Structure / function studies of C3/C5 epimerases and C4 reductases of the *Campylobacter jejuni* capsular heptose modification pathways.

Heba Barnawi⁺¹, Laura Woodward⁺², Natalie Fava¹, Mikhail Roubakha¹, Steve D. Shaw¹, Chelsea Kubinec¹, James H. Naismith^{2,3,4*} and Carole Creuzenet^{1*}

Supplementary information

Tables:Table S1: Comparative functional analysis of the conserved residues in the epimerases binding site.

Table S2: Comparative functional analysis of the conserved residues in the reductases binding site.

Table S3: SEC-MALS data summary.

Table S4: Summary of root mean square deviation (rmsd) data to compare the structural similarity of the crystallised epimerases with one another and with RmlC.

Table S5: Summary of root mean square deviation (rmsd) data to compare the structural similarity of the crystallised reductases with one another and with previously crystallized enzymes.

 Table S6: Primers used for site-directed mutagenesis.

Table S7: Primers used to prepare expression constructs for crystallography.

Figures:

Figure S1: SEC-MALS traces for A) DdahB, B) MlghB, C) DdahC, and D) MlghC.

Figure S2: Superimposition of the DdahB and MlghB dimers along with GDP and GDP-mannose.

Figure S3: Quantitation of catalysis for MlghB and DdahB N121S and H67A/N mutants. Panels A and B.

Figure S4: Effect of D173A mutation on heptose catalysis in DdahB and MlghB.

Figure S5: Kinetics of catalysis for MlghB Y134F, Y132F and double mutant.

Figure S6: Effect of Y132F, Y134F and YY/FF double mutation on heptose catalysis in DdahB.

Figure S7: Superimposition of the MlghC (orange) and DdahC (blue) monomers.

Figure S8: Superposition of MlghC (orange) with human GDP-L-fucose synthase (GFS) (grey).

Figure S9: Catalytic activity of mutated DdahC reductase.

Figure S10: Representative examples of Coomassie-stained SDS-PAGE gels for purified proteins diluted to equal concentrations for use in kinetic analyses.

Table S1: Comparative functional analysis of the conserved residues in the epimerases binding site. Underlined residues were targeted by site-directed mutagenesis in DdahB and/or MlghB. *St. suis: Streptococcus suis. S. ent: Salmonella enterica.*

RmlC St. suis	Function (31)	RmlC S. ent.	Function (30,32) Dda Mlg		Predicted function	
H76	Catalytic base for epimerization at C3 and C5	H63	Catalytic base for epimerization at C3 and C5	<u>H67</u>	Catalytic for epimerization at C3 and C5	
D180	His76-Asp dyad. Increases basicity of H76	D170	His63-Asp dyad. Increases basicity of H63	<u>D173</u>	Catalytic His67-Asp dyad.	
Y140	Catalytic. OH group is 3.7Å from C3 and 3.5Å from C5.	atalytic. OH group is /Å from C3 and 3.5Å from C5.Y133Catalytic. Proton donor for epimerization at C5. Not essential at C3Y		<u>Y134</u>	Catalytic for epimerization at C3 and C5	
K82	Catalytic. Stabilizes the negative charge after deprotonation	K73	Catalytic for epimerization at C3	<u>K74</u>	Catalytic for epimerization at C3	
F36		F27		I31	.	
Y145	X	Y139		Y142		
N63	Interacts with thymidine ring. N63		ring.	N57 in MlghB, H57 in DdahB	guanidine ring.	
H29	Stacks against the ribose ring.	F20	Stacks against the ribose ring.	F24	Stacks against the ribose ring.	
N127	Binds O4 (substrate recognition)H120Unknown. Could interact with O4		<u>N121</u>	Binds O4 (substrate recognition)		
F129	Van der Waals interactions with C6 and	F122	Unknown	H123	Interacts with the sugar ring	
Y138	Ob. Not conserved in all RmlC	F131	Unknown	<u>Y132</u>	Catalytic	
G94	Unknown	D84	His120-Asp dyad. Unknown function	Q85	Catalytic. May interact with N121.	

