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 36 

Abstract 37 

Background: DNBSEQ-T7 is a new whole-genome sequencer developed by Complete 38 

Genomics and MGI utilizing DNA nanoball and combinatorial probe anchor synthesis 39 



technologies to generate short reads at a very large scale – up to 60 human genomes per day. 40 

However, it has not been objectively and systematically compared against Illumina short-read 41 

sequencers. Findings: By using the same KOREF sample, the Korean Reference Genome, we 42 

have compared seven sequencing platforms including BGISEQ-500, DNBSEQ-T7, HiSeq2000, 43 

HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000. We measured sequencing quality by 44 

comparing sequencing statistics (base quality, duplication rate, and random error rate), 45 

mapping statistics (mapping rate, depth distribution, and %GC coverage), and variant statistics 46 

(transition/transversion ratio, dbSNP annotation rate, and concordance rate with SNP 47 

genotyping chip) across the seven sequencing platforms. We found that MGI platforms showed 48 

a higher concordance rate for SNP genotyping than HiSeq2000 and HiSeq4000. The similarity 49 

matrix of variant calls confirmed that the two MGI platforms have the most similar 50 

characteristics to the HiSeq2500 platform. Conclusions: Overall, MGI and Illumina 51 

sequencing platforms showed comparable levels of sequencing quality, uniformity of 52 

coverage, %GC coverage, and variant accuracy, thus we conclude that the MGI platforms can 53 

be used for a wide range of genomics research fields at a lower cost than the Illumina platforms. 54 

Keywords: DNBSEQ-T7; whole-genome sequencing; sequencing platform comparison; 55 

 56 

Introduction 57 

Recently, due to the rapid technological advancement, the second- and third-generation 58 

sequencing platforms can produce a large amount of short- or long-read data at relatively low 59 

cost [1]. Depending on the application, these sequencers offer several distinct advantages. 60 

Short-read based second-generation sequencing can be used to efficiently and accurately 61 

identify genomic variations. Long-read based third-generation sequencing can be used to 62 



identify structural variations and build high quality de novo genome assemblies [2]. Short-read 63 

sequencing technologies are routinely used in large-scale population analyses and molecular 64 

diagnostic applications because of the low cost and high accuracy [3]. The recent platforms 65 

from Illumina are the HiSeqX10 and NovaSeq6000 short-read sequencers. A competing 66 

sequencer developed by Complete Genomics and MGI Tech is the DNBSEQ-T7 (formerly 67 

known as MGISEQ-T7). DNBSEQ-T7 is a new sequencing platform following on from 68 

BGISEQ-500, that uses DNA nanoball and combinatorial probe anchor synthesis to generate 69 

short reads at a very large scale [4].  70 

In 2017 the first paper was published showing similar accuracy of SNP detection for 71 

the BGISEQ-500 platform compared to the HiSeq2500 [5]. While the overall quality of the 72 

data generated by BGISEQ-500 was shown to be of high quality, some of its characteristics 73 

showed lower quality compared to Illumina HiSeq2500. In addition, the comparison results for 74 

DNA, RNA, and metagenome sequencing of the Illumina and the MGI platforms have been 75 

reported [6-8]. Furthermore, coronavirus analysis studies using an MGI platform have been 76 

reported in 2020 [9, 10]. Despite this, to date no study has compared Illumina platforms with 77 

DNBSEQ-T7 for whole-genome sequencing (WGS). In the present study, we compared seven 78 

short-read based sequencers; two MGI platforms (BGISEQ-500 and DNBSEQ-T7) and five 79 

Illumina platforms (HiSeq2000, HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000) 80 

(Table 1). We focused on how similar the two sets of platforms are rather than the accuracy of 81 

each sequencer, by comparing variants, platform-specific covered regions as well as the 82 

concordance rate to SNP genotyping chip. 83 

 84 

Results 85 

Sequencing data summary 86 



We analyzed and benchmarked the whole-genome sequencing data quality generated by the 87 

seven sequencers using the KOREF (the Korean Reference Genome) [11] DNA. Due to the 88 

sequential release and distribution of the sequencers, KOREF sequencing has been carried out 89 

in the nine years following the projects launch in 2010. Therefore, the blood samples, library 90 

construction, and sequencing conditions were not the same, although all the samples were from 91 

one individual. The Illumina platform data used here were from 2012 to 2019, while the MGI 92 

platform data were from 2017 and 2019. With the read length differing depending on the 93 

platform. The Illumina HiSeq2000 had the shortest read length of 90 bp paired-end (PE) and 94 

the HiSeq4000, HiSeqX10, and NovaSeq6000 had 151 bp PE. The read length of the 95 

