Supplementary Information

Circadian control of hepatitis B virus replication

Supplementary Fig.1: Synchronization of HepaRG cells.

HepaRG cells stably expressing Bmal1 promoter luciferase reporter were synchronized with dexamethasone at 100 nM or 50% FBS for 2h. After removal of dexamethasone or FBS, cells were cultured in media containing live substrate in the presence of an increasing dose of REV-ERB agonist SR9009. Live luciferase signal was monitored at 30 min intervals for 96h. Data are expressed as the mean relative light units (RLU) \pm S.E.M., n = 6. Source data are provided as a Source Data file.

Supplementary Fig.2: REV-ERB agonist SR9009 inhibits Bmal1 promoter activity without cytotoxicity. HepaRG cells stably expressing Bmal1-luciferase promoter were treated with SR9009 for 48h and luciferase activity measured. Cytotoxicity was determined using an LDH assay (mean \pm S.E.M., n = 3). Source data are provided as a Source Data file.

(a) Total RNA was extracted from control or *Bmal1* silenced HepaRG cells and *NTCP*, *Bmal1* and *Rev-Erba* mRNA levels measured by qRT-PCR. Data are expressed relative to control (mean \pm S.E.M., n = 4, Mann–Whitney test, Two-sided). (b) Bmal1 silencing was validated by western blotting. * denotes p < 0.05. Source data are provided as a Source Data file.

Supplementary Fig.4: REV-ERBα as a repressor of NTCP promoter activity.

(a) Huh-7.5 hepatoma cells were co-transfected with NTCP or Bmal1 promoter luciferase reporters with control or *Rev-Erba* (Halo-tagged) expression plasmid. Promoter activities were determined 48h later by quantifying luciferase activity. Data are expressed relative to control (mean \pm S.E.M., n = 6, Mann–Whitney test, Two-sided). REV-ERBa overexpression was validated by western blotting using an anti-Halo antibody. (b) Huh-7.5 hepatoma cells were transfected with NTCP promoter luciferase reporter for 48h and treated with SR9009 for 24h and promoter activity determined by quantifying luciferase activity. Data are expressed relative to control treatment (mean \pm S.E.M., n = 5, Kruskal–Wallis ANOVA with Dunn's test). * denotes p < 0.05, ** < 0.01. Source data are provided as a Source Data file.

Supplementary Fig.5: REV-ERB agonist SR9009 does not regulate EGFR mRNA.

Differentiated HepaRG cells were treated with SR9009 (20 μ M) for 24h and *EGFR* RNA measured by qRT-PCR (mean \pm S.E.M., n = 7, Mann–Whitney test). Source data are provided as a Source Data file.

Supplementary Fig.6: REV-ERB agonist SR9009 treatment reduces HBV pC/pgRNA levels and extracellular HBV DNA.

HepG2.215 cells were treated with SR9009 for 48h and pC/gRNA levels determined by qRT-PCR. Data are expressed relative to untreated (Ctrl) cells (Mean \pm S.E.M., n = 3, Kruskal–Wallis ANOVA with Dunn's test). Extracellular HBV DNA levels were determined by qPCR. The reverse transcriptase inhibitor Entecavir (ETV, 1 μ M) was included as positive control. Data are expressed relative to untreated (Ctrl) cells (Mean \pm S.E.M., n = 4, Kruskal–Wallis ANOVA with Dunn's test). * denotes p < 0.05. Source data are provided as a Source Data file.

Supplementary Fig.7: NTCP expression in wild type and Rev-Erbα knockout HepG2 cells.

