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Supplemental Note 1: Quantifying drug dosage 

 

Our experimental approach, using syringe pumps and microfluidic devices to control drug delivery and 

auto-fluorescence for drug detection (Experimental section), enables us to precisely quantify the arrival 

of the drug in the vicinity of the cells under investigation. Representative images of the main, drug 

delivery channel and the side, cell-hosting channels before and after drug dosage are shown in Figure 1B 

(main text). Example drug dosage profiles are reported in Figure 2 of the main text and in this document 

(dashed black lines in Figures S1A,C and S8). Since the drug dosage concentration is the same across all 

experiments, this measurement allows us to correct for any drug fluorescence intensity variation across 

all the different experiments. We measure the background at t = 0, and observe that the drug arrives in 

the field of view typically around 100 s after the start of the experiment, reaching its final concentration 

around 200 s (Figure 2). We use the final, steady-state value of the drug dose fluorescence (at t = 400 s) 

to map drug fluorescence to drug concentration (see Experimental section). Importantly, since we 

measure the drug dosage profile across different experiments, we use this information as an input to the 

model, which allows us to account for any differences between the dose profiles across the different 

experiments. 

 

Supplemental Note 2: Quantifying cellular auto-fluorescence 
 

For each strain/condition, we performed control experiments to measure the auto-fluorescence profiles 

of individual bacteria in the absence of the drug (see Experimental section). A representative comparison 

between cellular drug fluorescence and auto-fluorescence profiles is reported in Figure S1, corresponding 

to either the presence (Figure S1A,C) or absence (Figure S1B,D) of the drug. We observe that the cellular 

control auto-fluorescence profiles are flat across the timescales of the experiment; thus cellular auto-

fluorescence has a negligible effect on the drug accumulation profiles. Similar cellular auto-fluorescence 

profiles were observed across all the control experiments performed (number of experimental repeats: 2 

(WT growing), 3 (ompF growing), 2 (tolC growing), 3 (WT stationary phase) and 3 (tolC stationary 

phase) – datasets uploaded as supplemental material).  

 

Supplemental Note 3: Quantifying intra-experimental variability 

 

In order to estimate the variation in cellular fluorescence in the absence of the drug, we used the auto-

fluorescence control experiment shown in Figure S1B to estimate the underlying biological and 

systematic variation in our experiments. These measurements report the auto-fluorescence of the same 

cells measured at different time points in the experiment. We quantified the coefficient of variation (CV) 

of the cell auto-fluorescence intensities (over the timescales of the experiment) of the 103 individual cells 

shown in Figure S1B. The mean CV across all the cells was 10 ± 3 % (N = 103, mean ± s.d.). This gives 

a quantitative estimate of the measurement (systematic and underlying biological) heterogeneity for 

individual cells within a single experiment. 

 

We compare this variability in cellular auto-fluorescence with the apparent heterogeneity in drug 

accumulation in the cells in Figure S1A. To estimate this value, we measured the intensity of the cells at 

the end of the drug accumulation experiment (t = 400 s). The heterogeneity in the cellular fluorescence 

corresponding to drug accumulation (in the knowledge that this includes the systematic and underlying 

biological variation mentioned above) is extracted by measuring the CV of the fluorescence across all 

the cells at this time-point. Unlike the CV measurement of the control which was for individual cells 

across all time-points, to estimate drug accumulation heterogeneity amongst the 126 different cells, we 

measured the CV in the fluorescence of all the cells at the final time-point. This analysis yields a CV of 

9.7%, similar to the CV in the auto-fluorescence intensities of untreated cells mentioned above.  
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Supplemental Note 4: Metabolite auto-fluorescence at 365 nm 

 

Although cellular metabolites may also fluoresce at similar wavelengths to our excitation wavelength 

(365 nm), we have corrected this by subtracting the baseline cellular fluorescence as described in the 

Experimental section (and in Supplemental Note 2). We note that metabolite concentrations are known 

to fluctuate in response to fluoroquinolone treatment, but this is typically less than a two-fold change 

within the timescales of our experiment and includes both increases and decreases1. The baseline cellular 

auto-fluorescence (growing WT cells, Figure S1B) shows typical intensities of approximately 1700 (arb. 

units), while the fluorescence increases in the cells due to drug accumulation are approximately 5200 

(arb. units, Figure S1C). Therefore, we estimate that the maximum contribution of metabolites to our 

fluorescence signal, in the case where all the metabolites were to double in number (and assuming that 

the fluorescence scales linearly), would be approximately 33% in this case; however, considering that 

the metabolites show both increases and decreases in response to fluoroquinolone treatment, we estimate 

that the actual contribution is significantly lower, and would constitute a higher order correction to our 

results. Note that to the best of our knowledge, a non-fluorescent version of ofloxacin does not exist, 

making a direct measurement of the changes in metabolite auto-fluorescence in response to ofloxacin 

treatment intractable. However, we reiterate that the baseline cellular auto-fluorescence is already 

accounted for in our analysis. 

