Iron uptake mediated by the plant-derived chelator nicotianamine in the small intestine

Yoshiko Murata^{1,*}, Masami Yoshida¹, Naho Sakamoto¹, Shiho Morimoto¹, Takehiro Watanabe¹ and Kosuke Namba²

¹Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku-gun, Kyoto 619-0284, Japan
²Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan

> *Corresponding author: Yoshiko Murata Ph.D. Bioorganic Research Institute, Suntory Foundation for Life Sciences 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan Tel: +81-50-3182-0705 Fax: +81-774-98-6292 E-mail: <u>murata@sunbor.or.jp</u>

File Name: Supporting Information

Description: 7 Supporting Figures and 1 Supporting Table

Figure. S1 Thin-layer chromatography (TLC) analysis of NA-Fe (II) complex. (**A**) Synthetic NA (16.5 mM, 0.5 μ L) and NA-Fe(II)(NA/Fe=1:1,16.5 mM, 0.5 μ L) containing 1mM ascorbic acid were detected by ninhydrin staining (detection of amine). (**B**) 1 μ L of 3.3 mM ⁵⁹Fe and NA-⁵⁹Fe(II) were detected by autoradiography on TLC. (**C**, **D**) Caco-2 cells were extracted at 30min after administration 1 mM NA-⁵⁹Fe(II) and the extract was applied on cellulose TLC with authentic ⁵⁹FeSO₄. ⁵⁹Fe was detected by autoradiography on TLC (**C**) and the amino acid was detected with ninhydrin staining (**D**). The bands corresponding to NA-Fe(II) (Rf=0.67) were indicated with arrows. All TLC plates were developed with MeCN:H₂O:AcOH=1:1:0.2.

Figure S2. mRNA expression of four PAT proteins (PAT1–PAT4) in human intestine and Caco-2 cells evaluated by RT-PCR. RT-PCR from (**A**) human intestine and (**B**) Caco-2 cell RNA of PAT1-4. RT-PCR analysis of the human intestinal and Caco-2 cells revealed that only primers targeting *PAT1* yielded a 228-bp PCR product, indicated by the arrows (Fig. S2A, B). The RT-PCR of targeting human *GAPDH* as control yielded a 238-bp product.

Figure S3. Current changes were recorded after the addition of 2 mM nicotianamine (NA) or 200 μ M NA-Fe(II). NA/Fe molar ratio = 10:1. *Xenopus laevis* oocytes were voltage-clamped at -60 mV with an OC-725C oocyte clamp (Warner Instruments, Hamden, CT, USA) and were placed in an open chamber with continuous perfusion of ND96 buffer (pH 6.0) or ND96-containing substrates. Steady-state currents were obtained after the addition of NA or NA-Fe(II) complex in 10 mM MES/Tris buffer (pH 6.0). Acquisition and all subsequent analyses were performed using p-*Clamp 10* (Molecular Devices, Sunnyvale, CA, USA).

Figure S4. Electrophysiological assay of *Xenopus laevis* oocytes expressing hPEPT1 and hDMT1. (**A**) Oocytes were injected with *hPAT1* cRNA or water (as negative control), held at – 60 mV during current recording, and superfused with sample buffer (pH 6.0) containing 500 μ M glycylsarcosine (Gly-Sar) (n = 6) and 500 μ M NA-Fe (NA/Fe molar ratio = 2:1) (n = 3). (**B**) Oocytes were injected with *hDMT1* cRNA or water, and superfused with sample buffer (pH 6.0) containing 50 μ M Fe or 50 μ M NA-Fe(II) (NA/Fe molar ratios = 10:1) (n = 4) held at –60 mV. **P < 0.01

Figure S5. Comparison of iron absorption after oral administration of Fe and NA-Fe(II) without fasting. ⁵⁹Fe radioactivity was counted in the blood, liver, kidney, and spleen of mice at 5 h after oral administration of NA-⁵⁹Fe(II) or ⁵⁹Fe(II) (n = 7-9). The vertical axis is ⁵⁹Fe counts for each organ per gram weight that was expressed as the percentage of total activity of ⁵⁹Fe administered to mice.

Figure. S6 Quantitative analysis of NA using 9-fluorenylmethyloxycarbonyl (FMOC) derivatization. Mass spectrometry was operated in the selected ion monitoring mode for observation at m/z 526.2 [NA-FMOC + H]⁺ (A) and MS chromatograms of synthetic NA and the extract from small intestine were detected at a retention time (Rt) of 11.15 min (B). Analytical methods are described in the Experimental Procedures section in the manuscript.

