
Background for Machine Learning 

Recent advancements in machine learning models have led to significant improvement in the 

performance of fields such as image processing, natural language processing and a plethora of 

time series classification and generation tasks in biomedical research. Broadly, machine 

learning techniques can be divided into supervised and unsupervised algorithms. Supervised 

algorithms are trained on labelled data using the difference between the predicted and actual 

output for optimizing the model. After sufficient training, the model can successfully predict 

labels (values) for new inputs. Unsupervised algorithms, on the other hand, analyzes a given set 

of unlabeled (in the context of this study, unscored) data and draws inferences without using 

any label information. Mostly, unsupervised algorithms are used for exploratory analysis to find 

hidden patterns in a dataset.  

 

Deep Neural networks (DNNs), a type of machine learning model, comprises multiple layers of a 

collection of connected units called artificial neurons. An artificial neuron receives a set of input 

signals and transmits the activated output to its subsequent connected neurons using non-linear 

activation functions. DNNs have advanced state-of-the-art performance across different 

domains. Broadly, two types of neural networks are used: (1) Convolutional Neural Network 

(CNN) and (2) Recurrent Neural Networks (RNN). The convolution in CNN indicates that the 

network employs the mathematical operation called convolution. CNNs are neural networks that 

use convolution in place of general matrix multiplication in its respective layers. CNN’s have 

proven to be useful in various image processing and computer vision tasks for e.g., image 

deblurring, image classification, and image segmentation. RNNs, on the other hand, exhibit 

temporal behavior due to directed connections between units of an individual layer and have 

achieved significant results in tasks such as machine translation, text-to-speech synthesis, and 

sentiment analysis. They allow previous outputs to be used as inputs while having hidden 

states. Hidden states, basically, transfer input representation of the previous timestamps to the 



current timestamp. Hochreiter et al. [1] and Bengio et al. [2] found that RNNs were not able to 

learn long-term dependencies in temporal signals and often looked at just the recent information 

for completing tasks. Long-Short Term Memory networks (LSTM) [3] are a special kind of RNNs 

that are capable of learning long-term dependencies. They were designed to solve two inherent 

problems encountered in RNNs: (1) remembering information for long periods of time, and (2) 

the vanishing gradient problem while training RNNs. Structurally, they are similar to RNNs, but 

they have a cell unit that remembers values over arbitrary time intervals. 

 

Proposed Model 

In our work, we used AutoEncoders (AEs), a type of DNNs, that explored the dataset to learn 

efficient data representation in an unsupervised manner. The primary function of the AE was to 

learn a latent representation (encoder) for a set of data in order to generate the original input 

(decoder) from the reduced encoded data representation. We developed a novel form of LSTM 

AutoEncoder that learned these latent representations from temporal polysomnography (PSG) 

data using LSTM layers. We trained two LSTM AutoEncoders for learning the latent 

representation of the seventeen PSG signals and the blood pressure signals and one LSTM 

AutoEncoder block (defined as mapper in Figure 1) for learning the function that projected a 

PSG data representation to its corresponding systolic and diastolic blood pressure 

representation. The decoder block of the blood pressure AE thus generated the corresponding 

blood pressure signal for a given set of PSG signals. As described before, the AE comprised of 

two main functions: (1) an encoder function � ∶  � ⟶ �, that mapped an input signal � into a 

new vector space which in known as the latent space �, and (2) a decoder function � ∶  � ⟶ � 

which mapped the data from the latent space back to the original input space �. Hence, the AE 

was defined as: 
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where, �� was defined as the reconstructed signal. 

���
 represented a given set of PSG signals. Hence, ���
 ∈  ℝ�� × �� as we have seventeen 

different PSG signals, each taken at 30 seconds epoch, was our input. Similarly, 

��� ∈  ℝ�� × � represented the corresponding systolic and diastolic blood pressure 

signals.Based on Equation. (1), we mathematically defined our proposed model using the 

following equations: 
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where, ���
, ���, ���
, and ��� were the decoder and encoder blocks for the PSG and BP AE 

models respectively. �  denoted the mapper LSTM block that projected the PSG latent 

representation to its corresponding BP latent representation. We used �� reconstruction loss 

function for training our individual LSTM-AE and the mapper blocks. For every iteration, the 

three models were optimized in an end-to-end manner. The loss functions were defined as 

follows: 
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The model was trained for 2000 iterations using RMSprop optimizer. 
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Figures 

 

Figure S1. Correlation plots for Blood Pressure predictions with their respective degrees of freedom 
(DOF): 

