Supplementary Materials for:

Title: Creb5 establishes the competence for *Prg4* expression in articular cartilage

Authors: Cheng-Hai Zhang, Yao Gao, Unmesh Jadhav, Han-Hwa Hun, Kristina M Holton, Alan J. Grodzinsky, Ramesh A. Shivdasani, Andrew B. Lassar

List of Supplementary Materials:

Supplementary Figures 1-5

Supplementary Tables 1-10

Supplementary Data 1-2

Supplementary Figure 1. CRISPR-Cas9 mediated mutation of the DNA binding domain of *Creb5* in SZCs decreases the levels of both Creb5 protein and TGF- β 2induced expression of *Prg4*. SZCs were infected with a lentivirus encoding either (a & b) Cas9 alone (lane 1) or Cas9 plus a *Creb5* guide RNA (targeting the DNA binding domain, lane 2) or (c & d) Cas9 plus a control guide RNA (lane 1) or Cas9 plus a *Creb5* guide RNA (lane 2). After selection in puromycin, to increase the efficiency of *Creb5* mutation, cells were cultured for at least an additional 14 days, prior to assaying *Prg4* expression and Creb5 protein levels. (a & c) Infected SZCs were cultured in ultra-low attachment dishes in the presence of TGF- β 2 (20 ng/ml) for 3 days. Gene expression was assayed by RT-qPCR and normalized to *Gapdh*. Error bar indicates standard error of the mean (n=2 technical repeats for Supplementary Figure 1a, and n=4 technical repeats for Supplementary Figure 1c). Similar results have been obtained in 3 independent biological repeats. (b & d) Parallel SZC cultures to those displayed in (a & b) were cultured in the absence of TGF- β 2 and total cell protein levels were assayed by immunoblot with antibodies directed against either phospho-Creb5 (T61), total Creb5, β -actin or α -tubulin, as indicated.

Supplementary Figure 2. Exogenous Creb5 can promote TGF- β dependent induction of *Prg4* expression in either a human chondrosarcoma cell line or in an immortalized human costal chondrocyte cell line. (a) Sw1353 human chondrosarcoma cells (ATCC HTB 94) or (b) immortalized human costal chondrocyte (C-28/I2; ⁴⁹) cells were infected with control lentivirus (Lenti-GFP) or Lenti-Creb5. After selection in puromycin, the cells were cultured in either the absence (white) or presence (grey) of TGF- β 2 (20 ng/ml) for 3 days in ultra-low attachment plates. Gene expression was assayed by RT-qPCR and normalized to *GAPDH*. Error bar indicates standard error of the mean (n=2 technical repeats). Similar results have been obtained in 3 independent biological repeats.

6

1 2 3 4 5 70kDa -25kDa -

С

b

Supplementary Figure 3. The amino-terminus of Creb5 contains a relatively weak transcriptional activation domain, which requires both SAPK phosphorylation sites and an intact zinc finger domain for maximal activity. (a) Diagrams of GAL4 DNA binding domain fusions with either full length Creb5 (1-508) or with the N-terminus of Creb5 (1-128). Mutations in either the SAPK phosphorylation sites (T59/T61A) or in the zinc finger domain (C18/C23S) are displayed. (b) Expression of various GAL4 DNA binding domain fusions (as numbered and diagrammed in (a) in transfected 293T cells, as detected by a GAL4 western blot. Lane 6 is derived from non-transfected 293T cells. (c) Superficial zone bovine articular chondrocytes were transfected with various GAL4-Creb5 constructs, plus a GAL4-firefly luciferase reporter and a CMV-renilla luciferase reporter; cells were cultured in either the absence or presence of TGF- β 2 (20 ng/ml) and TGF- α (100 ng/ml), as indicated for 3 days. Relative expression of firefly/renilla luciferase is displayed. Error bar indicates standard error of the mean (n=2 technical repeats).

