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1 Proof of lemma and theorem

The following proofs rely on a study of the statistical functionals

Θs(P ) :=

∫
{µP (x)− µP,s(x)}2dP (x) and Ψs(P ) :=

Θs(P )

varP (Y )
.

Proof of Lemma 1

For a given distribution P ∈M, we denote by p the density of P with respect to some dominating

measure ν. For bounded h ∈ L2(P ), we can define the parametric submodel pε = (1 + εh)p, which is

valid for small enough ε and has score h for ε at ε = 0. Every regular parametric submodel centered

at P and with score h is either of this form or can be approximated arbitrarily well by a submodel of

this form. Given that the statistical model M considered is nonparametric, and that ϕP,s ∈ L2(P )

with PϕP,s = 0, if we show that for any P ∈M

∂

∂ε
Θs(Pε)

∣∣∣∣
ε=0

=

∫
ϕP,s(o)h(o)dP (o) ,

we will have established that Θs(P ) is pathwise differentiable with respect to M at P with efficient

influence function ϕP,s.

The evaluation of Θs on the distribution Pε corresponding to pε equals

Θs(Pε) =

∫∫
{µPε(x)− µPε,s(x)}2dPε(z) =

∫∫
αP,s,ε(x)dPε(z)

=

∫∫
αP,s,ε(x){1 + εh(x, y)}p(x, y)ν(dx, dy)
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=

∫∫
αP,s,ε(x)p(x, y)ν(dx, dy) + ε

∫∫
αP,s,ε(x)h(x, y)p(x, y)ν(dx, dy) ,

where αP,s,ε(x) := {µPε,s(x)− µPε(x)}2, and so,

∂

∂ε
Θs(Pε)

∣∣∣∣
ε=0

=

∫∫
∂

∂ε
αP,s,ε(x)

∣∣∣∣
ε=0

p(x, y)ν(dx, dy) +

∫∫
αP,s(x)h(x, y)p(x, y)ν(dx, dy) ,

where αP,s = αP,s,ε|ε=0. With a slight abuse of notation, we can write αP,s,ε(x) as

αP,s,ε(x) =

[∫
y{1 + εh(x, y)}p(x, y)ν(dy)∫
{1 + εh(x, y)}p(x, y)ν(dy)

−
∫∫

y{1 + εh(x, y)}p(x, y)ν(dxs, dy)∫∫
{1 + εh(x, y)}p(x, y)ν(dxs, dy)

]2
and so, we find that ∂

∂εαP,s,ε(x)
∣∣
ε=0

equals

2{µP (x)− µP,s(x)}
[∫
{y − µP (x)}h(x, y)p(x, y)ν(dy)∫

p(x, y)ν(dy)
−
∫∫
{y − µP,s(x)}h(x, y)p(x, y)ν(dxs, dy)∫∫

p(x, y)ν(dxs, dy)

]
.

This allows us to write that

∂

∂ε
Θs(Pε)

∣∣∣∣
ε=0

=

∫∫
[2{µP (x)− µP,s(x)}{y − µP (x)}+ αP,s(x)]h(x, y)p(x, y)ν(dx, dy)

=

∫∫
[2{µP (x)− µP,s(x)}{y − µP (x)}+ αP,s(x)−Θs(P )]h(x, y)p(x, y)ν(dx, dy) .

Because Ψs is the ratio of two parameters, namely Θs and the population outcome variance parameter,

both of which are pathwise differentiable and have known efficient influence functions relative to

nonparametric models, it follows that Ψs is itself pathwise differentiable at each P ∈M. Furthermore,

its efficient influence function can readily be found using the delta method. We will use the fact that

the parameter P 7→ varP (Y ) has nonparametric efficient influence function given by z 7→ ϕ̃P (z) :=

{y −EP (Y )}2 − varP (Y ). It follows then that the nonparametric efficient influence function of Ψs at

P equals

z 7→ ϕ∗P,s(z) =
ϕP,s(z)varP (Y )− ϕ̃P (z)Θs(P )

var2P (Y )
,

which simplifies algebraically to the form provided in the Lemma.