HiSeq2500 is 101 bp PE and that of the BGISEQ-500 and DNBSEQ-T7 is 100 bp PE. 96 

Additionally there is a difference in the amount of data produced, so we therefore randomly 97 

selected 35× coverage sequencing data for HiSeq2500 and NovaSeq6000 which have 98 

equivalent amounts of sequencing data matching that of BGISEQ-500 and HiSeqX10 99 

platforms. HiSeq2000, HiSeq4000, and DNBSEQ-T7 had roughly 30× coverage. 100 

 101 

Assessment of base quality and sequencing error in raw reads 102 

Base quality is an important factor in evaluating the performance of sequencing platforms. We 103 

analyzed the sequencing quality by identifying low-quality reads. First, we investigated the 104 

base quality distribution of raw reads with the FastQC (FastQC, RRID:SCR_014583) [12]. All 105 

seven sequencing platforms showed that the quality of each nucleotide gradually decreased 106 

towards the end of a read (Fig. S1). The quality value of the HiSeq4000 and HiSeqX10 reads 107 

showed a tendency to decrease rapidly towards the end of the read. We defined low-quality 108 

reads as those that had more than 30% of bases with a sequencing quality score lower than 20. 109 

The fraction of low-quality reads ranged from 2.8% to 18.3% across the seven sequencing 110 



platforms (Fig. S2 and Table S1). Based on the filtering criteria, the newest platforms, 111 

NovaSeq6000 and DNBSEQ-T7, showed the lowest percentage of low-quality reads (2.8% and 112 

4.2%, respectively).  113 

We analyzed the frequency of random sequencing errors (ambiguous base, N), which 114 

is also an important factor to evaluate the quality of the sequencing platform. We found that 115 

the HiSeq2000, HiSeq4000, and HiSeqX10 showed a high random error ratio in certain 116 

sequencing cycles (Fig. S3 and Table S2). Furthermore, in the case of HiSeq2000, the random 117 

error tended to increase gradually after each sequencing cycle. We also investigated the 118 

sequencing error using K-mer analysis. Most erroneous K-mers caused by sequencing error 119 

appeared at very low frequency and form a sharp left-side peak [13, 14]. Distribution of K-mer 120 

frequencies showed similar distributions between the platforms (Fig. 1). However, there was a 121 

difference in the proportion of low-frequency K-mer (≤ 3 K-mer depth), which was considered 122 

as putative sequencing errors (Table S3). The NovaSeq6000 showed the lowest amount of 123 

erroneous K-mer (3.91%), while the HiSeq4000 contained the highest amount of erroneous K-124 

mer (13.91%) among the seven sequencing platforms. The BGISEQ-500 and DNBSEQ-T7 125 

showed a moderate level of erroneous K-mer (7.72% and 6.39%, respectively).  126 

We examined the duplication rate and adapter contamination in the seven sequencing 127 

platforms (Table S2). We examined the exact duplicates, which are identical sequence copies, 128 

from raw sequence data. The HiSeq2000 and DNBSEQ-T7 showed the highest duplicate ratio 129 

(8.71% in HiSeq2000 and 3.04% in DNBSEQ-T7). The HiSeq4000, HiSeqX10 and 130 

NovaSeq6000 showed higher adapter contamination rates than other platforms, probably due 131 

to longer sequence length (151 bp). However, duplicates and adapter contamination may be 132 

more affected by the process of sample preparation than by the sequencing instrument. 133 

 134 



Genome coverage and sequencing uniformity 135 

In order to assess genomic coverage and sequencing uniformity, we aligned quality-filtered 136 

reads to the human reference genome (GRCh38). All seven sequencing platforms showed a 137 

mapping rate of more than 99.98% and genome coverage of more than 99.6% (≥ 1×; Table 2). 138 

We observed a higher duplicate mapping rate in the HiSeq2000 (15.35%) and DNBSEQ-T7 139 

(8.77%) than the other platforms and the same pattern as the duplication rates of raw reads (see 140 