Supplementary Figure 4. Creb5 can co-immunoprecipitate Smad2/3. Deep zone bovine articular chondrocytes that were programmed to express doxycycline-inducible Creb5 lentivirus (DZC-iCreb5-HA) were cultured in ultra-low attachment dishes in the presence of TGF- $\beta 2$ (20 ng/ml) with or without doxycycline (1µg/ml) for 3 days. After 3 days culture, cells were collected and co-immunoprecipitation was performed using monoclonal anti-HA agarose. Immunoprecipitated protein was detected using anti-Smad2/3 antibody in western blot. Input protein was detected using anti-Smad2/3 and anti-HA antibody.

Uncropped blot images of the indicated figures (page 3 of 8)

Sup

Uncropped blot images of the indicated fi

Figure 5c

^{™™} Supplem enternary Figure 5

Uncropped blot images of the indicated figures (page 5 of 8)

non.specific

Uncropped blot images of the indicated figures (page 7 of 8)

Uncropped blot images of the indicated figures (page 8 of 8)

Supplementary Figure 5. Uncropped blot images of the indicated figures.

Supplementary Table 1 : RT-qPCR Primers to amplify bovine cDNA

Gene	Forward	Reverse
Prg4	CTTGATTCAGCAAGCTTCTTCTC	ACAGGAAAGCTCCACAGTGC
Creb5 (Primers 1)	AGGCGGCGGAAATTTCTG	CATGGCTGTTATGGGGCA
Both primers are in		
the Creb5 coding		
region		
Creb5 (Primers 2)	AGACTGCCCCATAACAGCCATG	GCTCTTCTTGAAGGCAAGGTGC
The reverse primer		
is in the Creb5 3'		
UTR		
EphA3	GCTGATGCTAGACTGCTG	CGGAAGGTAGTAATGTCG
Thbs4	ACACCAGTGACCAGGTCAGGCT	GGAGAAGCAGAACACGCCGA
Gapdh	TGGTGAAGGTCGGAGTGAAC	TGTAGACCATGTAGTGAAGGTCA

Supplementary Table 2 : ChIP-PCR Primers

	Forward	Reverse
Prg4 Enhancer1	AAAAACACTCTTTGCTGG	AGATGGTAAATTGCTTGG
<i>Prg4</i> Enhancer2	AAGTGAGTTGTCGCTTAAA	AAACCAGTTGAACCATCT
Prg4 Enhancer3	AGGTACCACGGCTGTTAC	CAGTGTTTCAGACAGCAG
<i>Prg4</i> Enhancer4	GTTTTCATTGGAAAGCATTC	CACAGCCAAAACAATTATC
GAPDH ATAC PEAK	ACACAGGCGCTCCTGGGAAA	TTCCGCCCTCACGTCCAG

Supplementary Table 3: Prg4 Promoter and Enhancer E1,E2,E3,E4 sequences

TAAAGGTGCTTGAAAAGATTTATAAGGATAGTAGTTGGAGAGTTTAGAAAAGA
ATCACATTTATGCAATACACCTGCCGGAGGCTTATGAATTTATATTGAGAGTTA
AGAGAATGTTGGAATGATAACTGTTAAATTAAATTTACTAAAGCTGGTTACTT
ATTTTTTCCCTTCAATATAGGATTTAAACCTTGTACTTTAAGAACATGCTATAAT
TTGAATAGAGTTTTTAAGATAAGTCTTTTTTTTTTTTTT
AAAATGGTCAGTAATGTGGTTGAGATGGTGATTTGATGATTTTTTTT
ATAAGATTAAATCTAATGGTCAAGTATTTACAATGAATTAAGGCTGGTTATTTT
TAAAAGTCTTGCTTTAAGAATGGGAAAGTTTTTTTTTTATCATTAAATTGAATTTTG
AAATTATTGAAATGCTGTAATACAAGCATAAATTAGTGGTGAGATCCAAGAGGC
GTTTCTAATACTTTTATTTTCTTTTCAGCGAGGGCTCAGTACCTGAAAACAGCC

