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A. Continuous virus production model

We recall the model from the main text. Infectious and non-infectious virus particles are
denoted by VI and VN I , respectively, target cells by T , infected cells in the eclipse phase by I1

and infected cells producing the virus by I2. We use a previously studied within-host model of
virus production (Pearson et al., 2011; Conway et al., 2013). The underlying individual-based
reactions are the following:

VI +T
β−→ I1, infection of target cells,

I1
k−→ I2, end of eclipse phase,

I2
δ−→∅, infected cell death,

I2
ηp−→ I2 +VI , infectious virus production,

I2
(1−η)p−→ I2 +VN I , non-infectious virus production,

VI ,VN I
c−→∅, virus clearance.

(A.1)

Since we model the early state within-host dynamics of a viral infection, we can assume that
the number of infectious virus particles, VI , is low so that the number of target cells is not
strongly affected by transformation to infected cells, i.e. T (t) ≈ T (0) = T0. Then, the first
reaction can be rewritten as

VI
βT0−→ I1 . (A.2)

Using standard techniques to derive a set of ordinary differential equations from this set
of reactions (e.g. Anderson and Kurtz, 2011), we find the system given in Eq. (1) in the main
text. Note, that in the main text we use capital letters to denote densities while here the capital
letters refer to the actual numbers of cells and virus particles.

A.1. Connection to a burst model

Since the individual-based model is built on stochastic interactions of cells and virions, the
number of virions produced by an infected cell is a random variable. Assuming that all
virions are released at a single time, typically at cell death, the number of released virions,
the burst size, follows a geometric distribution (Hataye et al., 2019). This can be seen by the
following reasoning: the life-time of an infected cell is exponentially distributed with mean
1/δ and during this time there is a continuous production of virions at rate p. This production,
assuming that it is a Markovian process, is described by a Poisson process (see Anderson and
Kurtz (2011) for the general theory of modeling chemical reactions). The probability of the
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burst size, denoted by N , to be of size j is then given by the following calculation:

P(N = j ) =
∫ ∞

0

(pt ) j

j !
e−pt︸ ︷︷ ︸

j virions produced until time t

δe−δt︸ ︷︷ ︸
cell still alive at time t

d t

= p jδ

j !

∫ ∞

0
t j e−(p+δ)t d t

=
(

p

p +δ

) j δ

p +δ .

(A.3)

This is the distribution of a geometrically distributed random variable with success probability
p/(p +δ). Intuitively, the infected cell has undergone j +1 steps, where the initial j steps
resulted in the production of a virus (term (p/(p +δ)) j ) and the ( j +1)-th step was its death
(term δ/(p +δ)). The mean of this geometric distribution is p/δ. The continuous-production
model can therefore be seen as equivalent to a burst size model with a burst size N having a
geometric distribution with mean p/δ.
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B. Burst model

The continuous-production model is more likely to be relevant for SARS-CoV-2 (Park et al.,
2020), and was therefore chosen in the main text. Here we examine how a burst model would
affect our findings. In a burst model, we assume that virus is produced in an infected cell but
is only released to the environment upon cell death. The number of virus particles released is
therefore a random number which we again denote by N .

In the corresponding reactions in Eq. (A.1), we need to replace the virus production and cell
death lines by

I2
δ−→ ηNVI + (1−η)NVN I . (B.1)

In order to be consistent with the continuous-production model, we set the mean of the burst
size to p/δ.

In the following we assume that the overall burst size N is Poisson-distributed. There are two
reasons for this choice: (i) it is analytically relatively easy to handle, and (ii) it represents the
other end of the spectrum of negative-binomially distributed burst sizes when compared to
the continuous-production model which is equivalent to a geometrically-distributed burst size.
The negative binomial distribution models the number of failures before a certain number r
of successes in a sequence of Bernoulli experiments with success probability q . Specifically,
the probability of observing k failures before the r th successes is given by

P(k failures before the r th success) =
(

k + r −1

k

)
qr (1−q)k . (B.2)

The parameter r is sometimes also referred to as the dispersion and formally the negative
binomial distribution can also be extended to non-integer values of r . The mean is given by
qr /(1−q). The negative binomial distribution relates to the geometric distribution by setting
r = 1 and to the Poisson distribution by letting r →∞. The probabilities of establishment for
the continuous-production model and the Poisson-distributed burst size model therefore rep-
resent the two extremes of negative-binomially distributed burst size models with dispersion
parameter r ∈ (1,∞). This holds because the establishment probability can be computed by
the probability generating function (Haccou et al., 2005) which is continuous and monotone
in the dispersion parameter r . It is given by

g (z) =
(

1−q

1−qz

)r

, (B.3)

where z is an auxiliary variable.

