
Supplementary algorithms

Emission probabilities
As stated in the main text, in the following algorithms match and mismatch emission probabilities are defined under the JC69
substitution model (1), giving for state M :

sM (xi,yj) =


1
4 + 3

4e
−t if xi = yj

1
4 −

1
4e

−t otherwise

where xi is the ancestral nucleotide, yj is the descendant nucleotide, and t is the divergence between the two species
in the pairwise comparison. The insertion emission probability is sI = 0.25, and the deletion emission probability is sD = 1. In
the following, function comp(yj) simply returns the complement of the input nucleotide yj , so comp(A) = T , comp(G) = C,
etc.

Identifying mutation clusters and defining sequence regions for re-alignment under each pairHMM
The following procedure is depicted for an example event in S10 Fig. As described in Methods, input to both pairHMMs
is determined by scanning a pre-existing pairwise alignment for clusters of mutations, defined as >2 pairwise differences
within a 10nt sliding window. Once >2 pairwise differences are identified, an iterative procedure is initiated which extends
the rightmost cluster boundary while additional pairwise differences are present. A 10nt region downstream of the current
boundary is searched for additional differences; if any are found, the cluster boundary is updated using the position of the
rightmost difference. This procedure is repeated until no additional differences are found, defining one focal mutation cluster
per candidate template switch event (S10 Fig, a).

With the focal mutation cluster coordinate boundaries established, we define the total input pairwise alignment region to be
realigned under our models separately for the unidirectional pairHMM and the TSA pairHMM. The unidirectional pairHMM
takes as inputs (x and y) the sequences contained within the pairwise alignment defined by the above cluster boundaries plus a
±40nt flanking region from each sequence (S10 Fig, a & b). (The -40 position, representing the leftmost alignment boundary
for the unidirectional pairHMM, is referred to as l below.) This flanking region provides sufficient alignment space to interpret
the mutational footprint of a putative template switch event within the context of neutrally evolving sequence that should contain
few or no differences. In contrast, the TSA pairHMM realigns this same region but includes an additional ±100nt from the
assumed ancestral sequence (x), to provide additional flanking search space for the 2©→ 3© sequence fragment (S10 Fig, a & c).

To make a fair comparison of the alignments emitted by each pairHMM, despite their using these two different length
ancestral sequences, it is necessary to constrain the start and end positions of the TSA pairHMM alignments to match those
of the unidirectional pairHMM. This ensures that the flanking region alignments are identical between the two models, and
therefore contribute the same scores to each alignment. The score difference between the two models is then derived solely from
the contributions of either a linearly aligned mutation cluster, or a region of reverse-orientation template switch alignment. To
impose this constraint on the start position of the TSA pairHMM, we initialise matrices M1 to 0, and I1 and D1 to log(0.25), at
positions corresponding to y0 (i.e. cells indexed (l,0) below). This causes all possible alignments of upstream flanking regions
to have low probability, and the Viterbi-like decoding of the optimal state path should always lead back to (l,0) in M1, I1
or D1, facilitating score comparison between the two pairHMMs. To constrain the end TSA position, we require the Viterbi-
like decoding of the TSA pairHMM state path to begin at the highest scoring alignment position for ym (see the Termination
condition of Supplementary Algorithm 2).

Algorithm A: Viterbi algorithm for the unidirectional pairHMM
Given two sequences x and y of lengths n and m, respectively, we find their alignment with the highest probability using the
following dynamic programming procedure. We represent the i-th entry of sequence x as xi, and the j-th entry of sequence y
as yj . To facilitate traceback after estimating the highest probability state path, for each cell of M , I , and D, pointer matrices
are used to store the moves back to the cell from which each M(i, j), I(i, j), and D(i, j) was derived. After the termination
step, the most probable alignment is recovered using the moves stored in these traceback matrices.Note that • indicates index i
or j ranging over all possible values from 0 to n or m, as appropriate.



