Supplementary figure legends

Supplementary Fig. 1. Hypertonic NaCl effect on resistance. Wild-type mouse muscle-stripped gastric corpus was mounted into an Ussing chamber (area = 0.1 cm^2) and transepithelial R were measured as described in Methods. Representative time course of percent (%) normalized R after addition of 0 M (black), 0.25 M (green), 0.5 M (blue), or 1.0 M (red) NaCl to luminal nutrient solution. Time zero starts 10 min baseline measurement prior to 5 min (NaCl arrow) exposure to NaCl challenge. At t = 30 min (arrow) shows the time point where change in (Δ) R at 15 min post NaCl was calculated.

Supplementary Fig. 2. Controls for artifacts during 0.5 M NaCl challenge. After reaching I_{sc} steady-state while either a glass coverslip (A) or permeable plastic wrap (B) was mounted in an Ussing chamber, 0.5 M NaCl was added luminally for 5 min (arrow). Outcomes identify I_{sc} changes caused by solution changes that are distinct from tissue active ion transport.

Supplementary Fig. 3. Effect of omeprazole on basal I_{sc} and percent I_{sc} recovery. Wild-type (WT) mouse muscle-stripped gastric corpus was mounted into an Ussing chamber (area = 0.1 cm²). Short circuit current (I_{sc}) was measured as described in Methods. Results compared never ulcerated tissue (Control, black) or Intact tissue (black) versus the presence of 100 µM omeprazole (OMZ, green-) added a minimum of 30 min prior to 0.5 M NaCl challenge (5 min) to both luminal and serosal bath. (A) Baseline I_{sc} of WT Control without OMZ (-) versus WT Control with OMZ (+), * P < 0.05 (paired two-tailed t-test). (B) Percent (%) I_{sc} recovery for WT Intact (from Fig. 2C) without OMZ (-) versus WT Control with OMZ (+). Mean ± SEM (n=4 WT Control or WT Intact or TFF2 Control, n=5 TFF2-KO Intact).

Supplementary Fig. 1

Supplementary Fig. 2

Supplementary Fig. 3

