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Web Appendix for “Sample size requirements for detecting treatment
effect heterogeneity in cluster randomized trials" by Yang et al.

A. DERIVING THE VARIANCE EXPRESSIONWITH MULTIPLE COVARIATES

Similar to Section 3.1 in the main text, with multiple covariates (p ≥ 2), we can write Un = cSn + dTn, where
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where X̄i = (m−1
∑m
j=1Xij). We define ℎ1 = limn→∞(nm)−1
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i as the moment vector and matrices. Then the limits of n−1Sn and n−1Tn are obtained as
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The expressions of S and T allow us to write
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Let⊗ denote the Kronecker product. Notice that the off-diagonal block C = BT = A⊗ℎ1, therefore by block matrix inversion,
we obtain the lower-right p × p block of U−1 as
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and therefore
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where the inverse operator is applied toward the weighted combination between the marginal covariance matrixH2 −ℎ1ℎT1 and
the difference between two covariancesH2 − L2.
Similar to Section 3.1 of the main text, we rewrite the above variance expression by introducing the two correlation matrices.

The first correlation matrix summarizes the marginal correlation between p covariates of interest, and is defined as
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where Ωx = diag(H2 − ℎ1ℎT1 ) is the diagonal matrix containing the marginal variances of all covariates. In other words, the
diagonal element of Γ1x is one and the off-diagonal elements represent the marginal correlation between each pair of covariates.
The second correlation differs from the first one in a subtle way, and is defined as
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T
1
}
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which could be regarded as a multivariate extension of ICC �x. Specifically, the diagonal element of Γ0x is the ICC of each
covariate, and the off-diagonal elements are the intraclass cross-correlations between different covariates. Now observe that
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Some algebra then gives the variance expression
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A.1 An illustrative example of definitions of Γ1x and Γ
0
x

We use a simple multilevel exchangeable model to illustrate the definition of the two matrices Γ1x and Γ0x introduced above.
Assume the covariates are generated from the following random effects model

Xijp = �ip + ci + sj + (cs)ij + �ijp, (2)

where �ip is the average of pth covariate in cluster i, ci ∼ (0, �2c ), sj ∼ (0, �2s ), (cs)ij ∼ (0, �2cs), and �ijp ∼ (0, �2� ) are
independent random effects that represent the cluster effect, individual effect, cluster-by-individual interaction and measurement
error. Across all clusters, the marginal (exchangeable) correlation between two covariates Xijp and Xijp′ (p ≠ p′) is

�1x =
�2c + �

2
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2
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2
�

,

and the matrix Γ1x is then given by
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Further, recall that the diagonal element of Γ0x describes the ICC between Xijp and Xikp (j ≠ k), and is
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while in this multilevel exchangeable model, the intraclass cross-correlation between Xijp and Xikp′ (j ≠ k, p ≠ p′) is still �0x.
This leads to an expression of
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In this simple and special example, we can rewrite variance expression (1) as
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A.2 Explicit variance expression when p = 2
When p = 2 covariates are considered, it is possible to provide an explicit inverse of the covariance in equation (1). We provide
such an expression here to obtain some understanding of the impact of covariate ICC in this slightly more general setting. In
this case, we generically denote the marginal correlation between Xij1 and Xij2 as �1x, in which case the matrix Γ1x is

Γ1x =
(

1 �1x
�1x 1

)

= (1 − �1x)I2 + �
1
xJ2.

Further, we generically write pth diagonal element of Γ0x as �
0
xp
, which defines the ICC betweenXijp andXikp (j ≠ k). Similarly,

we write intraclass cross-correlation between Xij1 and Xik2 (j ≠ k) as �0x12 . This leads to the expression

Γ0x =

(
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)

.
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Therefore, we have
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⎢

⎣
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{
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}
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{
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{
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⎥
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where �2p is the marginal variance for covariate Xp, p = 1, 2. From this expression, we can see that the (1, 1)th element of Ω4 is
proportional to

⎛

⎜

⎜

⎜

⎝

[

1 + (m − 2)�y|x − (m − 1)�y|x�0x1
]

−

[

{

1 + (m − 2)�y|x
}

�1x − (m − 1)�y|x�
0
x12

]2

1 + (m − 2)�y|x − (m − 1)�y|x�0x2

⎞

⎟

⎟

⎟

⎠

−1

,

which is an increasing function of �0x1 and �
1
x. This confirms that larger covariate ICC and larger marginal correlation between

the two covariates both increase the variance of the estimator of the interaction coefficient and so will inflate the required sample
size. The same reasonsing can be applied to the (2, 2) element of Ω4. However, the role of the intraclass cross-correlation is not
as clear in the expression, and remains to be explored in future work.