 

Studies on the fluorescence of the ofloxacin molecule itself in mixed aqueous-organic solvents (used to 

mimic biological systems) also show that the fluorescence quantum yield of ofloxacin is relatively stable 

to changes in the solvent composition, as long as the percentage of water (by weight) in the mixture is 

above approximately 12%2. E. coli cells are approximately 70% water (by weight)3, and hence the 

fluorescence yield of ofloxacin once inside the cells should not be much different (due to changes in the 

cytosolic “solvent”) in growing versus stationary phase cells.   We also note that although the 

fluorescence of ofloxacin is affected by pH, the yield is relatively stable to pH changes around 

physiological pH values4. A study on ofloxacin showed that when excited at 340 nm (near the excitation 

wavelength of 365 nm used in the present study), the fluorescence yield remained steady between pH 

values of 3 and 7 and then “dropped gradually”4. Furthermore, the intracellular pH of E. coli BW25113 

remains steady around 7.3 through the growth cycle in LB5; this is only slightly lower than the pH of the 

drug when dissolved in PBS (approximately 7.5-7.6). In light of the above considerations, we do not 

expect any significant pH mediated changes in the fluorescence properties of ofloxacin when it is present 

in cells that are growing versus stationary phase cells. 

 

Supplemental Note 5: Suggestions for future improvements and outlooks for the microfluidic assay 

 

In the interests of facilitating the future development and widespread use of our methodology, we discuss 

ways by which the technique could be improved, based on what we learnt through our work and with the 

resources available to us at the time we performed the experiments. 

 

Choice of media: Our choice of LB as the growth media was guided by the fact that we had previously 

profiled the entire transcriptome of E. coli BW25113 cells growing in LB6. This enabled us to correlate 

our drug accumulation results with, for example, changes in porin expression as shown in Figure S11 

below. However, LB itself is strongly fluorescent (at 365 nm excitation) and we therefore needed to wash 

away the background LB with an M9-glucose solution prior to the ofloxacin challenge (note this refers 

to the LB in the channel itself; it is likely that some LB is also absorbed by the PDMS, which typically 

leads to a higher background fluorescence in the growing cell experiments compared to the stationary 

phase experiments, which we accounted for in the image analysis). It is also possible that some residual 

LB still flows in with the drug initially, which may explain some of the finer features of our drug dosage 
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fluorescence curves in the growing cell experiments (for example, we sometimes see a slight decrease 

from the peak fluorescence before the final intensity plateau). LB is also a complex media. It would be 

easier for future users to grow their cells in more defined culture media, particularly those that do not 

have strong intrinsic fluorescence. They may also then be able to study drug uptake in their growth media 

itself, rather than in PBS. However, we strongly urge future users who are comparing drug accumulation 

in different cellular growth states to ensure that the pH of the drug solution is the same in all their 

comparative measurements, since pH often affects the charge state of antibiotics and hence affects their 

membrane transport characteristics7. 

 

Syringe vs Pressure driven pumps: We used syringe pumps to control our flows. Syringe pumps are 

widely available, and some models are relatively cost-effective, which we believe will help with the wide 

uptake of our assay. However, the disadvantage of using syringe pumps is that each time the solutions 

are exchanged, the chip is disturbed since the tubing needs to be removed and then re-inserted with the 

new syringe connection (we believe it is important to use separate syringes for separate solutions to 

prevent any cross contamination). The alternative is to use pressure driven pumps, but importantly with 

accessories that enable the control of flow rate rather than just the pressure. Such systems are available 

from companies such as Fluigent (we now increasingly use their pressure driven pumps and flow control 

units for mother-machine experiments). One of the advantages gained is that all fluid exchanges are 

effected simply by replacing fluid filled vials off chip, rather than changing any tubing connected to the 

chip itself. This also reduces variability in the flow profiles, since the risk of damage to the inlet port by 

multiple cycles of removing and re-inserting tubing is reduced – the tubing only needs to be inserted 

once. This also minimizes the risks of debris building up near the inlet, which may also cause pulsations 

or irregularities in the flow. The tubing typically used with the Fluigent system is also thinner than the 

tubing we used with our syringe pumps. This leads to a 4-fold reduction in the volume of the inlet/outlet 

columns; the biopsy punch we use for the Fluigent tubing is 0.75 mm in diameter, as opposed to the 1.5 

mm diameter punch used for the devices in this paper. However, using a pressure-based system may 

increase the cost per inlet compared to standard syringe pumps. We reiterate that even with syringe 

pumps, the important advantage of using our technique is that the drug dosage is measured in every 

experiment, and hence can be corrected for (as we have done in our model, where we use the drug dosage 

profile as an input). It is also worth noting that all such drug accumulation studies will likely involve 

slight variations in drug dose between experiments, but most techniques do not measure and account for 

such variations. 

