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Figure S1. Identification of BACE1 specific N-terminal fragment of NCAM2 and NCAM1 in 
olfactory bulb. A-C, PBS soluble fractions of the hippocampus and olfactory bulb samples from 4-months-
old (4mo) BACE1+/+ and BACE1-/- mice were immunoblotted with anti-NCAM2 (sc-136328) (A), anti-
NCAM2 (AF778) (B), anti-GAPDH (MAB374) (B), and anti-NCAM1 (AF-2408) (C) antibodies. BACE1-
specific soluble NCAM2 (sNCAM2b) and NCAM1 (sNCAM1b) were observed in the olfactory bulb of 
BACE1+/+ mice, but not in BACE1-/- mice. A and C, full-length versions of the western blots (sNCAM2b 
and sNCAM1b) of 4-months-old mice shown in Figure 5A. After longer exposer, weak bands (arrowhead 
in A) are observed, which correspond to previously immunoblotted sSEZ6b. D, western blot with HRP-
conjugated secondary antibody (anti-mouse and anti-goat) without primary antibody incubation produced 
non-specific bands (open arrowhead). However, these non-specific bands (open arrowhead in A and B) do 
not correspond to sNCAM2b or sNCAM1b. 
  



 3 

 

 
 
Figure S2. Identification of BACE1 specific C-terminal fragment of NCAM1 in olfactory bulb. A, 
representative immunoblot of membrane fractions of olfactory bulb samples from 4-month-old BACE1+/+ 
and BACE1-/- mice using anti-C-terminal NCAM1 (5B8) antibody. After longer exposure with the upper 
part of the blot covered to block the strong signal from NCAM1-140 and NCAM1-180 full-length, a ~75 
kDa NCAM1-CTF was detected in BACE1+/+ mice, but it was greatly decreased in BACE1-/- mice, and 
thus termed NCAM1-bCTF (arrowhead). Other bands at ~65kDa and ~25kDa (open arrowhead) are non-
specific bands. BACE1+/+; n=3, BACE1-/-; n=3. B, HRP-conjugated secondary antibody (anti-mouse, 
anti-rabbit, and anti-goat) without primary antibody incubation produced non-specific bands (open 
arrowhead). However, these non-specific bands (open arrowhead in A) are not the same band of NCAM1-
bCTF at 75kDa. 
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Figure S3. NCAM1 and NCAM2 are co-localized with BACE1 in glomeruli (GL) of the olfactory bulb. 
Top panel: coronal section from 12-month-old BACE1+/+ olfactory bulb was stained with anti-BACE1 
(3D5 with Alexa 647, magenta), anti-NCAM2 (AF778 with Alexa 488, green), and anti-NCAM1 (AB5032 
with Alexa 568, red) antibodies. Bottom panel: secondary antibodies were only applied on the adjacent OB 
coronal sections in order to verify the staining specificity of each antibody. No secondary antibody 
background was detectable for the Alexa 568 and 647 antibodies and only some diffuse and nonspecific 
signal was present after incubation with Alexa 488. The secondary antibody only images have been 
acquired by increasing the laser gain by approximately 10% in order to collect any eventual residual signal. 
Z-stack confocal images. Magnification 20x. Digital Zoom 1.15. Scale bar represents 100 um, n=2. 
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Figure S4. Full-length versions of western blots shown in Figure 2C (A) and Figure 3C (B). During a 
longer exposure to better detect the CTFs, the upper part of the blot was covered to block the strong signal 
from NCAM1 and NCAM 2 full-length.   
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Figure S5. Identification of multiple C-terminal fragments of NCAM1 in HEK cells. In order to clearly 
separate and identify NCAM1-CTFs, we compared 10% Bis-Tris gel (3450112; Bio-Rad) (Fig. S1) and 
4~12% Bis-Tris gel (3450124; Bio-Rad) (used for Fig. 2 and Fig. 3). Representative immunoblot of cell 
lysates using anti-Myc (2272), anti-BACE1 (D10E5) and anti-GAPDH (MAB374) antibodies. 10% Bis-