E1	AGAAAACTTATGCCATAAGCTGAAACTAGATAAAGTTTCAAAAACACTCTTTGC
	TGGGTTAACTGGAAAAAGAAAAAAAAAAAAAGAAATGATACCAGCATTTGACTATTT
	TAAAGTTGTTGCACTAGTCAAAGCCTGCCAAGCAATTTACCATCTCACAGAACA
	ATTTGTTCACTTCACTTAGAAATTAGAAGTGTGTTTTGGGCCAATAAAGCTAAAT
	TTGTAGTAGTCATTTTTATTAACGGAAGTGTTTTCCAGATGTTACTTAAGTCTG
	GTTGTCTGGGACCTGTTCCAATAAATGAGGAAAGTTTGATTTCATAGGTTGTCA
	CTGTTGATTCTGTCTAACCTTTGGACTAATTGGTTCATCCTAACATATTTGCTCC
	GGTATATAAGAGCATTGGACATTGGAGAAATTCACCTCTCCTTTTACGGGTAAG
	TGTCACAGTTAACTTGCTTCATGGAGTTATATGTTTTCAATTCAATAAGGATTTA
	TTAAAAGTTTATT
E2	TTCAATTTTCCATTGGAGATACGTTTCTCTCTGTTTTCGCTCCAACCCAGGGCTC
	ACTCCCTCTGCTTCCTTCTACCTTGCTTTACTATGCAGAATGCCTGAATGCTGGC
	CAGCTTTTCCTTTGCTAAGGGCTTATGAAATTCTTATTTCAACCAAGCGGTCTCT
	TTTGGGAAGGCCACATGGGAGTGCAAAGTGAGTTGTCGCTTAAAAAAAA
	TTTTCCGGATCATTGCATTACACAATCTGTAGTTTCTTGACTTTCCTGTGTCAAA
	CTAATTTTTAGATTCAAAAGCAGAGCCACAGATGGTTCAACTGGTTTCTCAAA
	AGTTTTAAACAATCCCAACTTTAGTTTTACTGGCATTCGAATAAATTGCTCTGCC
	TTTTCCCTCCTCGGTATTCCTACCTGCCTTGTACTGAATAAAGATAGAT
	TGTGTAAGACTGTGTCAACTATTTACGTCTAGATTTATCTTTTTGGCTTTTTAC
	TTCTTTTCTCCTTAAGTTCCCCACATTCCTTTTCTACAGGAAGCATGGAAAAGAT
	AAAGGTGCCAGGAAAGATATTAGTTTTTGGCTGCTGGC
E3	AGGGTATGTCTTGCTTTCTCTTCCCAGGCATGCTTTTGAAAATCCTCCTGCCTCT
_	CTCTCCTTGACCAACAAGCCCTGTCTGCAGTCATGTTTCTCACTCA
	CAGTAATCCCTCAGGGGCTAGGGGTTTACTGTGTGTGTTCCTTCTTCAGAGAGTGG
	GCAAACAAACGAATTCATCCTGCAGCAGCGATTGCCAGCTTTGAGCTGCCAGG
	GTTTCCTGGAACAAGTCTGCTCAGTGTGTAATGCACCAGGCAACATCTAGAATC
	CCTCCTCAGCAGGGAGCATTTTATAGGGTGATAGAGCCGACCCATCTTTGAAAT
	TGTCTTTTCTGTTGGTGTTGCCTCAGGGTTTTCAGGGCTCTCTGCTTTTAGAGC
	ACTGGCTCTAAGAGGTACCACGGCTGTTACAGTGATGAGTCATCATGACTCCAT
	GGGAGTGTGGAGGAGACCAAGGATGAGTCAGTAGTCTGTCT
	CTCATCTTGTTTACATATTCTGCTGTCTGAAACACTGTCTTTTCTGGTTTTGAAT
	AAACTGCTTTGTTCTCTCCCCCCCTTACAGAAACATTGCACTCCGTTTAGGTAC
	CAAGTTGGGGGGGGGGTGCTTGGAAAATGAGATAATGGCCATCGTGAATAGGCTCC
	ACTAATAAGGAGGTAGTTCTGAAACCGAACTCTGGTTGGATCTCACTTTGTTTT
	CCTCTCAGTGGTGACTCCCATGTTACTGTAACATGGTCAAGTGTGCGCTGCCCA
	GGATTCATCCAAAACCTATTTGTAATCTGTCTGAGGGGAATAGGGA
E4	GGAAAACTATTAATCAGCATAGTGGAGGAACATTTCTTAACTCTTCAATGTTTT
-	CATTGGAAAGCATTCCAAAAATAATGGAGACAACACCCTTGTAATTAAAATCTC
	CAAGTGCAGAGTTCCTGCAGCTTTCAGATGGACCTATGAGATGACCTTCTTATT
	CATTCATCACTCTGATAATTGTTTTGGCTGTGAGACAAAAAACTAAGAATTTAT
	TTTGGGCAGAGGATGGATCGGGAGGGAAGATGATTAGAGAATGATCAATCA
	GAGAGAACCATATTAATAGAGGCAATAGTTTATGCCACCAGGGGCAGGTCAGA
	TTACTTGAG
L	