 

Choice of organism: We performed our studies with the rod shaped bacterium E. coli, but the side 

channels of the mother-machine device can also be used to trap bacteria with different shapes. For 

example, we have successfully trapped the spherical bacterium Staphylococcus aureus (unpublished) for 

studies in the same device. The advantage of microfluidics is that the devices can be custom designed to 

optimize the trapping efficiency of cells of various shapes and sizes, and we envisage that future such 

drug accumulation studies will be performed on a range of clinically relevant microorganisms of diverse 

shapes and sizes. 

 

Outlooks: Besides the suggestions provided in the sections above, we would like to mention that we 

chose a short experimental timescale to determine whether we could distinguish between drug 

accumulation in different strains/conditions within a relatively short period of time (under 10 minutes). 

However, there is nothing to prevent drug accumulation and/or survival studies over longer timescales – 

this is particularly relevant, for instance, if one wished to correlate reduced drug accumulation with cell 

survival. Such studies would involve measuring drug accumulation at the single-cell level, and then 

flushing in fresh nutrients to study the regrowth of any survivors. This is of particular relevance to studies 

of antibiotic tolerance and persistence8. It should be noted that studies on persistence and other rare 
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phenotypes are greatly facilitated by the use of single-cell assays – population level assays on trillions of 

cells often lack the resolution to identify the full range of diverse, naturally occurring phenotypes that 

are crucial for understanding the detailed characteristics of a community of single-celled organisms9. Our 

technique allows versatility in the duration of various stages of the assay. The microfluidics could also 

be parallelized, enabling the same culture to be studied at various physiological states – one could trap 

cells in parallel mother-machines, grow them into different metabolic states and then sequentially test 

drug accumulation (or, alternatively, test different drugs in parallel on the same isogenic population of 

cells in the same metabolic state).  

 

Furthermore, we have used (auto)fluorescence microscopy to detect and track ofloxacin; as discussed in 

the main text, a range of antibiotics are indeed intrinsically fluorescent. Besides epi-fluorescence 

microscopy, future users may wish to explore the use of more advanced fluorescence imaging techniques 

with these molecules. We note that our experimental study did not investigate drug fluorescence in 

cellular subsections; we used mathematical modelling to infer subcellular drug concentrations. If future 

experiments involve localizing the fluorescence signal of the drug to certain regions of the cell, and if 

such regions are on the order of single pixels in size with the detectors used, the researchers should 

consider deconvolving their images with the point spread function of their microscope. However, this is 

not essential when working with relatively uniform intensity structures that are much larger than single 

pixels, and is also not essential when working with relative intensity measurements (both these conditions 

apply to the measurements in this paper)10. 

 

It is also worth noting that the microfluidics is decoupled from the imaging modality – future 

developments may involve the use of other label-free optical techniques such as Raman microscopy or 

absorbance microscopy/spectroscopy for tracking the drug molecules, which would enable an even larger 

set of drug compounds to be investigated. The important advantage of using microfluidics, besides the 

single-cell level analysis, is that it enables the investigation of cells in defined metabolic states and 

microenvironments, which, as we have demonstrated, may play a significant role in drug accumulation. 

We envisage that this property of the assay will be combined with a range of different detection 

modalities in the future.   

  

Model parameter estimation: 

 

We obtained priors for our Bayesian parameter estimation by computing maximum likelihood estimates 

(MLEs) of the free model parameters (Table S2) using the medians of the drug accumulation profiles for 

all the cells in an experiment. Please note that for convenience we use the term “population-averaged” 

throughout the text to refer to these median values of the drug accumulation profiles. Since our data was 

normalized based on the fluorescence of the drug dose (see Experimental section; image analysis), 

estimates of parameters 𝑘1, 𝑀0, 𝐾𝑚, 𝑣 incorporate a constant factor related to the concentration of the 

drug dose (see Table S2). We denote the scaled version of these parameters using the prime symbol (′). 
We compiled a library of 18 datasets by considering all the permutations of population-averaged profiles 

from: (i) growing WT cells (3 experimental repeats); (ii) growing ompF cells (3 experimental repeats) 

and (iii) growing tolC cells (2 experimental repeats). We obtained parameter MLEs from each dataset, 

and to mitigate the risk of overfitting we then selected out of those parameter vectors the one that best 

fitted all 18 datasets. Under the assumption of Gaussian measurement error, the MLEs for each dataset 

correspond to parameter values minimising the following sum of squares: 𝜖 = ∑
(𝐷𝑇,𝑡−𝑦̅𝑡)2

