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Supplementary Fig. 1: SAXS profiles for PKA-CWT. a SAXS profiles of PKA-CWT in the binary 

(ATPN-bound, yellow) and ternary (ATPN/PKI-bound, black) forms. Continuous lines show the 

fitting of the experimental SAXS data. b Corresponding Kratky plot of PKA-CWT bound to ATPN 

and ATPN/PKI. c Overlay of selected snapshots of PKA-CWT. 
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Supplementary Fig. 2: Thermodynamics of PKA-CDNAJB1 binding nucleotide and pseudo-

substrate. Representative ITC thermographs of apo PKA-CDNAJB1 binding a ATPN, and b PKI5-24. 
Corresponding thermodynamic values are found in Supplementary Table 1, 2. c Graphical 

representation of the values of H (red), G (yellow), and -TS (blue). Errors are calculated as 
SD from triplicate measurements. 
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Supplementary Fig. 3: Steady state kinetics of phosphoryl transfer. Steady state phosphorylation 
kinetics of PKA-CWT (black) and PKA-CDNAJB1 (pink) towards a Kemptide, b CREB, and c KSR1. 
See Supplementary Table 3 for corresponding kinetic parameters following fitting with the 
Michaelis-Menten equation.  
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Supplementary Fig. 4: NMR amide fingerprints of PKA-CDNAJB1 and PKA-CWT. [1H,15N]-TROSY-
HSQC spectrum overlay of apo PKA-CDNAJB1 to a apo PKA-CWT and b DNAJB1(1-69). [1H,15N]-

TROSY-HSQC spectrum of PKA-CDNAJB1 bound to c ATPN and e ATPN/PKI5-24, and of PKA-

CWT bound to d ATPN and f ATPN/PKI5-24. 
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Supplementary Fig. 5: NMR backbone assignment of DNAJB11-69. a Primary sequence of 
DNAJB1 (Uniprot 25685). The sequence underlined in green are the residues which through-
bound connectivity is reported in panel D. Residues that could not be assigned are underlined in 
yellow. b The three-dimensional structure of the J-domain (DNAJB1) of PKA-CDNAJB1 (PDB 
4WB7). c [1H,15N]-Heteronuclear single quantum correlation (HSQC) spectrum of DNAJB11-69 with 
resonance assignment. d Series of strip plots from the CBCA(CO)HN (a) and HNCACB (b) 
experiments that illustrates the sequential connections between residue G9 and S15. 
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Supplementary Fig. 6: Chemical shift perturbations (CSP) observed upon ligand binding for 
PKA-CWT and PKA-CDNAJB1. Histograms show the combined 1H-15N chemical shift perturbations 

vs. residue for PKA-CWT and PKA-CDNAJB1 in response to a ATPN-binding and b ATPN/PKI5-24-
binding. Each CSP is plotted on the structures of either PKA-CWT (PDB: 4WB5) or PKA-CDNAJB1 
(PDB: 4WB7). The red line on the histograms indicate one standard deviation from the average 
CSP. Note that the CSP values for PKA-CWT are from 1. 
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Supplementary Fig. 7: CONCISE scores of each individual community mapped onto the surface 
of a PKA-CWT and b PKA-CDNAJB1. 
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Supplementary Fig. 8: Isolation and purification of PKA-CDNAJB1 and DNAJB11-69. a Coomassie-
stained 12% Acrylamide/bis-acrylamide SDS-PAGE of the expression and purification (a-g), and 
protein integrity test (i-k) of U-15N PKA-CDNAJB1. (*) BLUEstain™ Protein ladder (GoldBio), 11-245 
kDa; (a) before induction of expression with 0.4 mM of IPTG; (b) after 12 hour expression; (c) Ni+-
NTA flow through; (d) wash 1; (e) wash 2; (f) elution; (g) after 18 hours of cleavage; (h) 15 μM of 
U-15N PKA-CDNAJB1 used for the NMR titration; (i-l) serial dilutions of sample h. b Coomassie-
stained 18% Acrylamide/bis-acrylamide SDS-PAGE of the purification of U-13C/15N DNAJB11-69. 
(*) BLUEstain™ Protein ladder (GoldBio), 11-245 kDa; (a) cell pellet; (b) Ni+-NTA flow through; 
(c) wash; (d) elution; (e) before thrombin cleavage; (f) 1 hour into cleavage reaction; (g) 2 hours 
into cleavage reaction; (h) 3 hours into cleavage reaction; (i) 4 hours into cleavage reaction; (j) 
flow through from 10 kDa concentrator; (k) flow through from 3 kDa concentrator; (l) supernatant 
of 3 kDa concentrator; (m) NMR sample. 
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Supplementary Table 1: Changes in enthalpy, entropy, free energy, and dissociation constant 

of binding ATPN for PKA-CWT and PKA-CDNAJB1 derived from ITC experiments. All errors were 
calculated using triplicate measurements. Note that the values of Kd for PKA-CWT are taken from 
Walker et al. 1. 