Supplementary Table 4: Sequence of dCas9-KRAB guide RNAs that target the bovine

Prg4 enhancers

E1-1#gRNA	G CTC CGG TAT ATA AGA GCA T
E1-2#gRNA	T CAT CCT AAC ATA TTT GCT C
E2-1#gRNA	G ATT GTG TAA TGC AAT GAT C
E2-2#gRNA	A AGG CAG GTA GGA ATA CCA G
E3-1#gRNA	TTAGTGGAGCCTATTCACGA
E3-2#gRNA	AGACAATTTCAAAGATGGGT
E3-3#gRNA	ACTCCGTTTAGGTACCAAGT
E4-1#gRNA	A TTT TGG GCA GAG GAT GGA T
E4-2#gRNA	GTAATCTGACCTGCCCCTGG

Supplementary Table 5: Antibodies employed for Western Blots

Cat. No.	Concentration	Target	Host	Vendor
PA5-65593	1:1000	Creb5	Rabbit	Thermo Fisher
9221S	1:500	p-Creb5	Rabbit	Cell Signaling
				Technology
9211S	1:1000	p-p38	Rabbit	Cell Signaling
				Technology
9212S	1:1000	P38	Rabbit	Cell Signaling
				Technology
T9026	1:1000	α-Tubulin	Mouse	Sigma
ab9110	1:1000	HA	Rabbit	abcam
sc-805	1:1000	HA	Rabbit	Santa cruz
				biotechnology
A14635	1:1000	Creb5	Rabbit	ABclonal
sc-510	1:500	GAL4	Mouse	Santa cruz
				biotechnology
8685S	1:1000	Smad ₂ /3	Rabbit	Cell Signaling
				Technology
A5316	1:5000	β-Actin	Mouse	Sigma

Supplementary Table 6: Antibodies employed for either ChIP or coimmunoprecipitation (Co-IP)

Cat. No.	Concentration	Target	Host	Vendor
ab9110	5 μg per ChIP	НА	Rabbit	abcam
ab46540	5 μg per ChIP	IgG	Rabbit	abcam
A2095	25 µl per Co-IP	HA	Mouse	Sigma