𝜎𝑡
2𝑡 . Here, 𝑦̅𝑡 is 

the population-averaged drug accumulation measurement at time 𝑡; 𝐷𝑇,𝑡 is the drug accumulation 

predicted by the model; 𝜎𝑡 is the measurement error calculated based on a coefficient of variation of 4% 
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(we obtained this from fluorescence measurements of the PDMS background); and the sum runs over all 

the time-points 0 to 400 s. Minimization was performed using Matlab’s in-built nonlinear least-squares 

solver (lsqcurvefit; with the maximum number of iterations set to 15). To find the global optimum of 𝜖, 

we repeated the minimization task starting from 500 different initial points (generated using a Sobol 

sequence of quasi-random numbers) covering the entire parameter space.  

 

We analyzed the single-cell data using a Bayesian hierarchical version of the model in which parameters 

𝑀0 and 𝑣 vary between single-cells. In particular, we postulate that these model-parameters are 

distributed at the population level according to two independent log-normal distributions11. Below, 

𝑀0
′  and 𝑣′ denote the rescaled versions of 𝑀0 and 𝑣 which accommodate fitting the model to data 

normalized by the fluorescence of the drug dose (Table S2). The mean (𝜇𝑀0
′ , 𝜇𝑣′) and standard deviation 

parameters (𝜎𝑀0
′ , 𝜎𝑣′) of each log-normal distribution dictate the average value of the corresponding 

model-parameter and its spread across a bacterial population. Posterior estimates of these population 

parameters (𝜇𝑀0
′ , 𝜇𝑣′, 𝜎𝑀0

′ , 𝜎𝑣′) were inferred from single-cell data (experimental repeats were treated 

separately) using Gibbs sampling and informative priors based on the MLE estimates obtained in the step 

above (see Figures S6, S7 and Table S3). In the first iteration (𝑗 = 1) of the algorithm, 𝜇
𝑀0

′
(1)

, 𝜇𝑣′
(1)

, 𝜎
𝑀0

′
(1)

, 

and 𝜎𝑣′
(1)

 were drawn from their corresponding prior distributions and for each cell 𝑖 = 1, … , 𝐾 model-

parameters 𝑀0,𝑖
′(1)

, 𝑣𝑖
′(1)

 were obtained by minimizing the discrepancy between the model-predicted 

accumulation profile and the single-cell measurements 𝒚𝑖 = {𝑦𝑖,𝑡: 𝑡 = 1, … , 𝑍}. Subsequent iterations 

(𝑗 > 1) involve sampling in-turn from the full conditionals: 

 

a) 𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

~𝑃 (∙ |𝒚𝑖, 𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

); 

b) 𝜇
𝑀0

′
(𝑗)

, 𝜇𝑣′
(𝑗)

~𝑃 (∙ | {𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

: 𝑖 = 1, … , 𝐾} , 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

); 

c) 𝜎
𝑀0

′
(𝑗)

, 𝜎𝑣′
(𝑗)

~𝑃 (∙ | {𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

: 𝑖 = 1, … , 𝐾} , 𝜇
𝑀0

′
(𝑗)

, 𝜇𝑣′
(𝑗)

). 

 

In our analysis, we used conjugate priors for 𝜇𝑀0
′ , 𝜇𝑣′, 𝜎𝑀0

′ , 𝜎𝑣′, i.e., normal priors for 𝜇𝑀0
′  and 𝜇𝑣′, and 

gamma priors for 𝜎𝑀0
′

−1 and 𝜎𝑣′
−1. This choice greatly simplifies steps (b) and (c) as the target sampling 

distributions are the updated normal and gamma distributions, respectively. In step (a) for each cell 𝑖 we 

sampled from the target distribution: 

 

𝑃 (𝑀0,𝑖
′ , 𝑣𝑖

′|𝒚𝑖, 𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

) ∝ 𝑃(𝒚𝑖|𝑀0,𝑖
′ , 𝑣𝑖

′)𝑃 (𝑀0,𝑖
′ , 𝑣𝑖

′|𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

) 

 

using a single Metropolis-Hasting step with a bivariate normal as the proposal distribution (covariance 

matrix set to 10-4I, where I is the 2x2 identity matrix). All results presented were obtained by running 

the Gibbs sampler for 2000 iterations (after having discarded 500 ‘warm-up’ iterations). 

 

Theoretical predictions from the model of drug transport across the Gram-negative cell envelope: 

 

We rationalized our experimental single-cell drug accumulation data via our mathematical model, where 

parameters governing porins (𝑀0) and efflux pumps (𝑣) are allowed to vary between cells in the 

population according to a log-normal distribution11. The inferred parameter distributions for growing 

bacteria from the three investigated strains are presented in Figure S5A-B; the different experimental 

repeats are signified by solid, dotted and dashed lines (WT, red; ompF, blue; tolC, green). We found 

similar values across the different replicates for the WT cells, whereas the knockout mutants showed 
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greater variability both between replicates and within individual experiments, as observed in Figure S5A-

B. The parameter estimations also confirmed lower porin concentrations in the ompF mutant compared 

to the WT. Note that due to the flatness of the accumulation profiles of the stationary phase cells, we 

chose not to infer model parameters from those experiments.   