Proof of Theorem 1.

It is straightforward to verify that Θs(P )−Θs(P0) = −
∫
ϕP,s(z)dP0(z) +Rs(P, P0) with

Rs(P, P0) = P0(µP − µP,s)2 − P0(µ0 − µ0,s)2 + 2P0{(µP − µP,s)(µ0 − µP )}

= P0{(µ0,s − µP,s)2 − (µ0 − µP )2} .
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This directly implies that Rs(P̂n, P0) = oP (n−1/2) provided µ̂ − µ0 and µ̂s − µ0,s both oP (n−1/4)

in L2(P0) norm, that is, under condition (A1). Additionally, under conditions (A1)–(A3), we have

that Hs,n(P̂ , P0) = oP (n−1/2) in view of Lemma 19.24 of van der Vaart (2000), since
∫
{ϕ

P̂ ,s
(z) −

ϕP0,s(z)}2dP0(z) tends to zero in probability as a consequence of condition (A1) provided condition

(A3) holds. As such, since we may write that

θ̂n,s − θ0,s = Θs(P̂ ) +
1

n

n∑
i=1

ϕ
P̂ ,s

(Zi)−Θs(P0) =
1

n

n∑
i=1

ϕP0,s(Zi) +Rs(P̂ , P0) +Hs,n(P̂ , P0)

in view of linearization (7) in the main manuscript, it follows that θ̂n,s − θ0,s = 1
n

∑n
i=1 ϕP0,s(Zi) +

oP (n−1/2). Additionally, it is easy to verify that varPn(Y )− varP0(Y ) = 1
n

∑n
i=1 ϕ̃P0(Zi) + oP (n−1/2),

where ϕ̃P0 : z 7→ {y − EP0(Y )}2 − varP0(Y ). By the delta method, it follows then that

ψ̂n,s − ψ0,s =
θ̂n,s

varPn(Y )
− θ0,s
varP0(Y )

=
1

n

n∑
i=1

{
varP0(Y )ϕP0,s(Zi)− θ0,sϕ̃P0(Zi)

varP0(Y )2

}
+ oP (n−1/2)

=
1

n

n∑
i=1

ϕ∗P0,s(Zi) + oP (n−1/2) .

In other words, the proposed estimator ψ̂n,s is an asymptotically linear estimator of ψ0,s with influence

function ϕ∗P0,s
. By the weak law of large numbers, this implies that ψ̂n,s is consistent for ψ0,s. It also

implies that ψ̂n,s is a regular estimator because its influence function is given by a gradient of the

pathwise derivative of Ψs. Finally, by the central limit theorem, it implies that n1/2(ψ̂n,s−ψ0,s) tends

to a mean-zero Gaussian variate with variance varP0{ϕ∗P0,s
(Z)} =

∫
{ϕ∗P0,s

(z)}2dP0(z).

2 Invariance to transformations

In some applications, it is common to center and standardize the features by subtracting their mean

and dividing by their standard deviation prior to estimation. In other applications, it is common to

transform the outcome or the features using some monotone transformation in order to achieve some

form of normalization. It is therefore of interest to determine how such transformations impact the

variable importance measure we have proposed. This is what the following result describes.

Theorem 2. Suppose that gY : R → R is a linear function, and that gX : Rp → Rp has the form

(x1, x2, . . . , xp) 7→ (g1(x1), g2(x2), . . . , gp(xp)) for invertible functions gj : R → R, j = 1, 2, . . . , p. If
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P0,g is the distribution of (gX(X), gY (Y )) under P0, then Ψs(P0,g) = Ψs(P0).

The proposed variable importance measure is therefore invariant to a wide range of transformations

of the underlying data unit, namely linear transformations of the outcome and invertible transforma-

tions of each feature. In particular, this implies that the proposed parameter is invariant to univariate

linear standardizations of features and the outcome.