Cat. No.	Concentration	Target	Host	Vendor
PA5-65593	1:100	Creb5	Rabbit	Thermo
				Fisher
MABT401	1:50	Prg4	Mouse	EMD
				Millipore
11867423001	1:100	HA	Rat	Sigma
AB5535	1:100	Sox9	Rabbit	EMD
				Millipore
18338S	1:50	Phospho-Smad2	Rabbit	Cell Signaling
		(Ser465/Ser467)		Technology
A11029	1:250		Goat	Thermo
		anti-Mouse IgG;		Fisher
		Alexa Fluor 488		
A11037	1:250	anti-Rabbit IgG	Goat	Thermo
		; Alexa Fluor 594		Fisher
A11006	1:250	anti-Rat IgG;	Goat	Thermo
		Alexa Fluor 488		Fisher
S11227	1:250	Streptavidin,		Thermo
		Alexa Fluor [™] 594		Fisher
		conjugate		

Supplementary Table 7: Antibodies employed for immunohistochemistry

Supplementary Table 8: Growth factors and inhibitors used for chondrocyte culture

	Cat. No.	Concentration	Vendor
TGF-α	239-A-100	100 ng/ml	R&D Systems
TGF-β2	302-B2-010	20 ng/ml	R&D Systems
Doxycycline	D9891-1G	1 μg/ml	Sigma
SB203580	152121-47-6	10 μΜ	TOCRIS
SP600125	129-56-6	10 µM	TOCRIS

Supplementary Table 9: Target sequence (sense strand) of in situ hybridization probes.

Prg4	AGATTCAGAACAAACCTGAAGAAACAACTCCTGCATCAGAAGATTCTGAT
	GATTCTAAAACAACTCTAAAACCACAGAAGCCAACCAAAGCACCCAAGCC
	TACCAAAAAGCCAACCAAAGCACCCAAGAAGCCCACCTCTACCAAAAAGC
	CAAAGACACCAAAAACAAGAAAAACCAAAAACTACACCAGCTCCTCTAAAG
	ACGACTTCAGCAACACCTGAACTGAATACCACCCCTCTAGAAGTCATGCT
	GCCAACCACCATCCCTAAACAAACTCCAAACCCTGAAACACCTGAAA
	ΤΑ ΔΑΤΓΓΑ ΓΑΤΓΑΤΓΑ ΔΟ ΑΤΓΓΑ ΓΑ ΤΟ ΓΟΛΙΜΟΥ ΟΙ ΟΙ ΑΛΟΟΙΟΑΛΟ
	GCGCAAIGGGACAIIAGIIGCAIIICGAGGICAIIAIIICIGGAIGCIGA
Murine Creb5	GCCTGTCCCAGGCTCTCTATCATCTCTACTCCATCTCCACAACAGACAG
	GCAGCCCATGCCGGCCTCCATGCCTGGAACCCTGCCCAACCCCACCATGC
	CAGGATCTTCTGCCGTCTTGATGCCTATGGAGAGACAGATGTCAGTGAAC