Table S2). Additionally, it was also observed that duplication rates of other DNBSEQ-T7 data 141 

were also high, which were generated by the same run with the KOREF data (Table S4). The 142 

insert-size for paired-end libraries corresponds to the targeted fragment size for each platform 143 

(Fig. S4). It has been reported that the depth of coverage is often far from evenly distributed 144 

across the sequenced genome [15]. To assess the sequencing uniformity, we analyzed the 145 

distribution of mapping depth for all chromosomes (Fig. S5). All seven platforms showed a 146 

similar pattern of depth distribution, but interestingly, we found that the depth near the 147 

centromere regions was lower exclusively in the HiSeq4000 (Figs. S6-S9). We speculate that 148 

this may have been due to a bias in the library preparation step on the HiSeq4000 platform. 149 

In order to examine the platform-specific covered region of MGI and Illumina 150 

platforms, we defined a platform-specific covered region that had significantly different depths  151 

based on the 100 bp non-overlapping windows and statistical test [16]. Prior to examining the 152 

platform-specific covered regions, mapped reads were down-sampled for all platforms to 24× 153 

coverage, which is the minimum coverage among the platforms, for a fair comparison. (Table 154 

S5). We found 178 Kb and 297 Kb of the platform-specific covered regions from MGI and 155 

Illumina platforms, respectively (Table S6). A total of 168 and 373 genes were overlapped in 156 

MGI and Illumina specific covered regions, respectively, and most of them were intronic. 157 

Interestingly, however, the platform-specific covered regions showed a significantly different 158 



distribution of GC ratios between the MGI and Illumina platforms (Fig. S10). The MGI 159 

platforms tend to cover regions relatively high in GC content (Wilcoxon rank-sum test, P = 160 

2.37 × 10-133). Nevertheless, it is obvious that platform-specific covered regions for Illumina 161 

platforms are slightly longer than those of the MGI platforms, and these regions were not 162 

sufficiently covered by the MGI platforms. 163 

Biases in PCR amplification create uneven genomic representation in classical 164 

Illumina libraries [17, 18] as PCR is sensitive to extreme GC-content variation [19]. Thus, we 165 

analyzed the GC biases for seven sequencing platforms. We examined the distribution of GC 166 

content in sequencing reads and found that raw reads of all the seven sequencing platforms 167 

showed a similar GC content distribution to the human reference genome (Fig. S11). To better 168 

understand what parts of the genome were not covered properly, we generated GC-bias plots, 169 

showing relative coverage at each GC level. Unbiased sequencing would not be affected by 170 

GC composition, resulting in a flat line along with relative coverage = 1. We found that all the 171 

seven sequencing platforms provided nearly even coverage in the moderate-GC range 20% to 172 

60%, which represents approximately 95% of the human genome (Fig. 2). On the other hand, 173 

the relative coverage of the HiSeq2000 platform dropped fast above 60% GC than other 174 

platforms, while the NovaSeq6000 covered well above 60% GC, unlike the other platforms. 175 

 176 

Comparison of variants detected among seven sequencing platforms 177 

To investigate the performance of variant calling for the seven sequencing sequencers, we 178 

adopted the widely used pipeline BWA-MEM (BWA, RRID:SCR_010910) [20] and GATK 179 

(GATK, RRID:SCR_001876) [21-23]. We identified an average of 4.14 million single 180 

nucleotide variants (SNVs), and 0.61 million indels (insertion and deletion) on each of the 181 



seven sequencing platforms (Table 3). The statistics of SNVs were similar across all the seven 182 

in terms of the dbSNP annotation rate (dbSNP153) and the transition/transversion (Ti/Tv) ratio, 183 

which indirectly reflects SNV calling accuracy. About 3.7 million SNV loci were found on all 184 

the seven sequencing platforms, and this accounts for 87% to 91% of the discovered SNVs on 185 

each platform (Table S7). We found 13,999 and 9,691 platform-specific SNVs on the MGI and 186 

Illumina platforms, respectively. To figure out the potential cause of the platform-specific 187 

SNVs, we checked how many of the SNVs were located on the platform-specifically covered 188 

regions. There were only 2.8% of Illumina platform-specific SNVs and 1.6% of MGI platform-189 

specific SNVs that were located on the platform-specifically covered region (Table S8), and 190 

most of the platform-specific SNVs were located on regions with sufficient sequencing depths 191 