Figure. S7 Thin-layer chromatography (TLC) analysis of NA-Fe(II) complex in the small intestine. (**A**) ⁵⁹Fe and NA-⁵⁹Fe(II) (3.3 mM, 1 μ L) were detected by autoradiography on TLC. The bands corresponding to NA-⁵⁹Fe(II) (Rf=0.67) are indicated by arrows. This panel, which is the same as Fig. S1B, is shown to make it easier to compare the bands corresponding to NA-⁵⁹Fe(II) in panels A and B. (**B**) Extracts from mouse upper small intestine (sections1-6) at 30 min after oral administration of NA-⁵⁹Fe(II) were applied to the cellulose TLC. ⁵⁹Fe was detected by autoradiography on TLC. The bands (Rf=0.6-0.7) are indicated by arrows. All TLC plates were developed with MeCN:H₂O:AcOH = 1:1:0.2.

Table S1. Primers used in the studyPrimer sequences for hPAT1 RNAi Caco-2 cells

	miR	Forward (5' to 3')	Reverse (5' to 3')	Targ
	Select			eted
	Oligo			regio
	ID			ns
				(bp)
	Hmi	TGCTGTGAAGATGGGAGCATTGCT	GTGAAGATGGGAGCATTGCTTGG	1608-
	460740	TGGTTTTGGCCACTGACTGACCAA	TTTTGGCCACTGACTGACCAAGCA	1628
	400740	GCAATTCCCATCTTCA	ATTCCCATCTTCACAGG	
	Hmi	TGCTGATGATCAGCAGGCTGATGG	GATGATCAGCAGGCTGATGGGAG	463-
	460741	GAGTTTTGGCCACTGACTGACTCCC	TTTTGGCCACTGACTGACTCCCAT	183
	400741	ATCACTGCTGATCAT	CACTGCTGATCATCAGG	405
	Hmi	TGCTGATCATGACCAAGCTGACCA	GATCATGACCAAGCTGACCAGCG	907-
	460743	GCGTTTTGGCCACTGACTGACGCTG	TTTTGGCCACTGACTGACGCTGGT	927
		GTCATTGGTCATGAT	CATTGGTCATGATCAGG	

Primer sequences for Quantitative RT-PCR

mouse	Forward (5' to 3')	Reverse (5' to 3')
GAPDH	CTGCACCACCAACTGCTTAG	GTCTTCTGGGTGGCAGTGAT
DMT1	TACCCATCCTCACGTTCACA	TTGATGGAGCAGACGATCAG
PAT1	ACCTGCTGAAAGGCAACATT	CTTCACCAGGATACCCATGC

human	Forward (5' to 3')	Reverse (5' to 3')
GAPDH	CCAGGTGGTCTCCTCTGACT	CCCTGTTGCTGTAGCCAAAT
DMT1	GAGTGGTTACTGGGCTGCAT	GCATGTCTGAGCCGATGATA
PAT1	ATGCTGGTCAGCTTGGTCAT	AACCATTCCAATGCCTTCAA

Primer sequences for RT-PCR

human	Forward (5' to 3')	Reverse (5' to 3')	bp
PAT1	AAGGCATTGGAATGGTTCTG	TGAAAAAGATCCCGATGGAG	228
PAT2	ACGTCCCTGCAGAAATCATC	GGCTCATGCCCTCTGAGTAG	237
PAT3	TACTGGGGACACTGGGCTAC	ACACTTGGGAGATGGCAAAC	186
PAT4	GGATGTAATGAGGCCCTTGA	TCCTAAAAGGCCAGTTCCAA	178
GAPDH	GAGTCAACGGATTTGGTCGT	TTGATTTTGGAGGGATCTCG	238

Primer sequences for cRNA of *Xenopus* oocytes

human	Forward (5' to 3')	Reverse (5' to 3')
PEPT1	GGCCCTCGAGATGGGAATGTCC AAATC (<i>Xho</i> I)	GGCCTCTAGATCACATCTGTTTC TGTG (<i>Xba</i> I)
DMT1	GGCCCTCGAGATGGTGCTGGGT CCTGA (<i>Xho</i> I)	GGCCCCATGGTTATTTAACGTAG CCAC (<i>Kpn</i> I)
PAT1	CGGAATTCACCATGTCCACGCA GAGACTTC (<i>EcoR</i> 1)	GGCTCTAGATCCCTACTATATGA AGGCACAG (<i>Xba</i> I)