	TCCAGCATCATGGGCATGCAAGGTCCAAACCTCAGCAACCCCTGTGCTTC
	TCCCCAAGTCCAGCCAATGCATTCAGAAGCCAAAATGAGACTGAAGGCTG
	CGCTGACTCACCATCCTGCCGCCATGTCGAACGGGAACATGAGCACCATC
	GGACACATGATGGAGATGATGGGCTCCCGGCAAGACCAGACACCGCACC
	ACCACCTGCACTCACACCCGCATCAGCACCAGACACTGCCGCCCCACCAC
	CCCTACCCACACCAGCACCAGCACCCGCACACCATCCCCACCACAGCCT
	CACCACCAGCAGAACCACCGCACCACCACTCCCATTCCCACCTTCACGCA
	CACCCGGCGCACCAGACCTCGCCACACCCCCCTGCACACCGGCAA
	CCAAGCACAGGTTTCACCAGCTACACAGACAGATGCAGCCAACCCAGACAA
	TACAACCACCCCACACCCGGGGGGGGGGGGGGGGGGGGG
	GGACCCAGATGAGAGGCGGAGGAAAATTTCTGGAAAAGGAACCGGGCCGCC
	CCCACCCCCTCCACACACACCCAACCTCTCCCTCACTCA
	ATAAAGACTGTCCGATAACAGCCATGCAGAAAGAATCCCAAGGGTATTTA
	AGICCAGAGAGCAGCCCICCIGCGAGCCCIGIGCCAGCAIGCICICAGCA
	GUAAGIIAICUAAUAUAUAUAUCAICACTACATCUTCATCGGTCAGCGAGG
	TUGTGGGGAGUTUCACCUTUAGTCAGUTTACAACTCACAGAACAGA
	AATCCTATTCTTTAAAAGGCATCGGTCAAACCTGGCCTTTGAGAAGAGCT
	GTAGCATGCCGTACATCCTTTCTCAAAGGGGGCATTTTTTTT
	CAGACCTGGAAGACGCCTCAGCCCTTCAAAGACTGGCTTTCATTTTATA
	GTTATTATGGAAATGTTGTCTTTTATACTTAGTTATATAAGAAAAAAGGG
	AGATATGCAATGAATATCTATCAGCTTGGGGGAGCACGTTGGTGCTTCTCT
	GCAATTTTCTGGTACCAGTTTCTTGTTTATAAACGGAACCTTTCCTGTATA
	TAGCCATGGTTTCATTCTTACCAGCCCAACCCTTTGCCTGGAACAATGAAT
	CTTGTTCAACTACAGCTTTTAGCCAAAATGAGGTATGCTTAGATGTCAAG
	CGAGATGGATCCACACAGTAACTGGGTGGGAAAGCTCATGATGTCATAA
	CTCATGTTGAGTTTGTGCTGTGATGTCACCAGAATCTCAGATAAACACAT
	GGGCCTTCCTGAATATTTTTTCTCTTGCTAGAAAAAAAAA
	ATCCATATCCCATGAAAGCCACCAAGCATCTCAGGCCCCCCTCCTTCCT
	TTTTCTACTTGTGCAGATGTCCAATATCCATCTCATTTTCTTTC
	ΤΟΓΟΤΤΩΤΤΤΑΟΤΟΤΙΟΤΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟ
	ΤΑΘΟΤΤΤΟΟΑΤΟΤΑΔΑΔΑΔΑΔΑΔΑΔΑΤΑΑΤΟΤΤΤΑΔΑΔΟΔΑΔΑΔΑΔΑ