 

Once model parameters were inferred from all the individual experiments (using the corresponding drug 

dosage profiles for each experiment), we used these parameters in the model to predict drug accumulation 

in the various subcellular compartments for cells belonging to the three strains (Figure S5C). In this 

estimation for Figure S5C, we used an average experimental drug dosage profile (dashed black line, top 

panel, Figure S5C) as the input. The overlap (or lack thereof) between the [20,80] posterior predictive 

intervals  allows us to predict the probability of WT cells having a higher/lower ofloxacin concentration 

than each of the mutants, at the subcellular level. The pairwise comparisons (at t = 400 s) for the different 

strains/compartments are presented in Table S4.  

 

The model predicts that the drug saturates all the binding sites in the outer membrane within 

approximately 175 s in all three strains. The WT strain has the highest outer membrane drug 

concentration, with the ompF mutant having an approximately 2.25-fold lower concentration, which 

corresponds to the fewer binding sites available in the mutant (Figure S5A). At the end of the experiment, 

the probability that the WT strain has a higher drug concentration than the ompF mutant in the outer 

membrane is 0.924; in contrast, between the WT and the tolC mutant, the probability that the WT has 

more drug in the outer membrane is 0.525, suggesting no appreciable difference (Table S4).  

 

The periplasm is also predicted to contain approximately 30-fold lower ofloxacin concentrations than the 

cytoplasm for all three strains at t = 400 s – this is likely due to the binding of the ofloxacin molecules to 

their targets within the cytoplasm. The model also predicts a lag time of approximately 100 s between 

drug accumulation in the outer membrane versus drug accumulation in the cytoplasm. In the cytoplasm, 

the difference between the WT and the mutant strains is less obvious. The model predicts that, at the end 

of the experiment, the WT strain is 71.9% more likely to have a higher drug concentration in the 

cytoplasm than the ompF mutant (Table S4). Comparing the WT and the tolC mutant, the 

corresponding likelihood is 54.9% (probability of 0.549).  
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Fig. S1. 

Comparison of drug fluorescence (A, C) versus auto-fluorescence control (B, D) cellular profiles of wild type (WT) E. 

coli (growing). In the top panels (A and B), the cellular fluorescence profiles report the fluorescence intensities of individual 

bacteria after the subtraction of the PDMS background fluorescence as explained in the Experimental section. The bottom 

two panels (C) and (D) report the fluorescence intensities of the cells in the same experiments as reported in (A) and (B), 

respectively, after also subtracting the initial cell fluorescence values at t = 0. In both experiments, the cells were grown on 

chip for 3 h in fresh LB medium at a flow rate of 100 l/h, followed by a wash (10 min at 300 l/h) with 1 g/L glucose 

dissolved in minimal media prior to dosage with ofloxacin (A, C) or PBS (B, D).  The drug fluorescence experiment (A, C) 

shows the delivery (dashed black line) of ofloxacin in the main channel and corresponding drug accumulation profile of 126 

WT E. coli cells (red); the mean (thick red line) and standard deviation (grey shading) for the cell profiles are also shown. In 

the absence of the drug, the cellular auto-fluorescence profiles are flat (B, D; 103 individual cells shown in grey with the mean 

in black, along with the standard deviation as the grey shaded region). We conclude that cellular auto-fluorescence has a 

negligible contribution to the drug fluorescence profile of a cell under the conditions of our experiment.  
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Fig. S2. 
Comparison of manual vs automated image analysis of the raw cell fluorescence intensities for E. coli (WT) cells 

exposed to ofloxacin. Note that these plots represent the raw fluorescence intensities of individual cells, before the (critical) 

background subtraction. The raw intensities at t=0 s are higher in the “growing” cell experiments, due to the higher background 

likely caused by the residual fluorescence of LB absorbed by the PDMS; this is accounted for during the background 

subtraction described in the Experimental section. The plots above compare the tracking of cellular fluorescence in a 

“growing” experiment (top panels) and a “stationary phase” experiment (bottom panels). From the comparisons, it is clear 

that the manual and automatic analysis agree very well for growing cells, which are larger than stationary phase cells and 

hence easier to segment. For a quantitative comparison, the (raw) cell fluorescence intensities (mean ± s.d., arb. units) in the 

growing cell experiment at 400 s are 33550 ± 2157 (automated) compared to 33691 ± 1989 (manual), showing excellent 

agreement. As noted in the main text, the segmentation and tracking of the smaller stationary phase cells is more difficult, 

which is why the automated segmentation reports noisier results than the manual analysis for the stationary phase experiment. 

