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Supplementary Figure 1. Dataset Descriptions. DeepTCR was piloted on sources of data that covered both human and 
mouse TCRs including samples taken from infectious disease settings and cancer pathology.  

Dataset Host  Pathology Description 

Glanville_2017 Human Infectious Disease 
T-cells were sorted and sequenced from peripheral 
blood mononuclear cells (PBMCs) from healthy donors 
for 7 Class-I specificities. 

Sidhom_2017 Murine Cancer 
T-cells were expanded, sorted, and sequenced against 
tumor-associated antigens (SIY & TRP2) in the B16 cell 
line. 

Dash_2017 Human & 
Murine Infectious Disease T-cells were sorted and sequenced from either mice or 

humans for 7 murine and 3 human Class-I specificities.  

10x_Genomics Human Infectious Disease & 
Cancer 

T-cells were high-throughput screened for a large 
number of human viral and tumor-associated antigens 
via published 10x Genomics single-cell pipeline. 

Chan_2020 Human Infectious Disease 

T-cells were cultured with HIV-specific epitopes for 10 
days prior undergoing TCR-Seq. Triplicates were 
conducted for each cognate epitope along with 
positive (CEF) and negative (No Peptide) controls. 



 

 

Supplementary Figure 2. Comparing clustering performance of Hamming Distance v. GLIPH. In order to assess the 
performance of a simple Hamming distance vs the state-of-the-art TCR-Seq clustering algorithm, we applied a Hamming 
distance followed by hierarchical clustering following Ward linkage to the Glanville dataset of 2066 TCR sequences specific 
for 7 antigens as well as ran the GLIPH clustering algorithm. We then assessed the clustering accuracy (as per methods used 
by Glanville et. al.). This entailed only including clusters with at least 3 sequences and making cluster assignments based 
on the majority of members within a cluster. If there was no majority, no cluster assignment was made. For clusters with 
assignments, sequences within the cluster that shared the cluster assignment labeled were counted as being clustered 
correctly. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3. AUC Scores for K-Nearest Neighbors on Murine Antigens. A K-Nearest Neighbors algorithm 
was applied using a 5-Fold Cross-Validation across various values for k. AUC performance was assessed across all methods. 
For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval.  



 

Supplementary Figure 4. Recall Scores for K-Nearest Neighbors on Murine Antigens. A K-Nearest Neighbors 
algorithm was applied using a 5-Fold Cross-Validation across various values for k. Recall performance was assessed across 
all methods. For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval.   



 

Supplementary Figure 5. Precision Scores for K-Nearest Neighbors on Murine Antigens. A K-Nearest Neighbors 
algorithm was applied using a 5-Fold Cross-Validation across various values for k. Precision performance was assessed 
across all methods. For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval.  



 

Supplementary Figure 6. F1 Scores for K-Nearest Neighbors on Murine Antigens. A K-Nearest Neighbors algorithm 
was applied using a 5-Fold Cross-Validation across various values for k. F1 Score was assessed across all methods. For 
each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval.  



 

Supplementary Figure 7. AUC Scores for K-Nearest Neighbors on Human Antigens. A K-Nearest Neighbors algorithm 
was applied using a 5-Fold Cross-Validation across various values for k. AUC performance was assessed across all methods. 
For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval.  



 

Supplementary Figure 8. Recall Scores for K-Nearest Neighbors on Human Antigens. A K-Nearest Neighbors 
algorithm was applied using a 5-Fold Cross-Validation across various values for k. Recall performance was assessed across 
all methods. For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval. 



 

 

Supplementary Figure 9. Precision Scores for K-Nearest Neighbors on Human Antigens. A K-Nearest Neighbors 
algorithm was applied using a 5-Fold Cross-Validation across various values for k. Precision performance was assessed 
across all methods. For each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval. 



 

 

Supplementary Figure 10. F1 Scores for K-Nearest Neighbors on Human Antigens. A K-Nearest Neighbors algorithm 
was applied using a 5-Fold Cross-Validation across various values for k. F1 Score was assessed across all methods. For 
each k, n=5 cross-validations, where mean value is shown along with the 95% confidence interval. 



 

 

 

Supplementary Figure 11. Assessing correlation between various distance metrics and length of the sequence. In 
order to assess the extent by which these various methods used to quantify the distance between sequences was driven by 
sequence length, we determined the Spearman’s Rank Correlation Coefficient (SRCC) between the distances of a given pair 
of sequences and how different in length they were. Boxplots are shown to compare distance by sequence length (x-axis) 
by distance of various methods (y-axis), where median and interquartile range (IQR) are shown for each length sequence 
and outliers are defined as Q1 - 1.5*IQR or Q3+1.5*IQR. 
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Supplementary Figure 12. Benchmarking various machine learning methods to classify TCR sequences by their 
antigen-specificity. In order to compare the performance of various machine learning approaches to classify TCR sequences 
by their antigen-specificity, we used the TCR sequences for the 9 murine antigens collected to benchmark DeepTCR’s deep 
learning classifier vs a classical Support Vector Machine (SVM) and Random Forrest (RF) classifier. Only the beta cdr3 
sequence was provided to all 3 machine learning algorithms to test the ability of the classifiers to predict antigen-specificity 
from cdr3 motifs. 100 iterations of a 5-fold cross-validation were completed and AUC’s were measured for each of the 
various methods to assess classification performance. Average AUC values for DeepTCR’s deep learning sequence 
classifier, the Random Forrest, and SVM were 0.830, 0.810, and 0.769 respectively. (Two-tailed independent t-test, * : p < 
0.05, ** : p < 0.01, *** : p < 0.001). Boxplots are shown to compare performance by each method where median and 
interquartile range (IQR) are shown for each length sequence and outliers are defined as Q1 - 1.5*IQR or Q3+1.5*IQR. 

  



 

Supplementary Figure 13. Classification Performance of Residue Sensitivity analysis to identify contact residues. 
Following creation of Residue Sensitivity Logos for Flu-MP (1OGA) and BMLF1 (3O4L) TCRs, the range of perturbation 
values at every position (height of the logo) was used as a predictor of being a contact residue. ROC curves were constructed, 
and AUC’s were computed to assess the predictive power. 

  



 

 

  

 

 

 

 

 

Supplementary Figure 14. Experimental Validation of Repertoire Classifier. Distributions of TCR-level predictions 
from 18 originally reported experimentally validated TCR-peptide pairs (red circles) along with all TCR-peptide pairs (blue 
background distribution) are shown via violin plot (left) with corresponding DeepTCR prediction values for validated pairs 
in table (right). 

  



 

 

 

Supplementary Figure 15. GAG TW10 Multi-Class Sequence Classification Performance. Following initial screen to 
select antigen-specific immune expansion, we collected the positive predicted TCR sequences (prob > 0.99) from the 
autologous GAG TW10 variants and trained a TCR sequence classifier to predict based on TCR sequence which GAG 
TW10 variant the TCR recognized. ROC curves are shown for all variants in one v. all fashion. 

  



 

Supplementary Figure 16. Prediction values for Repertoire Classifier on GAG IW9 epitope family. The DeepTCR 
Repertoire Classifier was applied to the autologous variants from the GAG IW9 epitope family for ES8. Prediction values 
following 100 Monte-Carlo simulations are shown demonstrating inability for classifier to differentiate between the 
consensus and escape variant repertoires. 

 

 