B.1. Establishment probability

We compute the establishment probability of the virus in the burst size model. A key ingredient
is the offspring distribution of a single virus particle. The offspring distribution is given by a
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zero-inflated Poisson distribution:

P(0 infectious virus offspring) = c

c +βT︸ ︷︷ ︸
no cell infected

+ βT

c +βT
e−ηN︸ ︷︷ ︸

infected cell with 0 virions produced

,

P( j infectious virus offspring) = βT

c +βT

(ηN ) j

j !
e−ηN , for j ∈ {1,2,3, ...}.

(B.4)

Note, that we are only considering infectious virus particles here because non-infectious
virus particles do not affect the future virus dynamics.

The life cycle of a virus (conditioned on infecting a cell) is given by a three step process: cell
infection, eclipse phase and virus production within an infected cell. Ignoring this time delay
which is irrelevant if we just consider the establishment probability, the virus population can
be modeled by a discrete time branching process. At each time, all infectious virions alive
at the time step before produce a random number of (infectious) virions according to the
offspring distribution given in Eq. (B.4).

The extinction probability of a time-discrete branching process, when starting with one
infectious virus particle, is given by the non-trivial fixed point of the probability generating
function of the offspring distribution, i.e. the fixed point in the interval (0,1) (Haccou et al.,
2005). The probability generating function is given by

g (z) = E[zηN ] = c

c +βT
+ βT

c +βT
eηN (z−1), (B.5)

where z is an auxiliary variable and E denotes the expectation of the random burst size of
infectious virions ηN . The fixed point of this function is given as

z∗ = c

c +βT
−

W
(
−ηN exp

(
−ηN βT

c+βT

))
ηN

, (B.6)

where W (x) is the Lambert-function (sometimes also called the product logarithm). It is
defined for x ≥−exp(−1). For values below this threshold, we need to solve Eq. (B.5) numeri-
cally. In fact, when plotting the establishment probability in Fig A below, we solve Eq. (B.5)
numerically because the approximation of the Lambert-W function W (x) is inaccurate for
negative x, especially when close to −exp(−1).

The establishment probability, denoted ϕ, is then given by

P(virus survives) =ϕ= 1−min(1, z∗)VI (0), (B.7)

where VI (0) is the initial number of infectious virions. For alternative derivations of this result
see also Pearson et al. (2011) and Conway et al. (2013).
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C. Comparison of the continuous-production and burst model

We compare the establishment probability from the burst model described above with that
obtained in the continuous-production model. Redrawing the first row of Fig 1 from the
main text and comparing it with the corresponding graphs obtained from the burst model,
we do not see any qualitative difference between the two models, cf. Fig A. As outlined in
Section B, the two studied models can be seen as the extreme values of a model continuum.
By varying the dispersal parameter r of the negative binomial distribution, one can explore
the entire continuum between the geometrically distributed burst size (which is equivalent to
the continuous-production model) and the Poisson-distributed burst size model. Therefore,
it seems safe to say that the exact mechanism by which we implement virus production
in the model will only result in minor quantitative differences on the probability of virus
establishment.

Parameter set ηp [d−1] T0 [cells] ηN [virions] R0 [cells]

Low burst size (LowN) 11.2 4×104 18.8 7.69
High burst size (HighN) 112 4×103 188 7.69

Table A: Model parameters used in the main text and for the simulations in Fig A. The
remaining parameters are not changed between the simulations and are set to:
k = 5 d−1, δ= 0.595 d−1, c = 10 d−1, β= cδR0/(T0(ηp −δR0)) d−1, η= 0.001.
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Figure A: Comparison of establishment probabilities in the continuous-production and
burst model. The first row is the same as the first row in Fig 2 in the main text.
The second row corresponds to the burst model. Theoretical approximations of the
establishment probability for the burst model are obtained from Eq. (B.7) adapted to
the different scenarios.
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D. Establishment probability when starting with a single
infected cell