Initialisation:
M(•,0) = I(•,0) =D(•,0) =M(0,•) = I(0,•) =D(0,•) =−∞
M(0,0) = 0, I(0,0) =D(0,0) = log(0.25)

Recursion:
i= 1, . . . ,n, j = 1, . . . ,m :

M(i, j) = log(sM (xi,yj))+max


M(i−1, j−1)+ log(1−2δ)
I(i−1, j−1)+ log((1− ε)(1−2δ))
D(i−1, j−1)+ log((1− ε)(1−2δ))

I(i, j) = log(sI)+max


M(i−1, j)+ log(δ)
I(i−1, j)+ log(ε+(1− ε)δ)
D(i−1, j)+ log((1− ε)δ)

D(i, j) = log(sD)+max


M(i, j−1)+ log(δ)
I(i, j−1)+ log((1− ε)δ)
D(i, j−1)+ log(ε+(1− ε)δ)

Termination:
E = max(M(n,m), I(n,m),D(n,m))

Algorithm B: Viterbi-like algorithm for the TSA pairHMM
As in the unidirectional pairHMM, given two sequences x and y of lengths n and m, respectively, we find their alignment
with the highest probability using the following dynamic programming procedure. As described above (and depicted in
S10 Fig, a & c) n > m for the TSA pairHMM, and Viterbi-like decoding must include at least one M2 in the state path.
Traceback is facilitated using pointer matrices as above, with moves from {M1,I1,D1} to M2 and from M2 to {M3, I3,D3}
also stored as pointers whenever a jump between these matrices produces a more probable move in the state path. Again, •
indicates index i or j ranging over all possible values from 0 to n or m, as appropriate.

Initialisation:
M1(•,0) = I1(•,0) =D1(•,0) =M1(0,•) = I1(0,•) =D1(0,•) =−∞
M2(n+1,•) =M2(•,0) =−∞
M3(•,0) = I3(•,0) =D3(•,0) =M3(0,•) = I3(0,•) =D3(0,•) =−∞
M1(l,0) = 0, I1(l,0) =D1(l,0) = log(0.25)

Recursion 1:
Find the optimal alignment of fragment L©→ 1© by aligning x and y linearly:

i= 1, . . . ,n, j = 1, . . . ,m :

M1(i, j) = log(sM (xi,yj))+max


M1(i−1, j−1)+ log(1−2δ−θ)
I1(i−1, j−1)+ log((1− ε)(1−2δ−θ))
D1(i−1, j−1)+ log((1− ε)(1−2δ−θ))

I1(i, j) = log(sI)+max


M1(i−1, j)+ log(δ)
I1(i−1, j)+ log(ε+(1− ε)δ)
D1(i−1, j)+ log((1− ε)δ)



D1(i, j) = log(sD)+max


M1(i, j−1)+ log(δ)
I1(i, j−1)+ log((1− ε)δ)
D1(i, j−1)+ log(ε+(1− ε)δ)

Recursion 2:
Find the optimal alignment of fragment 2©→ 3© by emitting y in reverse complement with respect to x, determining the best
position to jump from M1, I1, or D1 with ci:

i= 1, . . . ,n :

ci = max


max(M1(i−1,•))+ log(θ)
max(I1(i−1,•))+ log((1− ε)θ)
max(D1(i−1,•))+ log((1− ε)θ)

j =m,. . . ,1 :

M2(i, j) = log(sM (xi, comp(yj)))+max
{
ci

M2(i−1, j+1)+ log(1−σ)

Recursion 3:
Find the optimal alignment of fragment 4©→ R© by emitting x and y linearly, determining the best position to jump from M2
with ki:

i= 1, . . . ,n :
ki = max(M2(i−1,•))
j = 1, . . . ,m :

M3(i, j) = log(sM (xi,yj))+max


ki +log(σ(1−2δ))
M3(i−1, j−1)+ log(1−2δ)
I3(i−1, j−1)+ log((1− ε)(1−2δ))
D3(i−1, j−1)+ log((1− ε)(1−2δ))

I3(i, j) = log(sI)+max


ki +log(σδ)
M3(i−1, j)+ log(δ)
I3(i−1, j)+ log(ε+(1− ε)δ)
D3(i−1, j)+ log((1− ε)δ)

D3(i, j) = log(sD)+max


ki +log(σδ)
M3(i, j−1)+ log(δ)
I3(i, j−1)+ log((1− ε)δ)
D3(i, j−1)+ log(ε+(1− ε)δ)

Termination:
E = max(M3(•,m), I3(•,m),D3(•,m))

References

1. Jukes, T. & Cantor, C. Evolution of protein molecules. In Munro, H. N. & Allison, J. B. (eds.) Mammalian protein metabolism, chap. 24, 22–126
(Academic Press, New York, 1969).


