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Supplementary Note 1. Additional model calculations

We take two 2D models — respectively non-degenerate and twofold-degenerate at generic

momenta — to further demonstrate our theory. The first is a model of single Dirac cone.

h1 = −µ+ ~vkxσy − ~vkyσx, (1)

where σi=x,y,z is a spin Pauli matrix. It is symmetric under mirror mx = iσx and my = iσy,

fourfold rotation c4z = e−iπσz/4, and time reversal t = iσyK. No mirror mz and inversion p

symmetries exist. Here, we use lowercase letters to denote symmetry operators of the normal

state Hamiltonian to distinguish them from those of the BdG Hamiltonian. There are four possible

superconducting pairing functions we list in Table. 1. When the pairing function is even (odd)

under c2z, the BdG Hamiltonian has symmetry under C = C2zC where C2 = −1 (+1) because

C2z = c2z (C2z = τzc2z). In accordance with our general theory, conductivity tensors can be non-

zero only when C2 = 1 if we keep C symmetry [Fig. 1(a)]. In the limit ω,∆ � µ, the non-zero

conductivity can be analytically calculated as σcc ∼ e2

h
1
~ω

(∆4kF )2

EF
, where EF = µ and kF = µ/~v

(see Supplementary Note 2). σxy = σyx = 0 is due to mirror symmetries in our model. Figure 1(b)

shows the case where C symmetry is broken by a C2z-parity mixing due to the additional s-wave

pairing ∆1 6= 0.

Next, we double the orbital degrees of freedom in Supplementary Eq. (1) and add a mass term

to have a low-energy model of a doped 2D topological insulator.

h2 = −µ+ ~vkxρxσy − ~vkyρxσx +Mρz, (2)

where ρi=x,y,z is an orbital Pauli matrix. It has mx = iσx, my = iσy, mz = iρzσz, c4z = e−iπσz/4,

and t = iσyK symmetries. pt = iρzσyK symmetry imposes Kramers degeneracy at each k, where

p = mxmymz. Since this model is spin-orbit coupled, optical excitations can generally occur, as

illustrated in Fig. 2(d) of the main text. When the pairing is odd-mz, however, optical excitations

are not allowed because of the combination of the selection rules by unitary and PC symmetries

(see Methods section 7 in the main text). Figure 1(c,d) shows non-zero optical conductivity tensors

for constant pairing functions in Table 2. Let us note that, while ∆2 has the same symmetry

properties as the s-wave pairing under mirror operations and opens the full gap, we have non-zero

optical conductivity without breaking any symmetry. In the case of ∆5 pairing, the response is
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∆(k) mx my c4z Node Lowest excitation

∆1iσy + + + Gapped No

∆2(kxσx + kyσy)iσy − − + Gapped No

∆3(kxσx − kyσy)iσy − − − Point No

∆4akxσziσy − +
 0 1

−1 0

 Line Yes

∆4bkyσziσy + − Line Yes

Supplementary Table 1: Time-reversal-symmetric pairing functions of a 2D single Dirac fermion

model. Pairing functions are given up to the leading order in k. The second column shows the matrix

representation rg defined by ug∆i(k)uTg = (rg)ij∆j(gk).

∆(k) mx my mz c4z Node Lowest excitation

∆1iσy + + + + Gapped No

∆2ρziσy + + + + Gapped Yes

∆3ρxiσy + + − + Gapped No

∆4ρyσziσy − − − + Gapped No

∆5aρyσyiσy − + +
0 −1

1 0

 Point Yes

∆5bρyσxiσy + − + Point Yes

Supplementary Table 2: Time-reversal-symmetric constant pairing functions of a 2D TI model. The

second column shows the matrix representation rg defined by ug∆i(k)uTg = (rg)ij∆j(gk).

highly anisotropic, and, in fact, σyy = 0 while σxx 6= 0. The vanishing of σyy is not due to

symmetry. It is a coincidence due to the fact that ∂yh ∝ ∆ (see Supplementary Note 3). We

can generate σyy 6= 0, e.g., by adding quadratic terms in the mass term by M → M − k2.

σxy = σyx = 0 is again due to mirror symmetries.