Parental (WT) or *Rev-Erba* KO (C12) HepG2-NTCP cells were stained with Alexa 488 fluorophore labelled Myrcludex B (200 nM) and images acquired using a Zeiss fluorescence microscopy. Representative fluorescent images were shown (n = 3 for each cell line)

E-box	Position	Sequence (CANNTG)	Genome location	
1	597-602	CACCTG	S/ POLYMERASE (RT)	
2	689-694	CATTTG	S / POLYMERASE (RT)	
3	1179-1184	CAAGTG	POLYMERASE (RNASE H)	
4	1397-1402	CAACTG	POLYMERASE (RNASE H) / X	
5	1566-1571	CATCTG	POLYMERASE (RNASE H) / X	
6	2306-2311	CAAATG	CORE / POLYMERASE (TP)	
7	2630-2635	CAATTG	POLYMERASE (TP)	
8	2901-2906	CAGTTG	POLYMERASE (SPACER) / PRE S	
9	2966-2971	CACCTG	POLYMERASE (SPACER) / PRE S	
RORE	Position	Sequence (RGGTCA)	Genome location	
1	2816-2821	GGGTCA	ТР	

Supplementary Fig.8: Circadian regulatory E-box and RORE motifs in HBV genome (Genotype D, ayw).

Supplementary Fig.9: ChIP-qPCR evaluation of REV-ERBα binding HBV DNA.

Chromatin extracts from HepG2-pEpi cells were immunoprecipitated using antibodies specific for REV-ERB α or rabbit IgG as a negative control. PCR for HBV DNA using primers targeting the RORE or control host gene Bmal1 was performed and %IP data presented relative to the rabbit IgG control shown as the dotted line (mean ± S.E.M., n = 4, Mann–Whitney test, Two-sided). * denotes p < 0.05. Source data are provided as a Source Data file.

Supplementary Fig. 10: Effect of REV-ERB agonist SR9009 on HBV infected mice weight and albumin expression. FRG-NOD mice transplanted with primary human hepatocytes were infected with 10^9 HBV genome equivalents and 8 weeks later the mice were treated twice a day by intraperitoneal injection with either vehicle or SR9009 (100 mg/kg) for 2 weeks. Individual animal weights were recorded and peripheral human albumin quantified weekly (mean \pm S.E.M., n = 3). Source data are provided as a Source Data file.

Supplementary Fig.11: Transcriptomic analysis of REV-ERB agonist SR9009 and vehicle treated chimeric mice.

Analysis of known activators and repressors of HBV was performed and fold change were plotted against the FDR. Gene names with p value < 0.001 were shown. Fold Change of +/- 2 is deemed statistically significant. Source data are provided as a Source Data file.

Supplementary Fig.12: Core clock gene transcripts in chronic hepatitis B and healthy subjects.

Expression of core clock genes in liver biopsy tissue from healthy (n=8) or hepatitis B virus infected patients classified according to EASL 2017 guidelines in the HBeAg negative phase of disease with chronic hepatitis (n = 19) or chronic infection (n = 8). Data are presented relative to healthy controls, statistics were tested with multiple Mann-Whitney U tests, Two-sided, and p values adjusted with Bonferroni correction (P<0.05 deemed statistically significant). * denotes p < 0.05, ** < 0.01. Source data are provided as a Source Data file.

