α̂T is selected such that

ˆBARW ′(T ) =
∑
T
t=1 α̂t1{t −W ≤ t′ +∆t′ ≤ t}

1 +∑
T−1
t=1∨(T−W ′)

1{B̂t−1 ≠ B̂t}
≤ α ∀W ′ = 1, ...,W. (11)

Note that we can always set α̂T = 0 to satisfy these constraints, assuming that (11) was

satisfied at times t = 1, ..., T − 1. Using the result in the proof of Theorem 1, we then bound

the numerator of BARW (T ) as follows

E

⎡
⎢
⎢
⎢
⎢
⎣

T

∑
t=1∨(T−W )

1{∃t′ = 1, ..., t − 1 s.t. f̂Ât′ ↛ε,t f̂Ât}

⎤
⎥
⎥
⎥
⎥
⎦

(12)

≤ E [
T

∑
t=1

α̂t1{t −W ≤ t′ +∆t′ ≤ t}] (13)

≤ E

⎡
⎢
⎢
⎢
⎢
⎣

α
⎛

⎝
1 +

T

∑
t=1∨(T−W )

1{B̂t−1 ≠ B̂t}
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (14)

where the last line follows from (11). Rearranging, we get that meBARW (T ) ≤ α. The proof

for uniform control of meBBRW (⋅) is essentially the same, where we replace the alpha-

spending function with α′t and the threshold with α′.
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Algorithm 1: aACP-BAC

for t = 1,2, ... do

Ât = Ât−1;

/* Determine if there are new approvals */

for j = Ât−1 + 1, ..., t − 1 do

if t ≤ j +∆j ; // If f̂j is under consideration for approval

then

Run ε-acceptability tests: Test null hypotheses f̂j′ ↛ε f̂j for j′ = Â1, ..., Âj−1, Âj−1 + 1, ..., Ât−1

with critical value cj(t) in gatekeeping style;

if All ε-acceptability tests pass then

Ât = j;
end

end

end

/* Launch new hypothesis tests for new model proposal */

Launch family of ε-acceptability tests with null hypotheses f̂j ↛ε f̂t for j = Â1, ...Ât, Ât + 1, ..., t − 1;

Choose α̂t such that (4) is satisfied;

Select alpha-spending function for α̂t and its critical value function ct(⋅) over the next ∆t time points.;

end

[Table 1 about here.]
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Algorithm 2: aACP-BABR

for t = 1,2, ... do

Ât = Ât−1;

/* Determine if there are new approvals */

for j = Ât−1 + 1, ..., t − 1 do

if t ≤ j +∆j ; // If f̂j is under consideration for approval

then

Run ε-acceptability tests: Test null hypotheses f̂j′ ↛ε f̂j for j′ = Âj , ..., Ât−1 with critical value

cj(t) in gatekeeping style;

if All ε-acceptability tests pass then

Ât = j;
end

end

end

B̂t = B̂t−1;

/* Determine if there are new benchmarks */

for j = Â1, ..., Ât−1 do

if j > B̂t−1 and t ≤ j +∆j ; // If f̂j is under consideration for approval

then

Run superiority tests: Test null hypotheses f̂j′ ↛0 f̂j for j′ = B̂j , ..., B̂t−1 with critical value c′j(t)
in gatekeeping style;

if All superiority tests pass then

Ât = j;
end

end

end

/* Launch new hypothesis tests for new model proposal */

Launch family of ε-acceptability tests with null hypotheses f̂j ↛ε f̂t for j = Â1, ...Ât, Ât + 1, ..., t − 1;

Launch family of superiority tests with null hypotheses f̂j ↛ε f̂t for j = B̂t, ..., t − 1;

Choose α̂t, α̂
′

t such that (11) and (12) are satisfied;

Select alpha-spending function for α̂t and α̂′t and their critical value functions ct(⋅), c′t(⋅) over the next

∆t time points.;

end
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[Table 2 about here.]
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B. Simulation settings

We ran 200 replicates for each simulation.

B.1 Hypothesis testing procedure for acceptability

All the aACPs tested for acceptability of a modification from f to f ′ with null hypothesis

H0 ∶ f →ε f ′ in the following manner. Let the true difference in sensitivities and specificities

be denoted (θ1, θ2). At each stage of the group sequential test, we construct rectangular

confidence regions for the evaluation metrics using confidence intervals for each metric (Cook,

1994). At any stage, if the rectangular confidence region is completely within the region of

acceptable modifications as defined by the NI margin ε, then we reject the null hypothesis.