Tris gel shows the three bands of NCAM1-CTFs (~34kDa, ~37kDa, and ~47kDa) and two bands of 
NCAM1-bCTFs (~38kDa and ~45kDa) more clearly than 4~12% Bis-Tris gel. Also, a non-specific band 
(asterisk) is not well detected by the 10% Bis-Tris gel compared to 4~12% Bis-Tris gel (see Fig. 3A and 
3C) 
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Figure S6. Peptides of full-length NCAM2-TM (A) and 32-kDa NCAM2-bCTF (B) identified (blue) 
from mass spectrometry analysis were mapped to the protein sequences. 
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Figure S7. Peptides of full-length NCAM1-140 (C) and 38-kDa NCAM1-bCTF (D) identified (blue) 
from mass spectrometry analysis were mapped to the protein sequences. 
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Figure S8. BACE1 does not cleave NCAM2 at D693. Wild type (WT) or mutant NCAM2 (E693A, 
D693K, D693H) were co-transfected with an empty vector or BACE1 into the HEK cells and cell lysates 
were analyzed by immunoblot to assess the BACE1 processing of NCAM2 at Asp 693 (I691K692 ¯ D693T694; 
The ¯ symbol denotes the scissile bond). Representative immunoblot of cell lysates (Lysate) and 
conditioned media (CM) using anti-Myc (2272), anti-NCAM2 (sc-136328), anti-BACE1 (D10E5) and anti-
GAPDH (MAB374) antibodies. None of these NCAM2 mutations at D693 did not prevent the production 
of BACE1-specific 32kDa NCAM2-bCTF in the cell lysates and sNCAM2b in the CM. Note that a different 
protein ladder was used in this figure compared to Fig. 1. n=3. 
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Figure S9. Removal of polysialic acid from NCAM1. NCAM1 proteins from P10 hemibrain lysates were 
immunoprecipitated using anti-C-terminal NCAM1 antibody (5B8). Given that PSA modification on 
NCAM1 is enriched at P10, NCAM1/5B8-bead complex was incubated in a reaction buffer with or without 
sialidase (P0722) to remove sialic acid modification from NCAM1. After washing the beads with PBS, 
immunoprecipitated NCAM1 proteins with or without sialidase treatment were analyzed by western blot. 
A, immunoblot analysis with anti-PSA-NCAM1 (2-2B) antibody confirmed the removal of polysialic acid 
on NCAM1 by sialidase enzyme. B, after removal of PSA on NCAM1, the intensity of two bands, 
representing non-PSA-NCAM1 (NCAM1-180 and NCAM1-140), were stronger than the two bands 
detected from immunoprecipitated NCAM1 proteins without sialidase, owing to the increased non-PSA-
NCAM1 by sialidase treatment. Note that the molecular weight of the two bands (arrowheads), representing 
non-PSA-NCAM1 (NCAM1-180 and NCAM1-140), was slightly lower than the corresponding PSA-
NCAM1-180 and -140 due to the removal of sialic acid by sialidase. 
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Table S1. List of the NCAM1 and NCAM 2 antibodies used in this study. 
 

Antibody Host 
species 

Epitope Application in 
reference 

Validated in KO tissue 
(Yes / No) 

Reference 

NCAM2 
(AF778) 

Goat aa 20-700 WB, IHC Yes (1) 

NCAM2  
(sc-136328) 

Mouse aa 478-677 WB, IHC, IP, IC No (11,12) 

NCAM2 
(GTX89311) 

Goat C-terminal 
(aa 822-836) 

PL, IC No (13) 

NCAM1 
(AF2408) 

Goat aa 20-603 WB, IHC No (14,15) 

NCAM1 (5B8) Mouse C-terminal WB Yes (2) 
NCAM1 
(AB5032) 

Rabbit C-terminal WB, IHC Yes and conditional 
KO mice 

(3,4) 

NCAM1 (0B11) Mouse C-terminal WB, IHC No (16,17) 
PSA-NCAM1 
(2-2B) 

Mouse PSA WB, IHC Yes and endo-N 
treated wild type mice 

(4) 

IHC; Immunohistochemistry, WB; Western blot, IC; Immunocytochemistry, PL; proximity ligation 
analysis 
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