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Supporting Information

A. Proofs

THEOREM 1: aACP-BAC achieves uniform control of BACy (+) at level v, i.e.

BACw(T)<a  T=1,2,.. (1)

Proof. At each time point, aACP-BAC launches a set of hypothesis tests comparing ft to
models with indices M, = {1211, e At, A+ 1,...,t=1}. Let the F,-measurable random variable

G, indicate the indices of the true null hypotheses, i.e.
Go={jel:f;»fi}.
It is easy to see that the number of bad approvals is upper bounded by the number of

incorrect rejections of the launched null hypotheses, i.e.
T

Y {3t =1 t-1st i, # fa)
1v(T-W) !
T (2)
< Z 1 {Elj € Gy, 3t' =1, Ay, s.t. reject f; ». f; at time t+t’}.
1v(T-W)

Taking the expectations on both sides, BACy (T") is upper-bounded by

T
> Pr(ﬂj € Gy, At =1, Ay, s.t. reject f; »¢ fi at time t+t’). (3)
1v(T-W)

Since the hypothesis tests are tested using a gatekeeping procedure, each probability in (3) is

equal to the probability of rejecting the first true null hypothesis in the gatekeeping sequence.

Thus,
Pr(EIj €G3t =1, A\, s.t. reject f] +. f, at time t+t’) (4)
=Pr(G, 22,3t =1, A, s.t. reject fminét + f, at time ¢ + t') (5)
<FE [Pr (ét +@,3t' =1, A, s.t. reject fminét . f, at time ¢+ ¢’ | ]:"t)] (6)

<B[&1{G,#2}]. (7)
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Summing together the probabilities within the window, we have

5 @t] <o, ®)

BACw(T)< E
1v(T-W)

where the last inequality follows from the fact that ¢&; is always selected such that

THEOREM 2: aACP-BABR achieves uniform control of meBARwy (1) and meBBRy/ (+)

at levels a and o', respectively, i.e.
meBARy (T) <« VI'=1,2,- 9)

meBBRy (T') < o' VI'=1,2,- (10)

Proof. For all T, ar is selected such that

T A
A G0l {t-W <t + Ap <t
BARWf(T):Zt‘lo‘;_l{ Wstrdesh o ywr-1.,w (11)
L+ Yv@wny 1 {Bi1# B}

Note that we can always set & = 0 to satisfy these constraints, assuming that (11) was

satisfied at times ¢t =1,...,T"— 1. Using the result in the proof of Theorem 1, we then bound

the numerator of BARy,/(T") as follows

T A A
E {3 =1, =15t fa, >[4, (12)
t=1v(T-W)
T
t=1

SE[a(1+ i H{Bt_lqtét}), (14)

t=1v(T-W)

where the last line follows from (11). Rearranging, we get that meBARy (7) < a. The proof
for uniform control of meBBRy/(+) is essentially the same, where we replace the alpha-

spending function with o} and the threshold with «’.
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Algorithm 1: aACP-BAC

fort=1,2,... do

end

Az = At—l;

/* Determine if there are new approvals */
for j=A;1+1,..,t—1do

ift<j+A;; // If fj is under consideration for approval

then

Run e-acceptability tests: Test null hypotheses fjr +e fj for j' = Ay, v Ao, Ajir+ 1 A
with critical value ¢;(t) in gatekeeping style;
if All e-acceptability tests pass then
Ay = j;

end

end

end

/* Launch new hypothesis tests for new model proposal */
Launch family of e-acceptability tests with null hypotheses fj e ft for j = /11, ...At, A+ 1,...,t-1;
Choose &; such that (4) is satisfied;

Select alpha-spending function for &: and its critical value function c:(-) over the next A; time points.;

[Table 1 about here.]
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Algorithm 2: aACP-BABR

for

end

t=1,2,... do

Az = At—l%

/* Determine if there are new approvals x/
for j = A+ 1,..,t-1do

ift<j+4;; // If fj is under consideration for approval

then
Run e-acceptability tests: Test null hypotheses fjr +e fj for j' = Aj, .., Ay_y with critical value

¢j(t) in gatekeeping style;

if All e-acceptability tests pass then

A = j;
end
end
end
Bi =By 1;
/* Determine if there are new benchmarks */

for j = Al,...,At_l do
if j > By and t <j+A;; // 1f fj is under consideration for approval
then
Run superiority tests: Test null hypotheses fj, +0 fj for j' = Bj, s Bi_1 with critical value c; (1)
in gatekeeping style;
if All superiority tests pass then
A = j;

end

end

end

/* Launch new hypothesis tests for new model proposal */
Launch family of e-acceptability tests with null hypotheses fj e ft for j = Al, ...At, A+ 1,..,t-1;
Launch family of superiority tests with null hypotheses fj e ft for j = Bt, ot =1

Choose Gx,@; such that (11) and (12) are satisfied;

Select alpha-spending function for &; and &; and their critical value functions c;(+), ci(+) over the next

A; time points.;
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[Table 2 about here.]
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B. Simulation settings

We ran 200 replicates for each simulation.