For simplicity, we use Pocock’s alpha-spending function to determine the confidence levels at

each stage (Pocock, 1977). Because our estimates for θ1 and θ2 are independent conditional

on the number of negative and positive samples, we can control the Type I error of testing

H0 ∶ f →ε f ′ at level α by using the significance thresholds from level 1 −
√

1 − α group

sequential tests for the individual metrics. It is easy to see why this works:

Pr(Confidence region fails to cover (θ1, θ2) at some stage) (15)

= 1 −Pr(Confidence region covers (θ1, θ2) at all stages) (16)

= 1 −Pr(CI covers θ1 at all stages)Pr(CI covers θ2 at all stages) (17)

= α (18)

We test for superiority by setting ε = 0.

B.2 Incremental deterioration

We set total time T = 200 and the maximum wait time ∆ = 5 for all models. The number

of new monitoring observations at each time point increments by ten to estimate the true

performance difference with increasing precision over time, starting with 200 observations.
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B.3 Periodic model deterioration and improvement

We set total time T = 100 and maximum wait time ∆ = 5 for all models. We accumulate 200

new observations at each time point.

B.4 Accumulating data

Each patient is represented by 30 covariates and the true outcome is generated using a

logistic model. The developer performs logistic regression with a lasso penalty and tunes the

penalty parameter using cross-validation. To increase the margin of model improvement at

later time points and the ability to detect small improvements, we increase the number of

training observations at each time point by five, starting with size 20, and use a larger wait

time of ∆ = 10. The total time is T = 40 since the model performance plateaus quickly.

B.5 Significant model improvements

In order to make the model improvements significant with high probability, we accumulate

650 observations at each time point, which is more than the other simulation settings. Since

large improvements are relatively rare, we used a short total time of T = 20. Since a company

is likely more confident in these improvements, the maximum wait time is set to ∆ = 3.

B.6 Time trends

The total time is T = 100 and the wait time is ∆ = 5. We accumulate 300 new observations

at each time point.

C. Sensitivity to choice of hyper-parameters

The definition of the error rates depends on two hyper-parameters: the window size W and

the non-inferiority margin ε. To study how sensitive the aACPs are to these hyper-parameter,

we run the same set of simulations from Section 6 but vary either W or ε.

First, we vary ε over the values 0, 0.01, 0.05, and 0.1 while keeping the window W = 15
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fixed (Figure 1). (For ε = 0, note that approval requires demonstrating superiority.) As the

NI margin increases, all the aACPs approve more modifications, both bad and good ones.

Compared to aACP-BAC and -BABR, the error rates of aACP-Reset and -Baseline increase

more quickly with respect to ε. As such, the relative ordering between the aACPs is similar

across different values of ε.

In Figure 2, we vary the window size W over the values 1, 15, 25, and 50 while keeping

the NI margin ε = 0.05 fixed. Only aACP-BAC and -BABR depend on W ; The other aACPs

are agnostic to the choice of W . As W increases, aACP-BAC and -BABR become more

conservative and approve fewer modifications. Since their error rates are already quite low,

the error rates are not very sensitive to changes in W . On the other hand, choosing an

excessively large value of W , such as our example with W = 50, leads to significantly slower

approval rates for proposed model improvements. As such, we suggest selecting a value for

W that corresponds to the minimal time period one would like to control error rates for.

[Figure 1 about here.]

[Figure 2 about here.]
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Incremental model deterioration, Section 6.1

Periodic model deterioration/improvement, Section 6.2

Training on accumulating data, Section 6.3

Significant model improvement, Section 6.4

Figure 1. Specificity of the currently approved model over time for different simulation
settings (rows) and non-inferiority margin values ε (columns). Sensitivity plots are very
similar and, thus, have been omitted.
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Incremental model deterioration, Section 6.1

Periodic model deterioration/improvement, Section 6.2

Training on accumulating data, Section 6.3

Significant model improvement, Section 6.4

Figure 2. Specificity of the currently approved model over time for different simulation
settings (rows) and window sizes W (columns). Sensitivity plots are very similar and, thus,
have been omitted.
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