B. MARGINALIZE THE COVARIATE-ADJUSTED LINEAR MIXED MODEL IN SECTION 4.2

Recall that the conditional outcome model with a single covariate Xij is defined as

Yij = �1 + �2Wi + �3Xij + �4XijWi + i + �ij (3)

where we assume in model (3) i ∼ (0, �2 ) and �ij ∼ (0, �2� ), and independence between i and �ij . In Section 4.2 (and also
in our simulation study with a continuous covariate), we assume Xij = � + �i + �ij , where �i ∼ (0, �2�), and �ij ∼ (0, �2� ).
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The marginal variance of Xij is therefore �2x = �
2
� + �

2
� , and the marginal covariate ICC is �x = �2�∕(�

2
� + �

2
� ). In this case, we

can expand model (3) as

Yij = �1 + �2Wi + �3(� + �i + �ij) + �4(� + �i + �ij)Wi + i + �ij
= (�1 + �3�) + (�2 + �4�)Wi + (�3�i + �4Wi�i + i) + (�3�ij + �4Wi�ij + �ij)
= �1 + �2Wi + �i + �ij ,

where we treat �1 = �1+�3�, �2 = �2+�4�, �i = �3�i+�4Wi�i+i and �ij = �3�ij +�4Wi�ij +�ij . The following observations
can be made on this expansion:

• In the special case where the covariate is mean centered so that � = 0, it is evident that �1 = �1 and �2 = �2. In other
words, we can interpret the main effect ofWi as the OTE. Similar results have been extensively discussed in the literature
of individually randomized trials; see, for example, the “ANCOVA II" model in Yang and Tsiatis1. This observation
can be treated as a re-interpretation of Yang and Tsiatis1 in the context of random-effects ANCOVA with a cluster-level
treatment. In what follows, we will consistently assume � = 0. Notice we have made the assumption � = 0 in Section 4.2
of the manuscript.

• If the interaction effect �4 = 0, then �i = �3�i + i ∼  (0, �23�
2
� + �

2
 ) and �ij = �3�ij + �ij ∼  (0, �23�

2
� + �

2
� ). In

this special case, we obtain the main-effects-only model as in Raudenbush2, Yang et al.3 and Li et al.4, among others.
Because the induced unadjusted random effects �i and �ij are exactly normally distributed. The unadjusted model (2) in
the main text and the adjusted model (3) hold simultaneously.

• In the more general case (which is the case we are interested in) where �4 ≠ 0, then we have Wi ∼ Bernoulli(W̄ ),
�i|Wi = �3�i+�4Wi�i+ i ∼ (0, �23�

2
�+�

2
4Wi�2�+2�3�4Wi�2�+�

2
 ) and �ij|Wi = �3�ij +�4Wi�ij + �ij ∼ (0, �23�

2
� +

�24Wi�2� + 2�3�4Wi�2� + �
2
� ). Marginalizing overWi, both �i and �ij follow mixtures of two normal distributions, and so

are no longer univariate normal. In this case, one could identify the best approximating unadjusted model to model (3)
by obtaining the unadjusted variance components. However, because �i and �ij follow mixture normal distributions, the
unadjusted model (2) in the main text (which assumes normal random effects) does not hold exactly. This explains why
in general unadjusted model (2) in the main text and the adjusted model (3) do not hold simultaneously.