However, the mean results are similar within standard deviation, with values of 16080 ± 1609 (automated) and 15203 ± 815 

(manual). As mentioned in the text, we do not apply the model to the stationary phase data, and only use the mean values for 

analysis (after the subtractions and normalization described in the Experimental section).  
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Fig. S3.  

Representative combined bright-field and fluorescence image showing the effects of Propidium Iodide (PI) staining on 

the bacteria post UV and ofloxacin exposure. The PI test shows that cellular membrane integrity remains intact during the 

drug accumulation experiments. WT E. coli cells were grown for 3 h on fresh LB in the chip and treated with UV (ex = 365 

nm) and ofloxacin as per the standard drug accumulation experimental protocol (Experimental section). After the ofloxacin 

treatment, the cells were treated with PI for 10 min (flow rate 100 l/h). Less than 5% of the cells stain with PI; similar levels 

of PI staining were obtained in cells that did not receive the focused UV treatment. Our results indicate that the UV exposure 

(ex = 365 nm) does not damage cellular membrane integrity for the majority (>95%) of the cells within the timescale of the 

drug accumulation experiments. Scale bar = 25 m.    
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Fig. S4.  

Ofloxacin permeability measurement across DPhPC lipid vesicle membranes at pH 7.5. Lipid vesicles were prepared by 

electroformation and treated with a solution of 2 mM ofloxacin in a T-junction microfluidic chip (for technical details of the 

measurement conditions and assay, please refer to Cama et al. Sci. Reps. 2016). Drug permeation across the vesicle 

membranes is tracked using the UV auto-fluorescence of ofloxacin. A) I refers to a normalized intensity difference between 

the interior and exterior of the vesicles. The shift in I between vesicles detected at t = 0 (black squares) and those detected 

at a later time point (t ~ 9 s, red circles) is a direct readout of drug transport into the vesicles, associated with an increase in 

the fluorescence intensity of the vesicles due to the accumulation of the drug. B) Permeability coefficient histograms 

associated with the measurement of ofloxacin uptake in 70 vesicles. The permeability coefficient of ofloxacin is calculated 

based on a simple diffusion model (details in Cama et al. Sci. Reps. 2016, Cama et al. Lab Chip 2014). The permeability 

coefficient measured was P = 4.5 ± 0.3 × 10-6 cm/s (N = 70, mean ± s.e.m.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

 

Fig. S5.  

 

Drug accumulation kinetics predicted by fitting the single-cell data to the drug accumulation model. Maximum 

aposteriori estimates of the population distribution of parameters 𝑀0
′ (A) and 𝑣′ (B) for growing wild type (WT, top), ompF 

(middle) and tolC (bottom) E. coli. The solid, dashed and dotted lines refer to individual experimental repeats. These 

distributions were generated using the mode of the joint posterior distribution of the means and standard deviations of the log-

normal distributions for 𝑀0
′  and 𝑣′; the marginal posterior distributions of the means and standard deviations for the parameters 

are provided in Figures S6 and S7 respectively. C) Predicted ofloxacin accumulation in the different bacterial compartments. 

Temporal dependence of the normalized drug concentration in the cytoplasm, periplasm and outer membrane for WT (red), 

ompF (blue) and tolC (green) E. coli in response to the drug dosage input (dashed black line, top panel). These drug 

accumulation profiles were obtained by using the kinetic parameter values in (A) and (B) and the theoretical model (equations 

(i)-(iii)). The concentrations reported are normalized to the drug dosage concentration (12.5 g/ml ofloxacin). The solid lines 

correspond to median accumulation in the respective compartments and the dashed lines indicate the [20,80] posterior 

predictive intervals of the accumulation (note: in the Outer Membrane panel, the lower dashed red line overlaps with the upper 

dashed blue line, and the lower dashed green line overlaps with the solid blue line). The results shown were generated by 

running the model using 500 independent samples of parameters 𝑀0
′  and 𝑣′ from their joint posterior distributions. All other 

parameters were fixed to the values given in Table S2. The model predicts the saturation of binding sites in the outer 

membrane. The median saturation concentration in the outer membrane is approximately 2.25-fold higher in the WT compared 

with the ompF strain. The periplasmic drug concentrations are approximately 30-fold lower than the cytoplasmic 

concentrations, which is likely due to the drug binding to its targets within the cytoplasm. Using the [20,80] posterior 

predictive intervals, we have calculated the probabilities of cells from the different strains showing higher/lower accumulation 

in the different compartments in a pairwise manner. These results are provided in Table S4. 
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Fig. S6.  