(>10×). It was also found that about 74% of platform-specific SNVs were located on the repeat 192 

region (Table S9). The number of singletons, variations found only in one platform, was higher 193 

for the Illumina (~0.10 million SNVs on average) than MGI (~0.05 million SNVs on average) 194 

sequencers (see Table S7). This means that the difference within the Illumina platforms is 195 

greater than the difference between the MGI platforms. Similar to the case of the platform-196 

specific SNVs, a few singletons were found in the platform-specific covered region (0.5% in 197 

average), and most of the singletons were located on sufficiently high sequencing depth regions 198 

(>10×, Table S10). About 74% of singletons were located on the repeat region (see Table S9). 199 

We speculate that the repeat region is one of the sources causing the platform-specific SNVs 200 

and singletons. We also analyzed the number of SNVs found in any six of the seven sequencing 201 

platforms, which we considered false negatives (Table S11). The HiSeq2000 had the largest 202 

number of false negatives (64,856 SNVs) among the seven sequencing platforms. The two 203 

MGI platforms (DNBSEQ-T7 and BGISEQ-500) had 18,826 and 15,657 false negatives, 204 

respectively, and those of the NovaSeq6000 showed the smallest number of false negatives 205 

(6,999 SNVs). To investigate the relationship between the sequencing platforms, an unrooted 206 



tree was constructed using a total of 1,036,417 loci where the genotypes of one or more 207 

platforms differ from the rest of the platforms (Fig. 3 and Table S12). We found that the two 208 

MGI platforms grouped together, and they are the closest to the Illumina HiSeq2500 platform. 209 

The Illumina platforms were divided into two subgroups in the tree: a long read length (151 210 

bp) group, containing the HiSeq4000, HiSeqX10, and NovaSeq6000 platforms and a short read 211 

length (≤101 bp) group, containing the HiSeq2000 and HiSeq2500 platforms. Read length 212 

primarily affects the detection of variants through alignment bias and alignment errors, which 213 

are higher for short reads because there is less chance of a unique alignment to the reference 214 

sequence than with longer reads [24]. 215 

Since it was not possible to conduct standard benchmarking procedures and determine 216 

error values for each platform in this study, we compared the variations called by the seven 217 

whole-genome sequences with an SNP genotyping chip as an independent platform. Of the 218 

total 950,585 comparable positions, more than 99.3% of the genotypes matched the WGS-219 

based genotypes from the seven sequencing platforms (Table S13). We found that 4,356 loci 220 

in the SNP genotyping were inconsistent across all seven WGS-based genotyping results, 221 

suggesting that these loci are probably errors in the SNP genotyping chip. With the exception 222 

of HiSeq2000 and HiSeq4000, all the other platforms showed a similar concordance rate. 223 

 224 

Discussion 225 

Our benchmarks provided here can provide a useful but rough estimation of the quality of 226 

short-read based whole-genome sequencers. We used the same individual’s samples for all 227 

seven sequencing platforms but these were collected at different time points over the past seven 228 

years. Just one human sample cannot justify the variation that may occur among different 229 



individuals, extracted DNA molecules, and overall sequencing qualities. Furthermore, the 230 

sequencing quality may vary greatly depending on the version of the library preparation kit, 231 

even on the same platform [25]. These are clear limitations of our benchmarking, however, as 232 

our purpose was to compare two major platforms, namely Illumina and MGI, the whole 233 

genome data from just one individual can function as an intuitive index for researchers who 234 

are considering purchasing large sequencers to generate a very large amount of sequencing 235 

data (Table S14). Our method of statistical analysis does not allow us to conclude which of the 236 

seven sequencing instruments is the most accurate and precise as there is much variation in the 237 

sample preparation and sequencer specifications. Nevertheless, overall, the data generated by 238 

the Illumina and MGI sequencing platforms showed comparable levels of quality, sequencing 239 

uniformity, %GC coverage, and concordance rate with SNP genotyping, thus it can be broadly 240 

concluded that the MGI platforms can be used for a wide range of research tasks on a par with 241 

Illumina platforms, and at a lower cost [7]. 242 

  243 



Materials and Methods 244 

Genomic DNA extraction and SNP genotyping 245 

Genomic DNA used for genotyping and sequencing were extracted from the peripheral blood 246 

of a Korean male sample donor (KOREF). The genomic DNA was extracted using the DNeasy 247 