B.1 Hypothesis testing procedure for acceptability

All the aACPs tested for acceptability of a modification from f to f’ with null hypothesis
Hy: f —¢ f" in the following manner. Let the true difference in sensitivities and specificities
be denoted (61,62). At each stage of the group sequential test, we construct rectangular
confidence regions for the evaluation metrics using confidence intervals for each metric (Cook,
1994). At any stage, if the rectangular confidence region is completely within the region of
acceptable modifications as defined by the NI margin e, then we reject the null hypothesis.
For simplicity, we use Pocock’s alpha-spending function to determine the confidence levels at
each stage (Pocock, 1977). Because our estimates for ¢, and 6y are independent conditional
on the number of negative and positive samples, we can control the Type I error of testing
Hy: f —». f" at level a by using the significance thresholds from level 1 - /1 -a group

sequential tests for the individual metrics. It is easy to see why this works:

Pr(Confidence region fails to cover (6y,65) at some stage) (15)
=1 - Pr(Confidence region covers (61, 6;) at all stages) (16)
=1-Pr(CI covers 0, at all stages) Pr(CI covers 6, at all stages) (17)
=a (18)

We test for superiority by setting e = 0.

B.2 Incremental deterioration
We set total time T = 200 and the maximum wait time A =5 for all models. The number
of new monitoring observations at each time point increments by ten to estimate the true

performance difference with increasing precision over time, starting with 200 observations.
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B.3 Periodic model deterioration and improvement

We set total time 7' = 100 and maximum wait time A = 5 for all models. We accumulate 200

new observations at each time point.

B.4 Accumulating data

Each patient is represented by 30 covariates and the true outcome is generated using a
logistic model. The developer performs logistic regression with a lasso penalty and tunes the
penalty parameter using cross-validation. To increase the margin of model improvement at
later time points and the ability to detect small improvements, we increase the number of
training observations at each time point by five, starting with size 20, and use a larger wait

time of A =10. The total time is T = 40 since the model performance plateaus quickly.

B.5 Significant model improvements

In order to make the model improvements significant with high probability, we accumulate
650 observations at each time point, which is more than the other simulation settings. Since
large improvements are relatively rare, we used a short total time of 7" = 20. Since a company

is likely more confident in these improvements, the maximum wait time is set to A = 3.

B.6 Time trends

The total time is 7' = 100 and the wait time is A = 5. We accumulate 300 new observations

at each time point.

C. Sensitivity to choice of hyper-parameters

The definition of the error rates depends on two hyper-parameters: the window size W and
the non-inferiority margin €. To study how sensitive the aACPs are to these hyper-parameter,
we run the same set of simulations from Section 6 but vary either W or e.

First, we vary € over the values 0, 0.01, 0.05, and 0.1 while keeping the window W = 15
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fixed (Figure 1). (For € = 0, note that approval requires demonstrating superiority.) As the
NI margin increases, all the aACPs approve more modifications, both bad and good ones.
Compared to aACP-BAC and -BABR, the error rates of aACP-Reset and -Baseline increase
more quickly with respect to €. As such, the relative ordering between the aACPs is similar
across different values of e.

In Figure 2, we vary the window size W over the values 1, 15, 25, and 50 while keeping
the NI margin € = 0.05 fixed. Only aACP-BAC and -BABR depend on W; The other aACPs
are agnostic to the choice of W. As W increases, aACP-BAC and -BABR become more
conservative and approve fewer modifications. Since their error rates are already quite low,
the error rates are not very sensitive to changes in W. On the other hand, choosing an
excessively large value of W, such as our example with W =50, leads to significantly slower
approval rates for proposed model improvements. As such, we suggest selecting a value for

W that corresponds to the minimal time period one would like to control error rates for.

[Figure 1 about here.|

[Figure 2 about here.|
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Incremental model deterioration, Section 6.1
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Significant model improvement, Section 6.4
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Figure 1. Specificity of the currently approved model over time for different simulation
settings (rows) and non-inferiority margin values e (columns). Sensitivity plots are very
similar and, thus, have been omitted.
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Incremental model deterioration, Section 6.1
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Figure 2. Specificity of the currently approved model over time for different simulation
settings (rows) and window sizes W (columns). Sensitivity plots are very similar and, thus,
have been omitted.
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