In this section, we investigate how the establishment probability changes if treatment is started
when there is already an infected cell within the host. This situation might be more realistic to
post-exposure treatment where infectious virus from the initial inoculum might have already
infected a target cell (if the virus was not cleared). Instead of starting with a viral inoculum, we
thus need to consider the situation where an infectious cell is already producing virus (but has
not yet produced an infectious virus particle). The reasoning for computing the establishment
probability is then as follows: we combine the establishment probability with initially j
infectious virus particles with the probability for this infected cell to produce j infectious virus
particles. As we have seen in Section A.1 the number of infectious virus particles produced by
an infectious cell is geometrically distributed with success parameter δ/(δ+ηp). Therefore,
the establishment probability when starting with an infected cell, denoted by ϕI , is given by

ψ=
∞∑

j=1

(
ηp

ηp +δ

) j (
δ

ηp +δ

)
︸ ︷︷ ︸
j infectious virus particles

(
1− (1−ϕ) j

)
︸ ︷︷ ︸

est. prob. for j inf. virions

=
(

δ

ηp +δ

) ∞∑
j=1

(
ηp

ηp +δ

) j
(

1−
(
1− R0 −1

ηN

) j
)

= p(R0 −1)

δN +p(R0 −1)

= 1− 1

R0
.

(D.1)

This result has also been derived in Pearson et al. (2011), where this analysis was done for
the continuous-output and the burst model, and in Duwal et al. (2019) for a similar model in
the context of HIV prophylaxis.

In our high burst size parameter set, there is no visible difference between treatment with a
drug reducing productivity p and a drug reducing viral infectivity β (Fig Bb). However, for the
low burst size parameter set, in contrast to what we found in the main text when initializing
the system with a viral inoculum, now drugs reducing the infectivity p (blue) stronger reduce
the establishment probability than drugs reducing the infectivity β (orange), cf. Fig Ba. This
is explained by the order in which the drugs act: while a drug reducing viral production can
immediately lower the chances for a further virus propagation, drugs reducing infectivity need
to ‘wait’ for their targets, the extra-cellular virus, to arrive.
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Figure B: Establishment probability when starting with a single infected cell. We compare
the theoretical prediction (solid lines) of Eq. (D.1), adjusted for an antiviral drug
affecting either virus productivity or virus infectivity, with stochastic simulations
in the (a) LowN and (b) HighN parameter set. In the theoretical derivation of the
results, target cells are fixed to their initial values. In the stochastic simulations, this
number is allowed to decrease after cell infection. Averages of 10,000 realizations are
depicted as dots. In contrast to the finding in the main text, in the LowN parameter
set drugs reducing viral production p reduce the establishment probability stronger
than antivirals reducing infectivity β. This difference becomes negligible in the
HighN parameter set.
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E. Combination therapy in the HighN parameter set

We investigate the effect of combination therapy in the high burst size parameter set (Table A).
We find that the overall shape of the curves do not change compared to the LowN parameter
set. A higher burst size decreases the establishment probability of the virus. If we compare
Fig Cb with Fig 3 in the main text, we see that a ten-fold increase of the initial inoculum in the
HighN parameter set (V0 = 10) gives similar quantitative results as the LowN parameter set
with V0 = 1. This can be attributed to our ten-fold increase of the burst size when deriving the
HighN parameter set from the LowN parameter set.
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Figure C: Combination therapy in the HighN parameter set. We plot the establishment prob-
ability of different combination therapies as was done in Fig 3 in the main text.
Dots are averages from 100,000 stochastic simulations obtained using the HighN
parameter set with (a) V0 = 1 or (b) V0 = 10.
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F. Time to detectable viral load

In this section, we study the mean time to reach a certain amount of viral load at the infection
site within the host. We approximate this time using a mixture of deterministic and stochastic
arguments. Classical branching processes typically have two possible outcomes: either the
process goes extinct or grows indefinitely (Haccou et al., 2005). The deterministic model is
captured by the mean of such a branching process, i.e. it takes into account both possible
outcomes. Therefore, if we condition the branching process on survival, the deterministic
model will typically underestimate the actual size of the corresponding branching process
(Desai and Fisher, 2007). One can correct this error by rescaling the deterministic process by
the probability of survival. In our specific setting this means that the total number of virus
particles at any time t , V (t ) =VI (t )+VN I (t ), can be estimated as follows:

E[V (t )] =ϕ(t )E[V (t );V (t ) > 0]+ (1−ϕ(t ))E[V (t );V (t ) = 0]︸ ︷︷ ︸
=0

⇐⇒ E[V (t );V (t ) > 0] = E[V (t )]

ϕ(t )
,

(F.1)

where V (t ) denotes the random variable for the number of virus particles at time t , ϕ(t ) the
survival probability of the branching process until time t and E[V (t );V (t ) > 0] the expectation
of V (t) for a surviving trajectory until time t . Similar arguments have also been used in the
models for HIV (Konrad et al., 2017; Conway and Perelson, 2018).