Table S2: Comparative functional analysis of the conserved residues in the reductases binding site: Underlined residues were targeted by site-directed mutagenesis in DdahC and/or MlghC. Na: Not applicable

GFS E. coli (34)	RmlD <i>S. ent</i> (44)	Function	DdahC Mlgl		Predicted function	
S107	T104		S108	S107	Catalytic triad. M110 potentially serving instead of F136 in MlghB	
Y136	Y128	Catalytic triad for reduction at C4	Y137	F136		
K140	K132?		K141	K140	based on structure.	
C109	Na or Y106	General acid / base dyad for epimerization at C3 and C5 in	<u>T110</u>	Y109	Catalytic	
H179	Na	GFS.	<u>H180</u>	R179		
Na	Y106	Interaction with rhamnose moiety in RmlD		Y109	Substrate specificity	
Na	R260	Hydrogen bonding to the pyrophosphate moiety of dTDP-L-rhamnose	<u>H180</u>	R179	Hydrogen bonding to pyrophosphate of GDP.	
S108	D105	Predicted to interact with the	T109	G108	Interest with the sugar ring	
N165	W153	sugar ring	N166	N165	interact with the sugar ring	
L184	M166		I185	L184		
V201	S177	Hydrophobic pocket for	I1231	I230	Hydrophobic pocket for	
V180	Na	(RmlD) moiety of nucleotide	V181	V180	guanidine ring of nucleotide	
W202	V178		W232	W231		
G67	A66	Unknown	G68	<u>C68</u>	Important for binding co- factor?	

Table S3: SEC-MALS data summary.

a Mn is defined as: $\Sigma N_i M_i^2 / \Sigma N_i M_i$, where M_i corresponds to the molecular weight of the protein and N_i corresponds to the number of proteins of that molecular weight. b Mw is defined as: $\Sigma N_i M_i / \Sigma N_i$.

c Polydispersity is the range of molecular weights occupied by the sample and is defined as Mw/Mn, with 1.0 corresponding to a monodisperse sample.

d Data for non-TEV-cleavable DdahC and MlghC are shown.

	DdahB	MlghB	DdahC ^d	MlghC ^d
Molar mass moments (g/mol)				
Mn ^a	4.1 x 10 ⁴	4.2 x 10 ⁴	9.7 x 10 ⁴	7.9 x 10 ⁴
	$(\pm 0.4\%)$	(± 3.4%)	$(\pm 0.7\%)$	$(\pm 0.4\%)$
Mw ^b	4.1 x 10 ⁴	4.2×10^4	9.8 x 10 ⁴	8.0 x 10 ⁴
	$(\pm 0.4\%)$	(± 3.5%)	$(\pm 0.7\%)$	$(\pm 0.4\%)$
Polydispersity ^c				
Mw/Mn	1.0	1.0	1.0	1.0
	$(\pm 0.6\%)$	$(\pm 4.9\%)$	$(\pm 1.0\%)$	$(\pm 0.6\%)$

Table S4: Summary of root mean square deviation (rmsd) data to compare the structural similarity of the crystallised epimerases with one another and with RmIC. nd: not determined

Enzymes compared	MlghB	DdahB	MlghB	DdahB
			+ GDP-mannose	+ GDP-mannose
MlghB	-	0.7 Å	0.4 Å	Nd
		over 163 residues		
DdahB	0.7 Å	-	nd	0.24 Å
	over 163 residues			
RmlC S. ent	1.7 Å	1.5 Å	nd	Nd
	over 164 residues	over 154 residues		

Table S5: Summary of root mean square deviation (rmsd) data to compare the structural similarity of the crystallised reductases with one another and with previously crystallized enzymes.

Enzymes compared	MlghC	DdahC	
MlghC	-	1.3 Å over 333 residues	
DdahC	1.3 Å over 333 residues	-	
GMER E. coli	1.9 Å over 315 residues	2.0 Å over 315 residues	
GFS E. coli	2.1 Å over 265 residues	2.2 Å over 271 residues	
RmlD S. ent	2.3 Å over 253 residues	2.84 Å over 263 residues	
GFS human + NADP ⁺ and GDP-L-Fucose	2.4 Å over 285 residues	2.9 Å over 289 residues	

Table S6: Primers used for site-directed mutagenesis. Only forward primer sequences are indicated. Reverse primers have the exact complementary sequences. Codons for mutated residues are in bold and the mutated nucleotides are underlined.

^a DdahB and MlghB Y132F/Y134F mutants were generated using the single mutants Y134F as a template.

^b DdahC H180R/T110Y was made using the single mutant H180R as a template.