Blood & Tissue kit (Qiagen, Valencia, CA) according to the manufacturer's recommendations. 248 

DNA quality was assessed by running 1 μl on the Bioanalyzer system (Agilent) to ensure size 249 

and analysis of DNA fragments. The concentration of DNA was assessed using the dsDNA BR 250 

assay on a Qubit fluorometer (Thermo Fisher). We conducted a genotyping experiment using 251 

the Illumina Infinium Omni1 quad chip according to the manufacturer’s protocols. The 252 

Institutional Review Board (IRB) at Ulsan National Institute of Science and Technology 253 

approved the study (UNISTIRB-15-19-A). 254 

 255 

Illumina paired-end library construction and sequencing 256 

High-molecular weight genomic DNA was sheared using a Covaris S2 ultra sonicator system, 257 

in order to get appropriate sizes. Libraries with short inserts of 500 bp for HiSeq2000, 400 bp 258 

for HiSeq2500 (RRID:SCR_016383) and HiSeq4000 (RRID:SCR_016386), and 450 bp for 259 

HiSeqX10 and NovaSeq6000 for paired-end reads were prepared using TruSeq DNA sample 260 

prep kit following the manufacturer’s protocol. Products were quantified using the Bioanalyzer 261 

(Agilent, Santa Clara, CA, USA) and the raw data were generated by each Illumina platform. 262 

Further image analysis and base calling were conducted with the Illumina pipeline using default 263 

settings.  264 

 265 



MGI paired-end library construction and sequencing 266 

The KOREF genomic DNA was fragmented by Frag enzyme (MGI) to DNA fragments 267 

between 100 bp and ∼1,000 bp suitable for PE100 sequencing according to the manufacturer's 268 

instructions (MGI FS DNA library prep set, cat no; 1000005256). The fragmented DNA was 269 

further selected to be between 300 bp and ∼500 bp by DNA clean beads (MGI). The selected 270 

DNA fragments were then repaired to obtain a blunt end and modified at the 3’end to get a 271 

dATP as a sticky end. The dTTP tailed adapter sequence was ligated to both ends of the DNA 272 

fragments. The ligation product was then amplified for seven cycles and subjected to the 273 

following single-strand circularization process. The PCR product was heat-denatured together 274 

with a special molecule that was reverse-complemented to one special strand of the PCR 275 

product, and the single-strand molecule was ligated using DNA ligase. The remaining linear 276 

molecule was digested with the exonuclease, finally obtaining a single-strand circular DNA 277 

library. We sequenced the DNA library using BGISEQ-500 (RRID:SCR_017979) and 278 

DNBSEQ-T7 (RRID:SCR_017981) with a pair-end read length of 100bp. 279 

 280 

Raw data preprocessing 281 

We used the FastQC v0.11.8 (FastQC, RRID:SCR_014583) [12] to assess overall sequencing 282 

quality for MGI and Illumina sequencing platforms. PCR duplications (reads were considered 283 

duplicates when forward read and reverse read of the two paired-end reads were identical) were 284 

detected by the PRINSEQ v0.20.4 (PRINSEQ, RRID:SCR_005454) [26]. The random 285 

sequencing error rate was calculated by measuring the occurrence of ‘N’ bases at each read 286 

position in raw reads. Reads with sequencing adapter contamination were examined according 287 



to the manufacturer’s adapter sequences (Illumina sequencing adapter left = 288 

"GATCGGAAGAGCACACGTCTGAACTCCAGTCAC", Illumina sequencing adapter right = 289 

"GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT", MGI sequencing adapter left = 290 

“AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA”, and MGI sequencing adapter right = 291 

“AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG”). We conducted base 292 

quality filtration of raw reads using the NGS QC Toolkit v2.3.3 (cutoff read length for high 293 

quality 70; cutoff quality score, 20) (NGS QC Toolkit, RRID:SCR_005461) [27]. We used 294 

clean reads after removing low-quality reads and adapter containing reads for the mapping step. 295 

 296 

Mapping, variant calling, and coverage calculation 297 

After the filtering step, clean reads were aligned to the human reference genome (GRCh38) 298 

using BWA-MEM v0.7.12, and duplicate reads were removed using Picard v2.6.0 (Picard, 299 