 
A. Continuous Blood Pressure prediction 
 

Baseline: (DOF=77896) 

    
 

Titration: (DOF=181731) 

    
 
 
 
 
 
 
 
 
 

  



B. Post-respiratory event surge in Blood Pressure 
 

Baseline: (DOF=86578) 

      
 

 
Titration: (DOF=51868) 

    
 
 
Baseline + Titration: (DOF=138058)                  

     
 
 
 
 
 
 
 
 
 
 
 
 
  



Figure S2. Data distribution plots of measured and predicted Blood Pressure 
 

A. Continuous blood pressure prediction  
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B. Post-respiratory event surge in Blood Pressure 
 

Baseline: 

 
 
Titration: 

 
 

Baseline + Titration: 

 
 
 
 
 
  



Importance of Different Polysomnography Signals in Blood Pressure Prediction 

We explored the contribution of various polysomnography signals in the DNN model for post-

apnea blood pressure prediction with ablation analyses. Briefly, each signal was removed, one 

at a time, from the full model (of input signals) to assess the change in correlation. The signal 

removal that was associated with significant reduction in correlation (to ≤0.15) as compared to 

the full model (≥0.75) may be considered important or necessary for blood pressure prediction. 

These correlations are highlighted in bold in Table S1. Overall, the EEG and respiratory signals 

appeared to have important contributions to post-respiratory event blood pressure prediction. 

Although exploratory, these results provide some biological plausibility to the proposed model. 

We believe a similar approach can be taken in future studies to determine the necessary 

polysomnography signals for accurate blood pressure prediction. 

     
 
 
 
 
 
 
 
 
 
 
 
 
  



Table S1. Ablation analyses for post-respiratory event surge in Blood Pressure 

Dataset Baseline Titration Baseline + Titration 

DBP SBP DBP SBP DBP SBP 

F3-M2 0.39±0.07 0.51±0.03 0.29±0.10 0.08±0.04 0.32±0.05 0.32±0.04 

C3-M2 0.31±0.05 0.41±0.03 0.29±0.12 0.32±0.13 0.31±0.03 0.33±0.07 

O1-M2 0.16±0.05 0.12±0.06 0.43±0.09 0.25±0.10 0.17±0.06 0.07±0.04 

F4-M1 0.17±0.05 0.21±0.05 0.40±0.02 0.13±0.05 0.17±0.03 0.22±0.08 

C4-M1 0.35±0.05 0.45±0.02 0.38±0.12 0.11±0.08 0.32±0.05 0.30±0.02 

O2-M1 0.10±0.08 0.08±0.05 0.32±0.13 0.21±0.06 0.27±0.09 0.12±0.01 

LOC 0.14±0.06 0.19±0.04 0.007±0.06 0.13±0.09 0.07±0.04 0.17±0.04 

ROC 0.076±0.03 0.16±0.02 0.007±0.07 0.13±0.07 0.10±0.02 0.10±0.05 

CHIN 0.67±0.04 0.79±0.02 0.55±0.06 0.45±0.13 0.70±0.02 0.62±0.18 

LEGS 0.60±0.04 0.70±0.02 0.47±0.04 0.38±0.07 0.54±0.06 0.65±0.03 

SNORE 0.68±0.03 0.81±0.02 0.37±0.11 0.37±0.10 0.67±0.02 0.66±0.02 

TcCO2 0.29±0.02 0.20±0.01 0.34±0.02 0.24±0.03 0.23±0.02 0.27±0.02 

NPT 0.08±0.06 0.05±0.04 0.17±0.06 0.04±0.05 0.01±0.05 0.07±0.05 

THERM 0.07±0.04 0.05±0.05 0.53±0.13 0.41±0.09 0.07±0.07 0.05±0.08 

CHEST 0.13±0.02 0.17±0.01 0.13±0.07 0.11±0.10 0.12±0.03 0.19±0.04 

ABDMN 0.05±0.08 0.07±0.02 0.00±0.09 0.13±0.06 0.06±0.02 0.14±0.03 

SAO2 0.03±0.03 0.13±0.07 0.15±0.02 0.03±0.03 0.14±0.02 0.13±0.05 

Key: The first six signals are electroencephalography named per standard nomenclature, LOC and ROC are 
eye movement signals, Chin is chin electromyography (EMG), Legs is lower extremity EMG (right and left 
combined), TcCO2 is transcutaneous CO2, NPT is nasal pressure transducer, THERM is nasal thermistor, 
CHEST and ADBMN are effort signals and SaO2 is pulse oximetry. 

 