The invariance of the proposed variable importance parameter to certain transformations of either

the outcome or features ensures that the estimand remains the same after transformation. However, it

does not guarantee that the estimate obtained on any particular dataset will enjoy this same invariance

property. Nevertheless, variations in the variable importance estimate obtained with and without such

transformation are not expected to be large if sufficiently flexible estimators are used and the data set

is reasonably large, because both estimators are then consistent for the same estimand. As such, the

lack of invariance of the estimator is not expected to pose any practical problem, particularly for large

data sets. We do note that if the estimation procedure used to obtain conditional mean estimates

itself enjoys the same invariance properties as the parameter, the point estimator will then also enjoy

finite-sample invariance.

Proof of Theorem 2

Take a, b ∈ R and consider the transformed outcome Y ∗ = a + bY . Denoting by P0,a,b the

distribution of (X,Y ∗) induced by P0, we can write that

Ψs(P0,a,b) =

∫ {
EP0,a,b

(Y ∗ | X = x)− EP0,a,b
(Y ∗ | X−s = x−s)

}2
dP0,a,b(x)

varP0,a,b
(Y ∗)

=

∫
{EP0(a+ bY | X = x)− EP0(a+ bY | X−s = x−s)}2 dP0(x)

varP0(a+ bY )

=

∫
b2 {EP0(Y | X = x)− EP0(Y | X−s = x−s)}2 dP0(x)

b2varP0(Y )
= Ψs(P0) ,

where we have used the linearity of the expectation and the fact that the marginal distribution of X

is the same under P0 and P0,a,b.

Suppose that gX : Rp → Rp has the form (x1, x2, . . . , xp) 7→ (g1(x1), g2(x2), . . . , gp(xp)) for invert-

ible functions gj : R→ R, j = 1, 2, . . . , p, and define the transformed covariate vector X∗ := gX(X) =

(g1(X1), g2(X2), . . . , gp(Xp)). Denote by P0,gX the distribution of (X∗, Y ) induced by P0. For any P ,

the denominator of Ψ(P ) only involves the marginal distribution of Y under P . Because P0 and P0,gX

induce the same marginal distribution of Y , the denominators of Ψs(P0) and Ψs(P0,gX ) are identical.
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This is also true of the numerators since

Θs(P0,gX ) = EP0,gX
[EP0,gX (Y | X∗)− EP0,gX (Y | X∗s )]2

= EP0,gX
[EP0(Y | X∗)− EP0(Y | X∗s )]2

= EP0 [EP0(Y | X)− EP0(Y | Xs)]
2 = Θs(P0) ,

where in the second line we have used that P0,gX and P0 induce the same conditional distribution of

Y given any transformation g0(X) of X, and where the third line follows from the invertibility of gX .

Therefore, we find, as claimed, that Ψs(P0,gX ) = Ψs(P0).

3 Cross-fitted estimation procedure

In Section 2 of the main manuscript, we briefly mention that when using very flexible regression

estimators, there may be reason for concern regarding the validity of the Donsker class condition (A2).

Theoretical details underlying the behavior of this cross-fitted procedure are provided in Williamson

et al. (2020). We now present simulations results for the cross-fitted version of the one-step debiasing

procedure involved in our proposed estimator.

3.1 Numerical experiments on a low-dimensional feature vector

We performed an experiment to provide empirical evidence that cross-fitting alone does not yield a

regular and asymptotically linear estimator of ψ0,s. The two settings that we consider are the same as

the low-dimensional settings in the main manuscript; in the first setting, we consider data generated

according to the following specification:

X1, X2
iid∼ Uniform(−1, 1) and ε ∼ N(0, 1) independent of (X1, X2)

Y = X2
1

(
X1 + 7

5

)
+ 25

9 X
2
2 + ε .

We generated 1, 000 random datasets of size n ∈ {100, 300, 500, 700, 1000, 2000, . . . , 8000} and con-

sidered in each case the importance of Xj for j ∈ {1, 2}. The true value of the variable importance

measures implied by this data-generating mechanism can be shown to be ψ0,1 ≈ 0.158 and ψ0,2 ≈ 0.342.