To compute the time for the viral load to reach a certain threshold we set ϕ(t) = ϕ. In
other words, we approximate the survival of the branching process until time t by the total
establishment probability expressed in Eq. (4) in the main text. This is a good approximation if
the ‘typical’ time t to reach the threshold is large enough, so that ϕ(t ) is already close to the
limit survival probability ϕ. The other term on the right-hand side in Eq. (F.1), the mean of the
stochastic process E[V (t )], can be approximated by the deterministic model of the within-host
model defined in Eq. (1) in the main text.

As explained in the main text, we set the threshold viral load to 2,000 virions (Fig 4 in the
main text). The mean time to reach this threshold value is then approximated by the time
when the size 2,000×ϕ is reached in the deterministic model.

F.1. Growth rate of the viral population to leading order

The exponential growth rate of the deterministic model described in Eq. (1) in the main text is
given by the leading eigenvalue of the system when evaluated at the origin, i.e. at zero virions
Bonhoeffer et al. (1997). For efficacies close to the critical efficacy, the eigenvalue is small
and can therefore be approximated by the root of a linear equation instead of a higher order
polynomial. This approximation yields R0−1

1
c+βT0

+ 1
k + 1

δ

as the leading eigenvalue. A Mathematica

notebook showing this calculation is deposited at: gitlab.com/pczuppon/virus_establishment.
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Figure D: The mean time to reach a detectable viral load at the infection site. (This is Fig 4
from the main text.) Panel A: Solid lines represent the theoretical prediction of
the average time for the viral infection to reach 2,000 virions. We used the LowN
parameter set to simulate 10,000 stochastic simulations that reached a viral load
of 2,000 total virus particles when starting with an inoculum of VI (0) = 1. Dots are
the average times calculated from these simulations, error bars represent 90% of the
simulated establishment times. Panel B: We plot 10 example trajectories that reach
the detectable viral load for each of the four types of treatment (efficacy ε j = 0.75).
Under treatment that increases the infected cell death δ, establishing trajectories
reach the detectable viral load almost immediately. In contrast, drugs that directly
affect the number of virus, i.e. clearance c or production p, allow for trajectories that
fluctuate much more, explaining the larger average detection times and the larger
variation of detection times for these scenarios.

F.2. Explaining the shape of the curves in Fig 4 of the main text

In this section, we provide more detailed explanations about the shapes of the establishment
time curves depending on the mode of action of the drug. Throughout this discussion, it is
important to keep in mind that for the average establishment times, only trajectories that
result in establishment are taken into account. To ease the discussion, Fig D shows Fig 4 from
the main text.

Treatment that targets the virus infectivity β does not increase the establishment time be-
cause these drugs do not affect the virus dynamics itself. Conditioned on virus establishment,
the initially present virus particle will infect a target cell relatively quickly, i.e., on a similar
time scale than without treatment, and then follow the same dynamics as without treatment.
Since the burst size largely exceeds the detection threshold, in our model a single infected
cell is sufficient to reach this threshold. Therefore, the establishment time remains largely
unaffected by drugs targeting the infectivity β.

For drugs increasing the infected cell death rate δ, the trajectories that contribute to the
results in Fig D are the ones that produced a large number of virus particles from a single cell in
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a short time. This is because of the strongly increased cell death rate for large values of efficacy
εδ. Therefore, a surviving virus trajectory needs to reach large numbers of virus particles
in a short time to avoid extinction. This is different for a reduced viral production p where
the infected cell death rate is unaffected. Therefore, it is not necessary for a surviving virus
trajectory to reach high viral loads very quickly, even though this is of course possible which
is reflected by the large 90% confidence interval. This is visualized in Fig D, panel B: green
trajectories correspond to drugs affecting the cell death rate and blue trajectories correspond
to drugs reducing viral production.