	ATCTGGAAACTGTGGACCTAGCCACAGTTTAACCCACAGCTGGAGTTCAT
	TCAATTTTTGCCTTTCACAAAATAGCAACCAGGAGATGTTTAATGTGCCT
	GATTTAATGTTTTTAATAACCAGAGCAAATAAAAGGTGGTTTGGTTATAG
	GTGAAGCACTGTTGAATGCCAGCTGTGGGGGACACTAGGGAAAGGGACTT
	CGTAAGCTCCAACTGTGAAAATTCAAATAAGGATGTGGGCTCTAACATCA
	CACCCTCGAATTACAGCTCGCTTCTATGGCCTGTCTATAATGTAAAAAATC
	CATGCACTATATAATAGTTCAGAAGGGCTCTGTTCACTACACAGATTACA
	TTGTTCAATCATCAGCTGCTAATAACCTAAGATTTATTATTATTATTTTTC
	TTAAGCCTATGGAACCAGCTCTGCTGTTCTGGTGGGCAAAAGCAAACTCA
	CTCTTGGAGCAACAGAGAGAAAGCGAGGCCAGCGTTTCTCGGGGGACTCG
	CAGTCTGCCAGAACAGTCAGACTCCTTGGCTGCTGACCGAGTCCCATGGA
	GGTGGCCAGGCTGGTGCGCTCATCTGAGTAGTTCTGATTTATATTTTCAG
	CAATGTCCACGGACTTGCCCATTACAGAAAGCAGATCAAACCCAAACCAC
	AGTTGTGCCTCCTTGAAACAAGCCATTCTACTCTGCTGGTGTTTTACTATC
	GTGTTTCACAAATAATAGGGGGCTAATGTTTCTCACTAGCAGTCTGGGCAT
	ATGCTGGTGTTTCATCTCTGCCCAAATAATTCACCTCCTAACCTATGTGTG
	TGTGTGTGTGCACATGGATGTGTGTGTGCCTGAGTGTGTGAGTGTGTGT
	GTGTGTGTGTGTGTGTGTGTGTGTGTTTATGAACAGTATAGGTTTTAAAAGA
	ACAGTATTTTACAAAAGCCATCACTTTTATAAGAGTTCTGTAAAGGAAGG
	ATGTACTTCTTCGCTCACTATAGTTTAAAAAAATTCTATTTTAGAGGAAAA
	АААААААААААААА
Col2a1	CCTGTCTGCTTCTTGTAAAACCCCCCGAACCCTGAAACAACAACAATCCATTG
	CGAACCCAAAGGACCCAAACACTTTCCAACCGCAGTCACTCCAGGATCTG
	CACTGAATGGCTGACCTGACCTGATGATACCCAACCGTCCTCCCCTCACA
	GCCCGGACTGTGCTCCCCTTTCTAAGAGACCTGAACTGGGCAGACTGCAA
	AATAAAATCTCGGTGTTCTATTTATTTATTGTCTTCCTGTAAGACCTCTGG
	GTCCAGGCGGAGACAGGAACTATCTGGTGTGAGTCAGACGCCCCCGAG
	TGACTGTTCCCAGCCCAGCCAGAAGACCCCTACAGATGCTGGGCGCAGG
	GACTGCGTGTCCTACACAATGGTGCTATTCTGTGTCAAACACCTCTGTAT
	TTTTTA
Matrilin1	GGATCCAAGAGCGTGCGGCCTGAGAACTTTGAGCTGGTGAAGAAGTTCA
	TCAACCAGATTGTGGACACGTTAGATGTGTCGGACAGGCTAGCCCAGGT
	GGGGCTGGTGCAGTACTCCAGCTCCATTCGCCAGGAGTTCCCACTCGGCC
	GCTTCCACACCAAGAAGGACATTAAGGCCGCGGTGCGGAACATGTCCTAC
	ATGGAGAAAGGCACCATGACTGGCGCCGCCTTGAAGTATCTCATAGATAA
	TTCTTTCACTGTGTCCAGCGGGGGCAAGGCCTGGAGCCCAGAAGGTGGGC
	ATCGTCTTCACCGATGGCCGGAGCCAGGACTACATTAATGACGCTGCCAG
	GAAGGCCAAGGACCTTGGCTTTAAGATGTTTGCGGTGGGCGTGGGCAAT
	GCTGTGGAGGAAGAGCTGAGGGAGATCGCTTCCGAGCCCGTGGCAGACC
	ACTACTTTTACACAGCTGACTTCAAGACCATCAACCAGATTGGCAAGAAG
	CTGCAGAAACAAATCTGTGTGGAGGAAGACCCCTGTGCTTGTGAGTCCAT
	ACTGAAATTTGAGGCCAAGGTGGAGGGTCTGCTGCAGGCCCTGACCAGG
	AAGCTGGAAGCTGTGAGCGGGCGGCTGGCTGTCCTGGAGAACAGAATCA
	TCTAA

Gene	Forward	Reverse
PRG4	TGTGACTGCGACGCCCAATGTA	GGTTTGAGATGCTCCTGAAGGTG
GAPDH	GTCTCCTCTGACTTCAACAGCG	ACCACCCTGTTGCTGTAGCCAA

Supplementary Table 10: PCR primers for human PRG4 and GAPDH