To obtain µ̂ and µ̂j , we fit locally-linear loess smoothing using the R function loess with tuning

selected to minimize a five-fold cross-fitted estimate of the empirical risk based on the squared error
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Figure 1: Empirical bias scaled by n1/2, empirical variance scaled by n with Monte Carlo error bars,
and empirical coverage of nominal 95% confidence intervals for the proposed and naive cross-fitted
estimators, for j = 1 and 2, using loess smoothing with spans selected by cross-validation to estimate
the conditional means. Circles and filled diamonds denote that we have removed X1, while stars and
crossed diamonds denote that we have removed X2.

loss function. To obtain the naive and corrected cross-fitted estimators, we performed an outer layer

of five-fold cross validation according to the specification above. Confidence intervals based on the

corrected cross-fitted estimator were computed using the cross-fitted standard deviation estimator

described above. We do not compute bootstrap intervals based on the naive estimator, as this would

add a large amount of computation time, and the bias of the naive estimator should yield poor coverage

of such intervals.

Figure 1 displays the results under this alternative hypothesis. In this case, we see a smaller bias

of both the naive and the corrected cross-fitted estimators than we saw in the simulations in the

main manuscript — this is likely due to the fact that we used locally-linear loess smoothing rather

than locally-constant loess smoothing. However, we still see that the naive cross-fitted estimator does

not have bias going to zero faster than n−1/2, highlighting that the debiasing step is still necessary,

even if sample splitting is used in estimation. The variance of the proposed corrected cross-fitted

estimator is similar to that of the naive cross-fitted estimator, indicating that we have not suffered

much from removing the excess bias in the estimation procedure. Finally, confidence intervals based

on the corrected cross-fitted estimator quickly approach the nominal level of 95%.

To study the behavior of our procedure when one feature has null importance, we generated data

according to the follow specification:

X1, X2
iid∼ Uniform(−1, 1) and ε ∼ N(0, 1) independent of (X1, X2)
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Figure 2: Empirical bias scaled by n1/2, empirical variance scaled by n with Monte Carlo error bars,
and empirical coverage of nominal 95% confidence intervals for the proposed and naive cross-fitted
estimators, for j = 1 and 2, using loess smoothing with spans selected by cross-validation to estimate
the conditional means. Circles and filled diamonds denote that we have removed X1, while stars and
crossed diamonds denote that we have removed X2.

Y = 25
9 X

2
1 + ε .

In this case, X1 and X2 are the non-null and null features, respectively. We used the same estimation

procedure as above, and computed the same summaries. Figure 2 displays the results of this exper-

iment. Here, we see that there is much more residual bias in the corrected cross-fitted estimator for

the non-null feature. The naive cross-fitted estimator again does not have bias that goes to zero faster

than n−1/2, highlighting once more that the correction is necessary. In this situation, as in the null

hypothesis simulation in the main manuscript, we see coverage of confidence intervals approaching

the nominal level for the non-null feature, but worse coverage for the null feature. However, in this

case, we have better coverage than with the non-cross-fitted estimator, a phenomenon that could be

of interest in future research.

Each of these experiments may be reproduced using code available on GitHub.

3.2 Additional numerical experiments for moderate-dimensional feature vector

We considered settings A and B as described in the main manuscript. We recall that in setting A we

generated data according to the following specification:

X1, X2, . . . , X15
iid∼ N(0, 4) and ε ∼ N(0, 1) independent of (X1, X2, . . . , X15)

Y = I(−2,+2)(X1) · bX1c+ I(−∞,0](X2) + I(0,+∞)(X3) +
∣∣X6

4

∣∣3 +
∣∣X7

4

∣∣5 + 7
3 cos

(
X11
2

)
+ ε .
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Table 1: Approximate values of ψ0 for each simulation setting and group considered for effect size.