 Kd (M) ΔG (kcal/mol) ΔH (kcal/mol) -TΔS (kcal/mol) 

PKA-CWT 83 ± 8 -5.61 ± 0.06 -3.6 ± 0.1 - 2.0 ± 0.1 

PKA-CDNAJB1 19 ± 4 -6.5 ± 0.1 -2.7 ± 0.2 -3.8 ± 0.1 

 

 

 

Supplementary Table 2: Changes in enthalpy, entropy, free energy, and dissociation constant 
for the binding of PKI5-24 to the apo and nucleotide-saturated forms of PKA-CWT and PKA-CDNAJB1 
derived from ITC experiments. All errors were calculated using triplicate measurements. Errors in 
σ were propagated from errors in Kd. N/A indicates the value is not applicable to the particular 
measurements. Note that the values of Kd for PKA-CWT are taken from Walker et al. 1. 

Binding of PKI5-24 to apo forms of kinases 

 Kd (μM) ΔG (kcal/mol) ΔH (kcal/mol) -TΔS (kcal/mol) σ 

PKA-CWT 17 ± 2 -6.6 ± 0.1 -10.8 ± 0.5 4.2 ± 0.5 N/A 

PKA-CDNAJB1 9 ± 2 -6.9 ± 0.1 -20.1 ± 0.4 13.1 ± 0.4 N/A 

Binding of PKI5-24 to the ATPN saturated forms of kinases 

 Kd (μM) ΔG (kcal/mol) ΔH (kcal/mol) -TΔS (kcal/mol) σ 

PKA-CWT 0.16 ± 0.02 -9.33 ± 0.07 -13.9 ± 0.5 4.6 ± 0.4 106 ± 18 

PKA-CDNAJB1 1.1 ± 0.2 -8.2 ± 0.1 -22 ± 1 14 ± 1 8 ± 2 
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Supplementary Table 3: Kinetic parameters of Kemptide, CREB, and KSR1 phosphorylation for 
PKA-CWT and PKA-CDNAJB1. Values for KM and kcat were obtained from a non-linear least-squares 
analysis of the concentration-dependent initial phosphorylation rates using a standard coupled 
enzyme activity assay (related to Fig. 2b and Supplementary Fig. 3). Error in kcat/KM was 
propagated from the error in KM and kcat. 

Kemptide 

 PKA-CWT PKA-CDNAJB1 

Vmax (M/s) 0.25 ± 0.01 0.33 ± 0.01 

KM (M) 42 ± 5 44 ± 6 

kcat (s-1) 11.4 ± 0.5 15 ± 0.5 

kcat/KM  0.27 ± 0.03 0.34 ± 0.05 

 

CREB 

 PKA-CWT PKA-CDNAJB1 

Vmax (M/s) 0.21 ± 0.01 0.27 ± 0.02 

KM (M) 45 ± 8 56 ± 10 

kcat (s-1) 9.5 ± 0.5 12.3 ± 0.9 

kcat/KM  0.21 ± 0.04 0.22 ± 0.04 

 

KSR1 

 PKA-CWT PKA-CDNAJB1 

Vmax (M/s) 0.31 ± 0.01 0.35 ± 0.02 

KM (M) 30 ± 5 29 ± 5 

kcat (s-1) 14.1 ± 0.5 15.9 ± 0.9 

kcat/KM  0.47 ± 0.08 0.6 ± 0.1 
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Supplementary Table 4: CONCISE analysis of PKA-CWT and PKA-CDNAJB1. Value of % closed 
was calculated as a function of average PC scores. See the Methods section for calculation of 

G based on CONCISE analysis. 

 Average PC Score % Closed G (kcal/mol) 

PKA-CWT 

Apo 
-1.02 0% 0 

PKA-CDNAJB1 

Apo 
-1.02 0% 0 

PKA-CWT 

ATPN 

-0.03 46% -6.9 

PKA-CDNAJB1 

ATPN 

0.03 49% -7.4 

PKA-CWT 

ADP 
-0.06 45% N/A 

PKA-CDNAJB1 

ADP 
-0.02 47% N/A 

PKA-CWT 

ATPN/PKI5-24 

1.11 100% -15.0 

PKA-CDNAJB1 

ATPN/PKI5-24 

1.01 95% -14.3 
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