Lastly, increasing the viral clearance rate c by prophylactic treatment increases the estab-
lishment time with increasing efficacy, but not as much as treatment with drugs that reduce
viral production p. The reason here is that clearance acts just after the viral production, i.e.,
there is time passing between the production of a virus particle and its clearance. Hence,
reducing virus production has a stronger effect on the establishment time than an increase of
viral clearance c which acts later in the viral life cycle.
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G. Parameter estimation

Patient data from Young et al. (2020) were fitted using the set of differential equations presented
in Eq. (1) in the main text. To ensure identifiability of critical parameters of the viral dynamics,
i.e. the basic reproductive number R0, the loss rate of infected cells δ and the viral production
p, the remaining parameters c , k and V0 were fixed. Viral clearance c was fixed to 10 day−1. For
the eclipse phase k we chose 5 day−1 and the initial inoculum V0 was set to 1/30 copies.mL−1

(see Gonçalves et al. (2020) for further details). Parameters were estimated in a non-linear
mixed effect model using the SAEM algorithm implemented in Monolix (www.lixoft.com). The
best fit using all available patient data resulted in the parameter values R0 = 7.69, δ= 0.595
and p = 11,200, the principal data set used in the main text (LowN parameter set).

G.1. Parameter estimates for individuals plotted in Fig 1 in the main text

Applying this method to data from the 13 untreated patients in Young et al. (2020), we obtain
the best parameter set for each individual. The individual parameter sets from four patients
(patients 2,4,11,18) were used to plot the deterministic curves in Fig 1A in the main text. In
Fig E, the best fits for all 13 untreated patients are shown in separate panels with the exact
parameter values given in Table B.

Patient ID R0 [cells] δ [day−1] p [day−1]

2 (blue) 9.77 0.71 11,016
3 4.06 0.57 11,369
4 (orange) 8.73 0.66 11,104
6 6.72 0.58 11,281
7 1.58 0.53 11,185
8 12.11 0.48 10,817
9 15.47 0.39 10,493
11 (red) 9.2 0.86 11,060
12 8.81 0.73 11,096
14 4.45 0.78 11,396
16 7.81 0.56 11,174
17 13.43 0.73 10,679
18 (green) 7.12 0.5 11,031

Table B: Model parameters used for the deterministic fits in Fig E. The other parameters do
not vary between the individuals and are set to: k = 5 day−1, c = 10 day−1, η= 10−3,
T0 = 4×104 cells and β= cδR0/(T0(ηp −δR0)) day−1. The colors (if given) correspond
to the line colors of Fig 1A in the main text.
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Figure E: Individual fits of our model to the patients from Young et al. (2020). Model predic-
tions using the target cell-limited model in all patients of Young et al. (2020). The
estimated mean for within-host R0 of all patients is 7.69. Individual parameter values
are given in Table S2. The initial amount of virus particles per mL, VI (0) = 1/30,
corresponds to 1 infectious virus particle in absolute numbers in the total upper
respiratory tract, which we assume has a volume of 30 mL. The dotted line depicts
the detection threshold set to 101.84.

G.2. Sensitivity analysis with respect to variations in the fraction of
infectious virus particles η

We evaluate how different choices of η, the fraction of infectious virus among all produced
virus particles, affect the estimates of the within-host reproductive number R0 and the burst
size η. In the main text, we have used the parameter estimate with η= 10−3 which resulted in
R0 = 7.69 and N = 18,823. For a larger fraction of infectious virus particles, η= 10−2, we find
R0 = 5.3 and N = 3,303; for a smaller fraction of infectious virus particles, η= 10−4, we obtain
R0 = 9.2 and N = 349,367. While the within-host reproductive number R0 does not vary too
much between the different choices of η, the burst size N shows large variation. This has no
effect on our results on the establishment of a SARS-CoV-2 infection because the burst size
always enters in the form of a product with η. In all the different scenarios above, the product
η×N varies between 18 for η= 10−3 and 35 for η= 10−4.

Overall, the differences in estimates for R0 will affect the precise estimate of the critical
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efficacy and differences in the estimate for N translate to differences in the quantitative values
of the establishment probability curves below the critical efficacy. The predictions on the
detection and extinction time strongly depend on the overall burst size N so that these will
vary considerably depending on the choice of η.
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