RRID:SCR_006525) [28]. After removing duplicate reads, we down-sampled the deduplicated 300 

clean reads of all the sequencing platforms to 24× coverage according to the amount of the 301 

deduplicated clean reads of HiSeq2000 for a fair comparison. Realignment and base score 302 

recalibration of the bam file was processed by GATK v3.3. Single nucleotide variants, short 303 

insertions, and deletions were called with the GATK (Unifiedgenotyper, options --304 

output_mode EMIT_ALL_SITES --genotype_likelihoods_model BOTH). The resulting 305 

variants were annotated with the dbSNP (v153) database [29]. Coverage was calculated for 306 

each nucleotide using SAMtools v1.9 (SAMTOOLS, RRID:SCR_002105) [30]. We defined a 307 

specific covered region based on the 100 bp non-overlapping windows by calculating the 308 

average depth of the windows followed by a statistical test. We used edgeR method as the 309 

statistical test [16]. P-values are adjusted by Benjamini-Hochberg correction. GC coverage for 310 



raw reads and the genome was calculated by the average %GC of the 100bp non-overlapping 311 

windows. 312 

 313 

Variant comparison and concordance rate with SNP genotyping 314 

The chromosome position and genotype of each variant called from each sequencing platform 315 

was used to identify the relationship between seven sequencing platforms. We compared 316 

1,036,417 loci found on one or more platforms for locations where genotypes were determined 317 

on all the seven platforms. An unrooted tree was generated using FastTree v2.1.10 (FastTree, 318 

RRID:SCR_015501) [31] with the generalized time-reversible (GTR) model. For calculating 319 

the concordance rate between SNP genotyping and WGS-based genotype, the coordinates of 320 

SNP genotyping data were converted to GRCh38 assembly using the UCSC LiftOver tool [32]. 321 

We removed unmapped positions and indel markers and used only markers that were present 322 

on the autosomal chromosomes. 323 

 324 

Availability of Supporting Data and Materials 325 

All sequences generated in this study, including the HiSeq2000, HiSeq2500, HiSeq4000, 326 

HiSeqX10, NovaSeq6000, BGISEQ-500, and DNBSEQ-T7 sequencing reads, were deposited 327 

in the NCBI Sequence Read Archive database under BioProject PRJNA600063. All 328 

benchmarking data is hosted and distributed from the biosequencer.org homepage [33], and 329 

supporting data and materials are also available at GigaScience GigaDB [34]. 330 
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Figures 479 

 480 

Figure 1. Distribution of K-mer frequency for 21-mers using raw reads from seven 481 

sequencing platforms. The x-axis represents K-mer depth, and the y-axis represents the 482 

proportion of K-mer, as calculated by the frequency at that depth divided by the total frequency 483 

at all depths. 484 

 485 

Figure 2. GC-bias plots for seven sequencing platforms. Unbiased coverage is represented 486 

by a horizontal dashed line at relative coverage = 1. A relative coverage below 1 indicates 487 

lower than expected coverage and above 1 indicates higher than expected coverage. 488 

 489 

Figure 3. An unrooted tree for seven sequencing platforms showing the similarity of the 490 

variant calling. Numbers of nodes denote bootstrap values based on 1,000 replicates. 491 