Supplementary Table 1: List of primers used

Tagman expression assays	Supplier	Cat #.			
ARNTL (Bmal1) TaqMan [®] Gene Expression Assay	ThermoFisher	Hs00154147			
NR1D1 (Rev-Erbα) TagMan [®] Gene Expression Assay	ThermoFisher	Hs00253876			
SLC10A1 (NTCP) TagMan [®] Gene Expression Assay	ThermoFisher	Hs00161820			
SCD TaqMan [®] Gene Expression Assay	ThermoFisher	Hs01682761			
FASN TaqMan [®] Gene Expression Assay	ThermoFisher	Hs01005622			
HBV-pgRNA TagMan [®] Gene Expression Assay	ThermoFisher	AIKAMSS			
b2M Control Mix	Applied Biosystems	4325797			
aPCR Primers (5'-3')					
HBV internalization assav DNA forward: ACTCACCAACCTCCTGTCCT					
HBV internalization assay DNA reverse: GACAAACGGGCAACATACCT					
HBV internalization assay DNA probe: (FAM)-TATCGCTGGATGTGTCTGCGGCGT-(TAMRA)					
PrP forward: TGCTGGGAAGTGCCATGAG					
PrP reverse: CGGTGCATGTTTTCACGATAGTA					
rcDNA forward: GTTGCCCGTTTGTCCTCTAATTC					
rcDNA reverse: GGAGGGATACATAGAGGTTCCTTGA					
cccDNA forward: GCCTATTGATTGGAAAGTATGT					
cccDNA reverse: AGCTGAGGCGGTATCTA					
b2M forward: CTACACTGAATTCACCCCCACTG					
b2M reverse: ACCTCCATGATGCTGCTTACATG					
b-Actin forward: CCAACCGCGAGAAGATGA					
b-Actin reverse: CCAGAGGCGTACAGGGATAG					
EGFR forward: AACACCCTGGTCTGGAAGTACG					
EGFR reverse: TCGTTGGACAGCCTTCAAGACC					
ChIP-PCR Primers (5'-3')					
Per1 promoter forward: GTCAAGGAAAATCCCCAGCTTCTG					
Per1 promoter reverse: CCAAGATTGGTGACGTAAATGCCA					
Bmal1 promoter forward: TTGGGCACAGCGATTGGT					
Bmal1 promoter reverse: GTAAACAGGCACCTCCGTCC					
NTCP-Ebox1 forward: AAATCTGTCCCCACCTCCACCC					
NTCP-Ebox1 reverse: TGGTTGGAACCTAGGAGGCCTG					
NTCP-Ebox2 forward: ACCCAGGCCTCCTAGGTTCCAA					
NTCP-Ebox2 reverse: GGGCCACCTAGTGTGTGAGGTT					
NTCP-Ebox3 forward: CACAGCCAGGGTTCTCTCAGGT					
NTCP-Ebox3 reverse: AATACTGGTGGTGGCTGCTCCA					
NTCP-Ebox4 forward: AACCAAAGGCAACACCCAGCTC					
NTCP-Ebox4 reverse: TCCTTTTCCCAGCTCCGCTCTT					
NTCP-Ebox5 forward: AGGAGCTGCAGGGAAGGAGATG					
NTCP-Ebox5 reverse: TGTCACTTTGCTGCTTCTGGGC					
NTCP-RORE1 forward: GCATCCTCTCAGCTCCCAGGAA					
NTCP-RORE1 reverse: AGCTGGGTGTTGCCTTTGGTTC					
NTCP-RORE2 forward: GCCCAGAAGCAGCAAAGTGACA					
NTCP-RORE2 reverse: CCCCAAAGAGGAACAGCCCAGA					
HBV-RORE forward: TTACACACTCTATGGAAGGCGG					
HBV-RORE reverse: AAAGATTCTGCCCCATGCTGTA					
HBV-E-box2 forward (680-703): ACTAGTGCCATTTGTTCAGTGGT					
HBV-E-box2 reverse (804-827): ACCCAAAGACAAAAGAAAATTGGT					
HBV-E-box3 forward (1168-1188): CAGGTCTGTGCCAAGTGTTTG					
HBV-E-box3 reverse (1278-1299): CAAAACAAGCGGCTAGGAGTTC					
HBV-E-box4 forward (1305-1328): AGCAGGTCTGGAGCAAACATTATC					
HBV-E-box4 reverse (1413-1434): GGACGTAAACAAAGGACGTCCC					
HBV-E-box5 forward (1153-1573): GTCTGTGCCTTCTCATCTGCC					
HBV-E-box5 reverse (1630-1652): AGACCTTGGGCAATATTTGGTGG					
HBV-E-box6 forward (2294-2317): CTTATAGACCACCAAATGCCCCTA					
HBV-E-box6 reverse (2396-2414): GGCGATTGAGACCTTCGTC					