Setting
Group A B

X11 0.242 0.035
(X1, X2, X3, X6, X7) 0.535 0.461

We generated 500 random datasets of size n ∈ {100, 300, 500, 1000}, and consider here the importance

of the features included in the sets {11} and {1, 2, 3, 6, 7} for each sample size. An analysis of additional

groups is provided in the main manuscript. The truth corresponding to each of these situations is

given in Table 1. In setting B, the covariate distribution was modified to include clustering. We recall

that in that setting we generated (X1, X2, . . . , X15) ∼MVN15(µ,Σ), where the mean vector is

µ = 3× (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)− 2× (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

and the variance-covariance matrix is block-diagonal with blocks
1 0.15 0.15

0.15 1 0.15

0.15 0.15 1

 ,


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 and


1 0.85 0.85

0.85 1 0.85

0.85 0.85 1


and all other off-diagonal entries equal to zero. The random error ε and the outcome Y are then

generated as in setting A. In this setting, we considered the same sample sizes and groups of features

to study as in setting A. The true value of the variable importance measure for each considered group

is also given in Table 1. As in setting A, results for the analysis of additional groupings are provided

in the main manuscript.

For each of these situations, we estimate the conditional means µ0 and µ0,s using gradient boosted

trees fit using the GradientBoostingRegressor function in the sklearn module in Python. We

use five-fold cross-validation to select the optimal number of trees with one node as well as the

optimal learning rate for the algorithm. We computed the naive and proposed estimates and respective

confidence intervals for each of 500 replications. Because of the unavailability of a simple asymptotic

distribution for the naive estimator, a percentile bootstrap approach with 1,000 bootstrap samples

was used to attempt to obtain approximate confidence intervals based on ψ̂naive,s. For each estimator,

we then computed the empirical bias scaled by n1/2 and the empirical variance scaled by n. Finally,

we computed the empirical coverage of the nominal 95% confidence intervals constructed.
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Figure 3: Empirical bias for the proposed and naive estimators scaled by n1/2 for setting A, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table
1. Diamonds denote the naive estimator, and circles denote the proposed estimator. Monte Carlo
error bars are displayed vertically.

The results from setting A are presented in Figures 3–5. We see that when the features are

uncorrelated, on these two groups, the performance of the various estimators considered is similar

to the performance showcased in the main manuscript — as n grows the scaled bias of the proposed

estimator tends to zero while the scaled bias of the naive estimator tends away from zero, and coverage

of confidence intervals based on the proposed estimator tends to the nominal level while coverage of

confidence intervals based on the naive estimator remains low. In all settings, we see that variance of

the proposed estimator is similar to the variance of the naive estimator (Figure 5).

The results from setting B are a bit different (Figures 6–8). For both groups, we see some residual

bias in the proposed estimator, though the magnitude of this bias is smaller than the magnitude of the

scaled bias in the naive estimator. We also see some odd behavior in terms of coverage — coverage

of confidence intervals based on the proposed estimator is not nearly as good when s = 11 under

setting B as it was under setting A. However, the coverage of confidence intervals based on the naive

estimator do approach zero as n increases. Finally, we see that the variance of the proposed estimator

remains similar to the variance of the naive estimator.

These experiments may be reproduced using code available on GitHub.
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Figure 4: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators
for setting A, using gradient boosted trees to estimate the conditional means. We consider all s
combinations from Table 1. Diamonds denote the naive estimator, and circles denote the proposed
estimator.

Figure 5: Empirical variance for the proposed and naive estimators scaled by n for setting A, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table
1 and the main manuscript. Diamonds denote the naive estimator, and circles denote the proposed
estimator.
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Figure 6: Empirical bias for the proposed and naive estimators scaled by n1/2 for setting B, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table
1. Diamonds denote the naive estimator, and circles denote the proposed estimator.