 492 

  493 



Tables 494 

 495 

Table 1. Raw read statistics for seven sequencing platforms 496 

 Illumina platforms MGI platforms 

Metrics HiSeq2000 HiSeq2500 HiSeq4000 HiSeqX10 
NovaSeq6

000 

BGISEQ-

500 

DNBSEQ-

T7 

Production date 2012 2015.03 2015.10 2015.12 2019.04 2017.04 2019.09 

Quality range 
Illumina 

1.5+ 

Illumina 

1.8+ 

Illumina 

1.8+ 

Illumina 

1.8+ 

Illumina 

1.8+ 

Illumina 

1.8+ 

Illumina 

1.8+ 

# of Total read 1,044M 1,500M 629M 833M 833M 1,171M 1,035M 

Read length (bp) 90 PE 101 PE 151 PE 151 PE 151 PE 100 PE 100 PE 

Total bases 94 Gb 151.5 Gb 95 Gb 125.8 Gb 125.8 Gb 117.1 Gb 103.4 Gb 

Sequencing depth  

(×, based on 3 Gb) 
31.31 50.52 31.65 41.94 41.94 39.04 34.49 

 497 

 498 

Table 2. Mapping and coverage statistics 499 

Metrics HiSeq2000 HiSeq2500 HiSeq4000 HiSeqX10 
NovaSeq60

00 
BGISEQ-500 

DNBSEQ-

T7 

# of clean reads 935,951,974 1,050,028,628  512,891,970  705,987,420  706,000,000 1,060,837,856  991,021,996  

Read length 90 101 151 151 151 100 100 

Clean bases (Gb) 84.23 106.05  77.45 106.60  106.6 106.08  99.1  

Clean read depth  

(based on 3 Gb, ×) 
28.08 35.35  25.82 35.53 35.54  35.36 33.03 

Mapping rate 99.986% 99.999% 99.990% 99.999% 99.9996% 99.983% 99.999% 

Properly mapped rate* 96.67% 98.30% 97.24% 96.91% 97.15% 97.44% 98.17% 

Duplicate rate 15.35% 3.01% 3.19% 5.08% 3.39% 2.56% 8.77% 

Duplicate clean 

 read depth (×) 
23.90  34.29  24.99  33.73  34.33  34.46  30.14  

Down-sampled 

 depth (×) 
23.90  23.90  23.90  23.90  23.90  23.90  23.90  

Coverage 99.68% 99.82% 99.71% 99.81% 99.76% 99.83% 99.83% 

Coverage at least 5× 98.62% 99.30% 98.37% 99.30% 99.19% 99.34% 99.24% 

Coverage at least 10× 94.63% 96.65% 93.98% 97.05% 96.89% 97.05% 96.61% 

Coverage at least 15× 85.10% 88.54% 85.08% 90.23% 90.36% 90.11% 89.36% 

* Both of the read mates are in the correct orientation.  500 



Table 3. Variant statistics of Illumina and MGI sequencing platforms. 501 

Metrics HiSeq2000 HiSeq2500 HiSeq4000 HiSeqX10 NovaSeq6000 BGISEQ-500 DNBSEQ-T7 

Reference homozygous 2,839,358,003  2,855,619,759  2,855,062,233  2,864,272,103  2,861,198,782  2,851,898,568  2,853,066,635  

# of no call positions 80,241,142  63,980,549  64,532,078  55,244,498  58,311,103  67,747,107  66,584,361  

No call rate 2.74% 2.19% 2.21% 1.89% 1.99% 2.32% 2.28% 

SNVs 

Total SNVs 4,133,925  4,132,468  4,138,296  4,216,589  4,223,612  4,088,645  4,082,103  

Total SNVs in dbSNP 4,094,212  4,114,993  4,112,253  4,198,005  4,184,100  4,070,101  4,064,986  

dbSNP rate 99.04% 99.58% 99.37% 99.56% 99.06% 99.55% 99.58% 

Singleton 159,429  78,109  98,574  100,158  104,052  52,127  51,978  

Singleton in dbSNP 126,762  68,673  78,361  89,094  73,177  41,092  41,743  

dbSNP rate for Singleton 79.51% 87.92% 79.49% 88.95% 70.33% 78.83% 80.31% 

Homozygous 1,703,616  1,690,878  1,704,813  1,708,639  1,714,752  1,688,328  1,689,834  

Heterozygous 2,430,309  2,441,590  2,433,483  2,507,950  2,508,860  2,400,317  2,392,269  

Het/Hom ratio 1.43  1.44  1.43  1.47  1.46  1.42  1.42  

Ti/Tv ratio 1.91 1.92 1.9 1.88 1.85 1.92 1.92 

Indels 

Total Indels 526,504  546,918  491,899  689,357  708,062  703,873  631,163  

Total Indels in dbSNP 524,738  544,866  489,777  686,916  705,553  701,802  629,314  

dbSNP rate 99.66% 99.62% 99.57% 99.65% 99.65% 99.71% 99.71% 

Singleton 7,864  7,444  8,094  17,036  23,596  41,384  12,092  

Singleton in dbSNP 7,612  7,259  7,915  16,784  23,303  41,183  11,964  

dbSNP rate for Singleton 96.80% 97.51% 97.79% 98.52% 98.76% 99.51% 98.94% 
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