Posterior distributions for the means (A) and standard deviations (B) of the log-normal distributions for 𝑴𝟎
′  in 

individual experiments. Individual experimental repeats are represented in different colours for each E. coli strain.  

 

 



 

14 

 

 

Fig. S7.  

Posterior distributions for the means (A) and standard deviations (B) of the log-normal distributions for 𝒗′ in 

individual experiments. Individual experimental repeats are represented in different colours for each E. coli strain.  
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Fig. S8.  

Complete dataset showing all experimental repeats for the ofloxacin accumulation experiments. Each plot corresponds 

to an individual repeat, with the strains/conditions distributed in panels (A)-(E). Black dashed lines correspond to drug dosage 

profiles (right Y-axes), red lines correspond to cellular fluorescence profiles (left Y-axes) with the mean (thick red line) and 

standard deviation (grey shading) also shown in the individual plots. N refers to the number of cells in the individual 

experiments. All values reported after subtracting the corresponding backgrounds and the cell fluorescence at t = 0 (see 

Experimental section).  
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Fig. S9. 
Comparison of data pooled from the different experiments shows that stationary phase WT E. coli  show significantly lower 

ofloxacin accumulation than growing WT E. coli (p<10-10). This was also true in the tolC strain, where stationary phase cells 

showed significantly lower accumulation (p<10-10) than growing cells, suggesting ofloxacin accumulation critically depends 

on the growth phase of the cells within the timescales of our experiment. Growing ompF E. coli showed lower whole cell 

drug accumulation than growing WT (p<10-10) and tolC (p<10-10) cells, in line with expectations. However, growing ompF 

E. coli accumulated more ofloxacin than stationary phase WT cells (p<10-10), suggesting that the growth phase of the cells as 

set by the nutrient environment plays an even more important role than the deletion of ompF in drug accumulation. The 

horizontal lines in the interior of the boxes report the medians of the respective distributions. Statistical significance tested 

using a 2-sample t-test incorporating Welch’s correction; the complete set of p-values is reported in Table S1.  
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Fig. S10.  

Comparison between parameter log10-values inferred from simulated data (inferred, blue) and the actual values used 

to simulate the data (true, red). We used the model to simulate single-cell drug accumulation profiles similar to those we 

observed experimentally for WT E. coli, and the ompF and tolC mutant strains. The parameter values we used can be 

found in Table S2. To introduce cell-to-cell heterogeneity, we assumed that parameters 𝑀0
′  and 𝑣′ varied within the different 

populations according to the distributions found in Figures S5A and S5B. Parameter values were recovered from population-

averaged profiles using the methodology described above. 
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Fig. S11.  

Population level transcriptomic data for the ompF, tolC, gyrA and gyrB genes of E. coli BW25113 (WT strain) grown 

in LB media (10g/L NaCl). Reproduced using data made available in Smith et al., Front. Microbiol. 2018. The time axis 

refers to the time of growth in LB following the seeding of a stationary phase (17 h of growth in LB) culture into fresh LB. 

Dashed lines connecting the data points are provided as guides for the eye. Error bars represent the standard error of the mean. 
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Comparison of whole cell fluorescence 

(normalized) of ofloxacin treated cells at 

t = 400 s  

p-value (2 sample t-test with 

Welch’s correction) 

WT stationary phase vs WT growing 1.4 × 10-123 

WT stationary phase vs ompF growing 1.2 × 10-33 

WT stationary phase vs tolC growing 1.3 × 10-98 

WT stationary phase vs tolC stationary 

phase 

1.9 ×10-5 

WT growing vs ompF growing 1.8 × 10-42 

WT growing vs tolC growing 2.7 ×10-4 

WT growing vs tolC stationary phase 8.5 × 10-112 

ompF growing vs tolC growing 7.4 × 10-30 

ompF growing vs tolC stationary phase 2.5 ×10-21 

tolC growing vs tolC stationary phase 3.2 × 10-92 

Table S1.  

Two sample t-test (with Welch’s correction) p-values for the whole cell fluorescence (background subtracted, 

normalized) of the different strains/conditions at t = 400 s (Figure S9) in the ofloxacin accumulation experiments. 

Sample sizes: WT stationary phase (N = 405), WT growing (N =317), ompF growing (N = 250), tolC growing (N = 

211) and tolC stationary phase (N = 193). 
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Table S2.  

Model parameter estimates for wild type E. coli.  

 

 

 

 

 

 

 

 

 

 

 

Parameter Units Value Notes 

𝑘1 molecules−1 ∙ 𝜇𝑚6 ∙ sec−1 1.12×10-5 Inferred from cell data. 

𝑘2 𝜇m3 ∙ sec−1 3.08 Inferred from cell data. 

𝑘3 𝜇m3 ∙ sec−1 0.52 Estimated from data in Fig. S4. 