Protein	Mutation	Primers Sequence (5' – 3')
	N121S	GTGCCAGCAGGTTTTGGAA <u>G</u> CGCTCATTATGTTACTAGTG
	H67A	$CAATGTTATTCGCGGTATC \underline{GC}TGGTGATGTAAAAAACTTATAAGCTTG$
	H67N	$CAATGTTATTCGCGGTATC\underline{\mathbf{A}}\mathbf{A}\mathbf{T}GGTGATGGTGAAAAACTTAAAGCTTG$
	K74A	CCATGGCGATGTAAAAACTTAT <u>GC</u> GCTTGCAACTTG TGTTTATGG
DdahB	Y134F	GTTACTAGTGAAAGTGCAGTTTATTACT <u>T</u> TAAATGTGCTTATAAAGG AGATTATGTG
	Y132F	GTTACTAGTGAAAGTGCAGTTTTTTTTTACTATAAATGTGCTTATAAAG.
	Y132F / Y134F ^a	GTTACTAGTGAAAGTGCAGTTT <u>T</u> TACT <u>T</u> TAAATGTGCTTATAAAG.
	N121S	ATTACCACCAAATATGGGAA G CTCTCATTATGTGAG TTCAAAG
	H67A	CCCATTTTAATGTTTTACGTGGAATAGCCGGAGATGTGAAAACTTAC
	H67N	$CCCATTTTAATGTTTTACGTGG \underline{\mathbf{A}} \mathbf{A} \mathbf{T} A A A C G G A G A A A C T A A A C C G A A A A C T T A A A C C G A A A A C T T A A A C C G A A A A C T T A A A C G A A A A C T A A A C G A A A A C T A A A C C A A A A C C A A A A C C C A A A A C C A A A A C C C A A A A C C A A A A C C A A A A C C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A A C C C A A C C C A A C C C A A C C C A A C C C A A C C C A A C C C A A C C C A A C C C A A C C C A C C C A A C C C C A C C C C C A C C C C A C C C C $
MlghB	Y134F	CAAAGGAAGCAGTGTATTAT T TAAACTTGCTTATGAGGGG
8	Y132F	GAGTTCAAAGGAAGCAGTG T<u>T</u>T ATTATAAACTTGCTTATG
	Y132F / Y134F ^a	GAGTTCAAAGGAAGCAGTG T<u>T</u>T ATTTTTAAACTTGCTTATG
	K74A	$CACGGAGATGTGAAAAACTTA \mathbf{C} \underline{\mathbf{GC}} \mathtt{ACTTGTAACTTGTGTCTATGGAG}$
	H180R	GACAAATTTGATCTTGAAAAATCTC <u>G</u> TGTATTGCCTGGAATTTTAAG AAAAATG
DishC	T110Y	GCTACTTTTCATAGCTTCAACT <u>TAC</u> GTTTATCCTAAAAATGCAACAT TG
DuanC	H180R / T110Y ^b	GCTACTTTTCATAGCTTCAACT <u>TAC</u> GTTTATCCTAAAAATGCAACAT TG
	T110C	CTACTTTTCATAGCTTCAACT <u>TGC</u> GTTTATCCTAAAAATGCAACATT G
MlghC	C68A	GACTGCAGTCTTACCT <u>GC</u> TGGTGCTGCAAATGTCG

Enzyme	Cloning step	Primer name	Primer sequence
gene			
DdahB	Subcloning	CJPG1430cP3	CTCACATGTCCATGGCAATAGAATTTAATATAC
cjj1430			
		CjPG1430cP2	GCTGGATCCTTATCCTTTATTTTTAGTTGCT
DdahB	Linker	DdahB MS	GGGCGCCATGGCAATAGAATTTAATATACAAGAA
cjj1430	removal	linker forward	ТСААААА
		DdahB MS	TATTGCCATGGCGCCCTGAAAATACAGGTTTTCGG
		linker reverse	TCG
MlghB	Subcloning	CJ1430P2	AGGGTCCATGGCAATAGAATTTGATATA
cj1430			
		CJ1430P3	GCGTCGGATCCTTATCCTTTATTTTAGTTGCAA
DdahC	TEV	TEV-DdahC	GAAAACCTGTATTTTCAGGGCATGCAAAAAGATT
cjj1427	insertion	forward	СТААААТТТ
		TEV-DdahC	CCTGAAAATACAGGTTTTCGCCCATGGAACCGTG
		reverse	GTGG
MlghC	TEV	TEV-MlghC	GAAAACCTGTATTTTCAGGGCATGCAAACAAATT
cj1428	insertion	forward	СААААТАТ
		TEV-MlghC	CCGAAAATACAGGTTTTCGCCCATGGAACCGTGG
		reverse	TGG

Table S7: Primers used to prepare expression constructs for crystallography.