Figure 7: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators
for setting B, using gradient boosted trees to estimate the conditional means. We consider all s
combinations from Table 1. Diamonds denote the naive estimator, and circles denote the proposed
estimator.
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Figure 8: Empirical variance for the proposed and naive estimators scaled by n for setting B, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table
1 and the main manuscript. Diamonds denote the naive estimator, and circles denote the proposed
estimator.
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4 Results from the Boston housing study data

We consider data on the median house value sampled from 506 neighborhoods in the suburbs of the

Boston, Massachusetts metropolitan area. These data come from Harrison and Rubinfeld (1978), and

are freely available as part of the R package MASS. In addition to the median house value, measurements

on four groups of variables are available. The first consists of accessibility features: the weighted

distance to five employment centers in the Boston region; and an index of accessibility to radial

highways. The second group consists of neighborhood features: the proportion of black residents in

the population; the proportion of the population of lower socio-economic status, referring to adults

without any high school education or male workers classified as laborers; the crime rate; the proportion

of a town’s residential land zoned for lots greater than 25,000 square feet; the proportion of non-retail

business acres per town; the full value property tax rate; the pupil-teacher ratio by school district;

and an indicator of whether the tract of land borders the Charles River. The third group consists of

structural features: the average number of rooms in owner units; and the proportion of owner units

built prior to 1940. The final group consists of one variable alone: the nitrogen oxide concentration,

a measure of air pollution. In our analysis, we considered the variable importance for each individual

feature, as well as the natural groups defined above, when predicting the median house value.

We estimate the conditional means using the sequential regression estimating procedure outlined

in Section 2 of the main manuscript and using the Super Learner (van der Laan et al., 2007) via the

SuperLearner R package. Our library of candidate learners consists of boosted trees implemented

in the gbm R package, generalized additive models implemented in the gam R package, elastic net

implemented in the glmnet R package, and random forests implemented in the randomForest R

package, each with varying tuning parameters. We used ten-fold cross-validation to determine the

optimal combination of these learners. This process allowed the Super Learner to determine the

optimal tuning parameters for the individual algorithms as part of its optimal combination.

The results are presented in Figure 9. The group of neighborhood variables appears to be the most

important in predicting the median house value; this seems to be driven largely by the proportion of

the population of lower socio-economic status. The group of structural variables appears to be the

second most important group, and seems to be mostly driven by the average number of rooms in the

house, which is also the most important individual feature. Contrary to a naive a priori expectation,

the crime rate appears to be the least important individual feature in predicting median house value.
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Figure 9: Estimates from the Boston housing project study, for the proposed and naive estimators of
the standardized variable importance parameter, on left and right respectively. We estimate µ0 and
µ0,s using the Super Learner with the elastic net, generalized additive models, gradient boosted trees,
and random forests in its library.

Finally, we estimate that including all of the covariates in the model explains 97.6% of the variability

in median house value, with a 95% confidence interval of (95.7%, 99.6%).

The Boston housing dataset is a popular choice as a benchmark for testing new prediction methods.

Hence, there are many estimates of variable importance produced on these data, all of which are specific

to the particular method under consideration. Comparing our results to those obtained by two other

groups of investigators — Doksum and Samarov (1995) and Bi et al. (2003) — we find that our results

are similar for the two most important single features, the average number of rooms and the proportion

of the population designated as being of lower socioeconomic status. We estimate average number of

rooms to be most important, in line with both groups of investigators. Our findings are consistent

with those of Bi et al. (2003) in that distance is found to be third most important, but beyond that,

our rankings differ. This is not concerning, since the other variables tend to be estimated at low

importance by many methods. Importantly, we also obtain variable importance for the natural groups

of variables described by Harrison and Rubinfeld (1978), in contrast to the method of Bi et al. (2003).

Our parameter provides a more natural interpretation than that of Doksum and Samarov (1995) —

their measure provides the squared correlation between the difference µ0(X)− µ0,s(X) in means and

14



the residual Y − µ0,s(X). Finally, we obtain asymptotically valid confidence intervals in addition to

point estimates, which have the advantage of interpretability and generalizability to any prediction

algorithm or ensemble of algorithms.

These results may be reproduced using code available on GitHub.
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