𝑘4 𝜇m3 ∙ sec−1 0 Assumed negligible. 

𝑘5 𝜇m3 ∙ sec−1 0.0139 Inferred from cell data. 

𝑀0 molecules ∙ 𝜇𝑚−3 3.11×106 Inferred from cell data. 

𝑣 molecules ∙ sec−1 6.11×105 Inferred from cell data. 

𝐾𝑚 molecules ∙ 𝜇m−3 1.30×102 Inferred from cell data. 

𝑉𝑀 𝜇m3 0.0565 The bacterial cell is modelled as a 

cylinder of total width 1 m. The 

width of the outer membrane was 

estimated to be 5 nm, and that of the 

periplasmic space 30 nm. 

𝑉𝑃 𝜇m3 0.326 

𝑉𝐶 𝜇m3 2.45 

 Model fitting  
Parameters 

𝑘1
′ = 𝑘1 ∙ 𝐴 ; 𝑀0

′ =
𝑀0

𝐴
; 𝑣′ =

𝑣

𝐴
; 𝐾𝑚

′ =
𝐾𝑚

𝐴
; 

𝑘2; 𝑘5
′ = 𝑘3/𝑘5 

Parameterization for fitting the 

model with fluorescence data. A =
2.08 × 104 molecules ∙ 𝜇𝑚−3  is 

the drug dose concentration.  
For the estimation of parameters from the population-averaged data, to ease exploration of the 

parameter space, all parameters above were log (base 10) transformed. The range of parameter log10𝑘5
′  

was set to [0,5] to satisfy the constraint 𝑘5 ≤ 𝑘3. The range of parameter 𝑀0 was constrained in [1.93, 

2.23] so that the corresponding count of porins per cell lies between 1×105 to 2×105. All other 

parameters were allowed to vary between [-5, 5]. 
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Parameter Values 

𝝁log10(𝑀0
′ ) 𝓝(𝜇 = 2.175, 𝜎 =  0.5) 

𝝁𝐥𝐨𝐠𝟏𝟎(𝒗′) 𝓝(μ = 1.47, 𝜎 = 0.5) 

𝝈log10(𝑀0
′ ) Γ(α = 10−4, β = 10−4) 

𝝈𝐥𝐨𝐠𝟏𝟎(𝒗′)  Γ(α = 10−4, β = 10−4) 

 

Table S3.  

Prior distributions for population parameters in the Bayesian hierarchical model.  Normal distributions with mean 𝝁 

and std. dev. 𝝈 were used as priors for 𝝁log10(𝑀0
′ ) and 𝝁𝐥𝐨𝐠𝟏𝟎(𝒗′). Gamma distributions with shape parameter 𝜶 and scale 

parameter 𝜷 were used as priors for 𝝈log10(𝑀0
′ ) and 𝝈𝐥𝐨𝐠𝟏𝟎(𝒗′).  

 

 

 

 

 

 

 

 

 

 

 

 

Probability Value 

𝐷𝑀
WT > 𝐷𝑀

𝑜𝑚𝑝𝐹
 0.924 

𝐷𝑀
WT > 𝐷𝑀

𝑡𝑜𝑙𝐶  0.525 

𝐷𝑃
WT > 𝐷𝑃

𝑜𝑚𝑝𝐹
 0.718 

𝐷𝑃
WT > 𝐷𝑃

𝑡𝑜𝑙𝐶  0.549 

𝐷𝐶
WT > 𝐷𝐶

𝑜𝑚𝑝𝐹  0.719 

𝐷𝐶
WT > 𝐷𝐶

𝑡𝑜𝑙𝐶  0.549 

𝐷𝑇
WT > 𝐷𝑇

𝑜𝑚𝑝𝐹
 0.748 

𝐷𝑇
WT > 𝐷𝑇

𝑡𝑜𝑙𝐶  0.555 

Table S4.  

Using the model to compare drug accumulation in different strains after 400 s of drug exposure.  The model was used 

to estimate the probability of higher drug accumulation within WT cells compared to tolC and ompF mutant cells at the 

subcellular and whole cell level (M, outer membrane; P, periplasm; C, cytoplasm; T, total). Probability estimates are based 

on 1000 runs of the model for each strain in which parameters 𝑀0
′  and 𝑣′ were drawn from the corresponding population 

distributions shown in Figure S5. 
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Movie S1.  

Ofloxacin accumulation experiment. The movie shows the delivery of ofloxacin (100×MIC, in PBS) to geometrically 

confined E. coli cells (WT) in the microfluidic device via the main channel; drug arrival is detected via its auto-fluorescence 

(ex = 365 nm) in the main channel. Subsequent drug accumulation in the cells is observed as an increase in the drug 

fluorescence intensity associated with the cells confined in the side channels. Scale bar = 25 m.   

 

 

 


