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Supplementary Note 1. Additional model calculations

We take two 2D models — respectively non-degenerate and twofold-degenerate at generic

momenta — to further demonstrate our theory. The first is a model of single Dirac cone.
hy = —p + hwkyo, — hwkyo,, (1)

where 0;—;, . 1s a spin Pauli matrix. It is symmetric under mirror m, = 4o, and m, = io,,
fourfold rotation ¢,, = e "™/ and time reversal ¢ = 10, K. No mirror m, and inversion p
symmetries exist. Here, we use lowercase letters to denote symmetry operators of the normal
state Hamiltonian to distinguish them from those of the BdG Hamiltonian. There are four possible
superconducting pairing functions we list in Table. 1. When the pairing function is even (odd)
under ¢, the BdG Hamiltonian has symmetry under C = C,,C where C? = —1 (+1) because
Cs, = ¢o, (Cy, = T,c9,). In accordance with our general theory, conductivity tensors can be non-
zero only when C? = 1 if we keep C symmetry [Fig. 1(a)]. In the limit w, A < p, the non-zero
conductivity can be analytically calculated as 0¢ ~ %%%, where Er = pand krp = p/ho
(see Supplementary Note 2). 0¥ = 0% = (0 1s due to mirror symmetries in our model. Figure 1(b)
shows the case where C symmetry is broken by a Cs.-parity mixing due to the additional s-wave
pairing A; # 0.

Next, we double the orbital degrees of freedom in Supplementary Eq. (1) and add a mass term

to have a low-energy model of a doped 2D topological insulator.
hy = —p + bk, pyoy — hvkyp,o, + Mp., (2)

where p;—, , . is an orbital Pauli matrix. It has m, = io,, m, = i0y, m, = ip,0;, C4, = e imo=/4,
and t = i0, K symmetries. pt = ip,0, /X symmetry imposes Kramers degeneracy at each k, where
p = mgymy,m,. Since this model is spin-orbit coupled, optical excitations can generally occur, as
illustrated in Fig. 2(d) of the main text. When the pairing is odd-m,, however, optical excitations
are not allowed because of the combination of the selection rules by unitary and PC' symmetries
(see Methods section 7 in the main text). Figure 1(c,d) shows non-zero optical conductivity tensors
for constant pairing functions in Table 2. Let us note that, while A, has the same symmetry
properties as the s-wave pairing under mirror operations and opens the full gap, we have non-zero

optical conductivity without breaking any symmetry. In the case of Aj pairing, the response is
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A(k) My My Caz Node |Lowest excitation
Aqioy, + + + Gapped No
Ao (kyoy + kyoy)ioy| — — + Gapped No
Asz(kyoy — kyoy)ioy| — — — Point No
Ayokz0ioy - + 01 Line Yes
Aypkyoioy + — \-10 Line Yes

Supplementary Table 1: Time-reversal-symmetric pairing functions of a 2D single Dirac fermion
model. Pairing functions are given up to the leading order in k. The second column shows the matrix

representation 7, defined by ugAi(k)ugT = (1r9)i; A (gk).

A(k) My My M Cas Node |Lowest excitation
Aqioy + + + + Gapped No
Agprioy |+ + + + Gapped Yes
Azpgioy |+ + — + Gapped No
Aypyozioy | — — — + Gapped No
Asqpyoyioy| — + + [0 —1 Point Yes
Asppyozioy| + — + \1 0 Point Yes

Supplementary Table 2: Time-reversal-symmetric constant pairing functions of a 2D TI model. The

second column shows the matrix representation 74 defined by ugA; (k)ul = (r4)ijA;(gk).

highly anisotropic, and, in fact, 0¥ = 0 while 0™ # 0. The vanishing of ¢ is not due to
symmetry. It is a coincidence due to the fact that 9,h o< A (see Supplementary Note 3). We
can generate 0¥Y # 0, e.g., by adding quadratic terms in the mass term by M — M — k2.

o™ = g¥" = ( is again due to mirror symmetries.

Supplementary Note 2. Analytic calculation of the optical conductivity in the superconducting

state of a single Dirac model

Here we consider the A4, pairing in Supplementary Eq. (1) such that the BAG Hamiltonian is

H = —pt, + hk,1.0y — hvkyo, + Ayoky 7004, 3)
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Supplementary Fig. 1: Intrinsic optical conductivity in 2D superconductor models. a,b, Supercon-

ducting state of Supplementary Eq.(1) with © = 0.1 eV, hv = 1 eV/A, and the order parameters listed in

Table. 1. ¢,d, Superconducting state of Supplementary Eq.(2) with ;1 = 0.15 eV, hw = 1 eV/A, M = 0.05

eV, and the order parameters listed in Table. 2. As the spectrum is gapless in a and d, optical conductivity

is non-zero down to zero frequency.

It has M, = io,, M, = it.0,, Cs, = i1,0,, T = i0,K, and C = 7, K symmetries. For a simpler

understanding of the analytic calculation, we perform a unitary transformation H — U 'HU

using
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such that the new Hamiltonian is
H = hv(kyoy — hkyo,) — pry + Dyoky Ty (5)

In this form, since the o and 7 terms commute with each other, it is obvious that the energy

eigenstate takes the form,
| + :I:> = |j:>7 & |:|:>aa (6)

where |+), and |£), are two-component states satisfying

(—puts + Agakeme| 1o = £/ 1% + (Agaks)?| 1)

(ko — kyo)|)r = &4 /R2 + k2| £) . 7

As o and T degrees are independent, the inter-band velocity matrix element between the two bands
nearest to the Fermi level can be simply calculated as

1

Vi = G o = )
1
= = (71 =), (~|uhol+),
, Aok k
= ¢ - L (8)
\/luz + (A4akx)2 \/k% + k;
for some phase factor ¢. For hw ~ Ay.krp < p, where kp = 11/ hv, the optical conductivity is
/ > FrnlVi 5o = o)
e 1 (A4av JORKS 1
~N——-——""——(1—=cos20 9
hho p 8 ( g " ) ©)
in the leading order of w and A,,, where k¢ = |k| cos 6., and 6, is measured from the = axis.
Supplementary Note 3. An identity on matrix elements of the pairing Hamiltonian
Here we show that 7, H s is a hollow matrix in the BdG energy eigenstate basis, i.e.,
(nk|T,Ha(k)Ink) =0 Vn, (10)
where |nk) is an energy eigenstate of the BAG Hamiltonian, and
0 A(k)
Ha(k) = (11)
—A*(=k) 0



is the pairing part of the Hamiltonian. It can be simply shown by

(mr.Haln) = 5 il Halln)
= {mllre, H — Folln)
= 2 {mllr., H]ln)
1

= B <m‘7—zm> (En - Em)

= (0 forn =m, (12)

where we use that 7, and Ha anti-commutes in the first line, H, is the normal-state Hamiltonian
in the BAG form, and 7, commutes with H in the third line.

This identity can be used to understand why ¢%¥ = 0 in Fig. 1(d). Let us note that PC' changes
the M, eigenvalue \ while S preserves A for even-/, pairing such as the Aj pairing. Therefore,
a potentially non-zero spectrum-inversion-symmetric excitation is due to the velocity operator

between states related by the chiral operation. If we look at the y component,

(Sn[V?[n) = — (0] S7.ps04In)
= (n|Sp,0, M.|n)

=M\ <n|Spy0y|n>

An
- H , 13
2 (nlrHalm) (13)
where M, = i7,p.0,, S = 7,0,, and Hx = —A57,p,. It is zero by the identity we derive above.