Following the last bullet point, the best approximating unadjusted model can be identified once we compute the unadjusted
variance components for �i and �ij . By the law of total variance,

�2� = var(�i) = E[var(�i|Wi)] + var[E(�i|Wi)]
= E[�2 + (�

2
3 + �

2
4Wi + 2�3�4Wi)�2�] = �

2
 + (�

2
3 + �

2
4W̄ + 2�3�4W̄ )�2�,

�2� = var(�ij) = E[var(�ij|Wi)] + var[E(�ij|Wi)]

= E[�2� + (�
2
3 + �

2
4Wi + 2�3�4Wi)�2� ] = �

2
� + (�

2
3 + �

2
4W̄ + 2�3�4W̄ )�2� ,

��,� = cov(�i, �ij) = E[cov(�i, �ij|Wi)] + cov[E(�i|Wi), E(�ij|Wi)] = 0

Define the unadjusted variance components �2y = �
2
� + �

2
� , and write B = �23 + �

2
4W̄ + 2�3�4W̄ , the unadjusted outcome ICC

can be reasonably approximated by

�y =
�2�
�2y
=

�2 + B�
2
�

�2 + �2� + B(�2� + �2� )
=

�2y|x
�2y|x + B�

2
x

�y|x +
B�2x

�2y|x + B�
2
x

�x = !�y|x + (1 − !)�x,

which clearly is a weighted combination between the adjusted outcome ICC and the covariate ICC.
Now in order to gain some insights from equation (24) in Section 4.2, we plug equation (23) into equation (24) in the main

text. This gives us

Θ(m) =
�2y|x(1 − �y|x)

�2y�2x
{

1 + (m − 2)�y|x − (m − 1)�x�y|x
} ×

1 + (m − 1)�y|x
1 + (m − 1)!�y|x + (m − 1)(1 − !)�x

× 1
RDES2

. (4)
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Next we define

f (�x) =
{

1 + (m − 2)�y|x − (m − 1)�x�y|x
}{

1 + (m − 1)!�y|x + (m − 1)(1 − !)�x
}

= −(1 − !)(m − 1)2�2x −
[

(m − 1)�y|x + (m − 1)2!�2y|x
]

�x +
[

(1 − !)(m − 1) + (m − 2)(1 − !)(m − 1)�y|x
]

�x+
[

1 + (m − 2)�y|x
] [

1 + (m − 1)!�y|x
]

,

which is a quadratic function of �x. We can immediately recognize two roots of f (�x)=0:

�x,1 =
1 + (m − 2)�y|x
(m − 1)�y|x

> 1 and �x,2 =
−1 − (m − 1)!�y|x
(1 − !)(m − 1)

< 0.

The line of symmetry is

�∗x =
!(m − 1)�2y|x + [1 − (1 − !)(m − 2)] �y|x − (1 − !)

−2(1 − !)(m − 1)�y|x
.

This means that the relationship between �x and f (�x) over the support [0, 1], and hence the relationship between �x and Θ(m),
depends on the location of �∗x. Specifically

• when �∗x < 0, then f (�x) is monotonically decreasing in �x; equivalently, Θ(m) will be monotonically increasing in �x;

• when �∗x ∈ [0, 1), then f (�x) first increases and then decreases as �x increases; equivalently, Θ(m) first decreases and then
increases as �x increases;

• when �∗x ≥ 1, then f (�x) is monotonically increasing in �x; equivalently, Θ(m) will be monotonically decreasing in �x.

We visualize the function of f (�x) under various settings in Web Figure 1-3 to facilitate the understanding of relationship
betweenΘ(m) and �x. The parameter values are chosen to represent scenarios we discussed in the main text in Section 4.2. When
the cluster size is small (m = 20), f (�x) is relatively flat as �x increases, explaining the insensitivity of Θ(m) to changes in �x
in this scenario. When the cluster size is moderate and large (m = 50, 100), f (�x) increases monotonically when �y|x = 0.01
because the line of symmetry is much greater than 1. In contrast, when �y|x > 0.01, the line of symmetry is likely between 0
and 1, so that f (�x) first increases and then decreases. Taken together, these patterns could explain the pattern we observe in
Figure 2 in the main text.
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Web Figure 1 The graph of of f (�x) under various cluster sizem, adjusted outcome ICC �y|x, and ratio of detectable effect sizes
(RDES), assuming �2x = �

2
y|x = 1, �2 = 0.5, �3 = 0.25.
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Web Figure 2 The graph of of f (�x) under various cluster sizem, adjusted outcome ICC �y|x, and ratio of detectable effect sizes
(RDES), assuming �2x = �

2
y|x = 1, �2 = 0.5, �3 = 0.5.
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Web Figure 3 The graph of of f (�x) under various cluster sizem, adjusted outcome ICC �y|x, and ratio of detectable effect sizes
(RDES), assuming �2x = �

2
y|x = 1, �2 = 0.5, �3 = 1.
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C. R FUNCTION FOR POWER CALCULATION

Below we provide simple R functions for implementing the sample size calculation procedure proposed in the main text, with
a single covariate.

sample_size_cal<- function(eff, rhox, rhoy, varx, vary, beta=0.2, alpha=0.05, m, p=0.5){
# Input:
# eff - effect size of the interaction
# rhox - covariate ICC
# rhoy - adjusted outcome ICC
# varx - marginal variance of covariate
# vary - adjusted outcome variance components
# beta -type II error (default 0.2)
# alpha - type I error (default 0.05)
# m - cluster size
# p - proportion of treated (default 0.5)

kappa = 1/(1-rhoy)*(1 + (m-2)*rhoy - (m-1)*rhox*rhoy)/(1+(m-1)*rhoy)
n = (qnorm(1-alpha/2) + qnorm(1-beta))^2*vary/(eff^2*m*p*(1-p)*kappa*varx)
return (n)

}

power_cal<- function(eff, rhox, rhoy, varx, vary, k, alpha=0.05, m, p=0.5){
# Input:
# eff - effect size of the interaction
# rhox - covariate ICC
# rhoy - adjusted outcome ICC
# varx - marginal variance of covariate
# vary - adjusted outcome variance components
# k -number of clusters
# alpha - type I error (default 0.05)
# m - cluster size
# p - proportion of treated (default 0.5)

kappa = 1/(1-rhoy)*(1 + (m-2)*rhoy - (m-1)*rhox*rhoy)/(1+(m-1)*rhoy)
power =pnorm( sqrt(k*eff^2*m*p*(1-p)*kappa*varx/vary)-qnorm(1-alpha/2))
return (power)

}
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D. ADDITIONALWEB FIGURES

Web Figure 4 Variance of the GLS estimator for the treatment-by-covariate interaction, �24 , as a function of the a) covariate
ICC �x, and b) adjusted outcome ICC �y|x with cluster sizes m ∈ {10, 200}, assuming �2y|x = �

2
x = 1, and �

2
w = 1∕4.
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Web Figure 5 Ratio of total sample size required for testing HTE versus OTE as a function of the cluster size m, covariate ICC
�x, adjusted outcome ICC �y|x, and ratio of detectable effect sizes (RDES), assuming �2x = �2y|x = 1, �2 = 0.5, �3 = 0.25, and
W̄ = 1∕2.
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Web Figure 6 Ratio of total sample size required for testing HTE versus OTE as a function of the cluster size m, covariate ICC
�x, adjusted outcome ICC �y|x, and ratio of detectable effect sizes (RDES), assuming �2x = �2y|x = 1, �2 = 0.5, �3 = 1, and
W̄ = 1∕2.
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Web Figure 7 Ratio of total sample size required for testing HTE versus OTE as a function of covariate main effect �3, covariate
ICC �x, adjusted outcome ICC �y|x, and ratio of detectable effect sizes (RDES), assuming an extremely small cluster sizem = 10,
�2x = �

2
y|x = 1, �2 = 0.5, and W̄ = 1∕2.
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Web Figure 8 Ratio of total sample size required for testing HTE versus OTE as a function of covariate main effect �3, covariate
ICC �x, adjusted outcome ICC �y|x, and ratio of detectable effect sizes (RDES), assuming a large cluster size m = 200, �2x =
�2y|x = 1, �2 = 0.5, and W̄ = 1∕2.
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