Figure S1: SEC-MALS traces for A) DdahB, B) MlghB, C) DdahC, and D) MlghC. For both DdahC and MlghC, the results are for the non-TEV-cleavable constructs. The change in light scattering over time is shown in red, the change in refractive index over time is shown in blue, the change in UV over time is shown in green (shown in B only) and the change in molar mass (g/mol) over time is shown in black.

S-7

Figure S2: Superimposition of the DdahB and MlghB dimers along with GDP and GDP-mannose. The DdahB dimer shown again in yellow and pink, superimposed with MlghB which is shown in green and blue. The structures are essentially identical, GDP molecules are located in identical positions relative to the secondary structure of both proteins.

Figure S3: Quantitation of catalysis for MlghB and DdahB N121S and H67A/N. Panels A and B. Activity on heptose for DdahB and MlghB. Panel C. Activity on mannose for MlghB. DdahB mutants were inactive on mannose, thus no panel is available. Histograms are derived from data shown on Figure 4 (30 min reactions). For kinetics, reactions contained 0.17 mM of heptose and 0.1 μ M of epimerase, or 0.77 mM mannose (yielding ~ 0.4 mM of P1' substrate) and 0.1 μ M of MlghB. Data in % of all substrate. * p<0.01. ** p<0.005.

Figure S4: Effect of D173A mutation on heptose catalysis in DdahB and MlghB. the tests were done at 2 different enzyme dilutions (5 fold differences between diluted and non diluted series) and 2 different incubation times. Apart from these modifications, all reaction conditions are as described in Figure 5A. Each bar represents the average quantitation from 2 independent batches of purified enzymes. This complements the data shown in Figure 5A.

Figure S5: Kinetics of catalysis for MlghB Y134F, Y132F and double mutant. Panel A: Activity on heptose. **Panel B.** Activity on mannose. Reaction conditions are as described in Figure 6.

Figure S6: Effect of Y132F, Y134F and YY/FF double mutation on heptose catalysis in DdahB. The tests were done at 2 different enzyme dilutions (5 fold differences between diluted and non diluted series) and 2 different incubation times. Apart from these modifications, all reaction conditions are as described in Figure 5. Each bar represents the average quantitation from 2 independent batches of purified enzymes.

Figure S8: Superposition of MlghC (orange) with human GDP-L-fucose synthase (GFS) (grey). NADP in MlghC is coloured as in Figure 10A. NADP and GDP-L-fucose molecules found in GFS have their carbons coloured purple (PDB 4b15).

Figure S9: Catalytic activity of mutated DdahC reductase. Panel A. CE profile at 45 min for reductase activity on heptose whereby a single substrate $P4\alpha$ was generated by 1.5 µM DdahA and 0.4 µM DdahB. Reactions contained 0.3 mM of heptose, 0.65 mM of NADPH/+ and 0.2 μ M of reductase in 11.5 µl. Panel B. Time course of activity on GDP-mannose whereby the substrate P4' was generated by 0.27 µM HP0044 and 0.4 µM MlghB using 0.15 mM of mannose, 0.3 mM of NADPH/+ and 0.2 µM of reductase in 10 µl.

DdahC H180R

DdahC T110C

DdahC WT

MlghB

None

Figure S10: Representative examples of Coomassie-stained SDS-PAGE gels for purified proteins diluted to equal concentrations for use in kinetic analyses. Panel A. Epimerases. Panel B. Reductases. For each mutated enzyme, concomitant expression and purification of wild-type enzyme was performed so that aged-matches enzymes diluted to the same concentration could be used to compare catalytic efficacy. Concentrations were determined by Bradford and concentration matched preparations were then run on SDS-PAGE gels. Each mutation was tested out of 2-3 independent expressions and purifications. The additional band seen in MlghB Y132F/Y134F was consistently observed in 2 independent preparations and could not be eliminated. Since this mutant was inactive like its pure Y134F counterpart, this was not pursued further.