Supplementary Note 2. Analytic calculation of the optical conductivity in the superconducting

state of a single Dirac model

Here we consider the ∆4a pairing in Supplementary Eq. (1) such that the BdG Hamiltonian is

H = −µτz + ~vkxτzσy − ~vkyσx + ∆4akxτxσx. (3)

3



3

0

C
on

du
ct
iv
ity

(e
2 /h

)

C
on

du
ct
iv
ity

(e
2 /h

)

2
x10-3 x10-3

x10-3x10-2

1 σxy=σyx=0

σxx

σyy

Δ4a=10 meV/Å Δ4a=10 meV/Å

0 21 3
Photon energy (meV)

4

Photon energy (meV)
0 21 3 4

Photon energy (meV)
0 21 3 4

Photon energy (meV)
0 21 3 4

0

0

0

6c d

a b
C
on

du
ct
iv
ity

(e
2 /h

)

C
on

du
ct
iv
ity

(e
2 /h

)

2

3

1

1

2

σyy=σxx

σxy=σyx=0

σxx σxx

σxx
σyy

Δ2=1 meV

Δ1=1 meV

Δ5a=1 meV

σyy=σxy=σyx=0σxy=σyx=0

Supplementary Fig. 1: Intrinsic optical conductivity in 2D superconductor models. a,b, Supercon-

ducting state of Supplementary Eq.(1) with µ = 0.1 eV, ~v = 1 eV/Å, and the order parameters listed in

Table. 1. c,d, Superconducting state of Supplementary Eq.(2) with µ = 0.15 eV, ~v = 1 eV/Å, M = 0.05

eV, and the order parameters listed in Table. 2. As the spectrum is gapless in a and d, optical conductivity

is non-zero down to zero frequency.

It has Mx = iσx, My = iτzσy, C2z = iτzσz, T = iσyK, and C = τxK symmetries. For a simpler

understanding of the analytic calculation, we perform a unitary transformation H → U−1HU

using

U =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =
1

2
(1 + τz + σx − τzσx) (4)
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such that the new Hamiltonian is

H = ~v(kxσy − ~kyσx)− µτz + ∆4akxτx. (5)

In this form, since the σ and τ terms commute with each other, it is obvious that the energy

eigenstate takes the form,

| ± ±〉 = |±〉τ ⊗ |±〉σ, (6)

where |±〉τ and |±〉σ are two-component states satisfying

(−µτz + ∆4akxτx|±〉σ = ±
√
µ2 + (∆4akx)2|±〉σ

(kxσy − kyσx)|±〉τ = ±
√
k2
x + k2

y|±〉τ . (7)

As σ and τ degrees are independent, the inter-band velocity matrix element between the two bands

nearest to the Fermi level can be simply calculated as

V a
+−,−+ =

1

~
〈+− |∂ah0τz| −+〉

=
1

~
〈+|τz|−〉τ 〈−|∂ah0|+〉σ

= eiφv
∆4akx√

µ2 + (∆4akx)2

ky√
k2
x + k2

y

. (8)

for some phase factor φ. For ~ω ∼ ∆4akF � µ, where kF = µ/~v, the optical conductivity is

σc;c(ω) =
πe2

2~ω

∫
k

∑
n,m

fnm|V c
mn|2δ(ω − ωmn)

≈ e2

h

1

~ω
(∆4avF )2

µ

π

8

(
1− 1

2
cos 2θc

)
(9)

in the leading order of ω and ∆4a, where kc = |k| cos θc, and θc is measured from the x axis.

Supplementary Note 3. An identity on matrix elements of the pairing Hamiltonian

Here we show that τzH∆ is a hollow matrix in the BdG energy eigenstate basis, i.e.,

〈nk|τzH∆(k)|nk〉 = 0 ∀n, (10)

where |nk〉 is an energy eigenstate of the BdG Hamiltonian, and

H∆(k) =

 0 ∆(k)

−∆∗(−k) 0

 (11)
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is the pairing part of the Hamiltonian. It can be simply shown by

〈m|τzH∆|n〉 =
1

2
〈m|[τz, H∆]|n〉

=
1

2
〈m|[τz, H −H0]|n〉

=
1

2
〈m|[τz, H]|n〉

=
1

2
〈m|τz|n〉 (En − Em)

= 0 for n = m, (12)

where we use that τz and H∆ anti-commutes in the first line, H0 is the normal-state Hamiltonian

in the BdG form, and τz commutes with H0 in the third line.

This identity can be used to understand why σyy = 0 in Fig. 1(d). Let us note that PC changes

the Mz eigenvalue λ while S preserves λ for even-Mz pairing such as the ∆5 pairing. Therefore,

a potentially non-zero spectrum-inversion-symmetric excitation is due to the velocity operator

between states related by the chiral operation. If we look at the y component,

〈Sn|V y|n〉 = −〈n|Sτzρxσx|n〉

= 〈n|SρyσyMz|n〉

= λn 〈n|Sρyσy|n〉

=
λn
i∆5

〈n|τzH∆|n〉 , (13)

where Mz = iτzρzσz, S = τxσy, and H∆ = −∆5τyρy. It is zero by the identity we derive above.
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