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Supplementary data on effects of the human gene underexpression or overexpression under this study on the reproductive potential 

Table S1. Effects of underexpression or overexpression of the human genes under this study on the reproductive potential according to our estimates [1-5]. 

# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

1 ACKR1 
1 

[3] 
increased risks of preeclampsia as one of the most challenging 

problems of modern obstetrics [8] 
←  increased risk of atherosclerosis and other coronary artery disease [9] ← 

2 ADCYAP1 
1 

[4] 
within a model of human diseases using Adcyap1-knockout mice, 

decreased fertility [10] 
← 

3 
[4] 

in a model of human health using transgenic mice overexpressing 
Adcyap1 within only pancreatic β-cells, ameliorated diabetes [11] 

→ 

3 ADCYAP1R1 
2 

[4] 
within a model of human diseases using Adcyap1r1-knockout female 

mice, decreased fertility [12] 
← 

4 
[4] 

increased risks of increased chronic post-traumatic nociceptive pain-
related behavior [13] 

← 

4 ADORA1 
5 

[4] 
within a model of human fertility using Adora1-knockout male mice, 

delayed sperm maturation and, ultimately, fewer offspring [14] 
← 

5 
[4] 

in a human health model using norm rather than Adora1-knockout 
mice, Adora1-agonist improves post-ejaculation sperm ripening [15] 

→ 

5 ADORA2A 
3 

[4] 
within a model of human diseases using adult male mice, 

predisposition to fearfulness, helplessness, and fatigue [16] 
← 

10 
[4] 

within a model of human diseases using mice, improved survival in 
post-traumatic endotoxemia and sepsis [17] 

→ 

6 ADORA2B  
in models of men fertility using mice, increased risks of insufficiencies 

in maturation and storage of spermatozoa within epididymis [18] 
← 

1 
[4] 

within a model of human diseases using mice, increased risks of 
voluntary physically-inactive behavior [19] 

← 

7 ADORA3 
2 

[4] 
within a model of human diseases using Adora3-knockout mice, 

platelet deficit with bleeding without blood coagulation in trauma [20] 
← 

9 
[4] 

within models of human diseases using mice, chronic pain insensitivity 
[21] 

→ 

8 ADRA1A 
2 

[4] 
within a model of human diseases using ADRA1A-knockout mice, 

twice reduced pregnancy rate [22] 
← 

9 
[4] 

within a model of human diseases using mice carrying constitutively 
more bioactive ADRA1A-mutant, antidepressant-like behavior [23] 

→ 

9 ADRA1D  
within a model of human diseases using triple ADRA1A-, ADRA1B-, 

and ADRA1D-knockout mice, drastic reduced pregnancy rate [22] 
← 

1 
[4] 

reduced risks of muscle atrophy after trauma and diseases, as well as 
during ageing [24] 

→ 

Note: NSNP, as the number of candidate SNP markers that significantly decrease or increase the affinity of the TATA-binding protein (TBP) for the promoters of the considered gene 

according to estimates cited as [Ref] and, thereby, decrease (↓) or increase (↑) the expression of this gene, as has been repeatedly proven by many independent experiments (e.g., [6], for a 

review, see [7]); ♂♀, as effects on human reproductive potential: deterioration (←) or improvement (→). Genes: ACKR1, atypical chemokine receptor 1 (synonym: Duffy blood group); 

ADCYAP1, adenylate cyclase activating polypeptide 1; ADCYAP1R1, pituitary adenylate cyclase-activating polypeptide type 1 receptor; ADORA1, ADORA2A, ADORA2B, and ADORA3, 

adenosine receptors A1, A2a, A2b, and A3, respectively; ADRA1A and ADRA1D,, adrenoceptors α1A. and α1D, respectively, 
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# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

10 ADRA2C  
in human disease models using Adra2c-knockout mice, higher startle 

responses, lesser startle reflex inhibition and attack-respond delay [25] 
← 

2 
[4] 

in human disease models using Adra2c-excessive mice, lesser startle 
responses, more startle reflex inhibition and attack-respond delay [25] 

→ 

11 ADRB2 
2 

[4] 
within models of human fertility using aging female rats, propranolol 

blocks Adrb2 and thus successfully prolongs their reproductive age [26] 
→  

within models of human fertility using aging female rats, the age-
induced increase of Adrb2 level reduces their fertility indicators [26] 

← 

12 ADRB3  
in a model of human behavior using Adrb3-knockout mice, resistance to 
antidepressant-treatment against post-stress worsen physical state [27] 

← 
1 

[4] 
within models of human diseases using rats and mice, synthetic 

Adrb3-agonist SR58611A causes antidepressant-like behavior [28] 
→ 

13 AKAP17A 
6 

[5] 
predisposition to accelerated aging in men [29] ← 

13 
[5] 

increased risk of azoospermia through testicular degeneration [30] ← 

14 AMELY 
1 

[5] 
increased risk of suicide in men [31] ←  exogenous recombinant amelogenin is a wound healing drug [32] → 

15 APOA1 
1 

[3] 
increased risk of mental disorders according to low score of Montreal 

Cognitive Assessment (MoCA) [33] 
←  unexplained infertility in women [34] ← 

16 AR  
increased risk of early mortality through metabolic diseases because of 

disturbed gut microbiota [35] 
← 

3 
[3] 

androgen-induced premature aging in adult men [36] ← 

17 ARTN 
3 

[4] 
within a model of human embryogenesis using mouse embryos, impaired 

neurotrophic support of tissue innervation [37] 
← 

9 
[4] 

in models of human behavior using Artn-knockdown mice, exogenous 
Artn has antidepressant-like effect at 30 min after administration [38] 

→ 

18 ASMT 
3 

[5] 
increased risks of inflammatory airway diseases such as asthma because of 

melatonin deficiency [39] 
← 

10 
[5] 

melatonin excess protects sperm from oxidative DNA damage [40] → 

19 ASMTL 
5 

[5] 
increased risk of prostate cancer [41] ← 

13 
[5] 

increased risk of autism spectrum disorders [42] ← 

20 AVPR1A  
within a model of human pregnancy using Avpr1a-deficient female mice, 

fewer pups, labor initiation delay, stronger postpartum bleeding [43] 
← 

2 
[4] 

within a human cohort-based comparative clinical study, increased 
risks of depression-like behavior [44] 

← 

21 AVPR2 
1 

[4] 
within a model of human preeclampsia using co-infusion of vasopressin 
with Avpr2-antagonist into mice, prevented fetal growth restriction [45] 

→ 
1 

[4] 
in human preeclampsia models using gravid mice norm injected by 
only vasopressin without Avpr2-antagonist, reduced fetal mass [45] 

← 

22 BDNF 
4 

[4] 
within a female human cohort-based comparative clinical study, increased 

risks of both moderate and severe depressive behavior [46] 
← 

10 
[4] 

within retrospective meta-analysis of BDNF-related publications in-
between January 2018 and February 2019, better woman fertility [47] 

→ 

23 CC2D1A  
in human disease models using mice with either knockout or conditional 

knockdown of Cc2d1a, perinatal lethality or cognitive deficit, respectively [48] 
← 

6 
[2] 

increased risks of both anxious and depressive behavior [49] ← 

24 CC2D1B 
4 

[2] 
within a model of human diseases using Cc2d1b-knockout mice,  

increased risks of cognitive deficit [50] 
← 

8 
[2] 

within human behavior models using rats, increased level of fear-
induced aggressive response [51] 

→ 

25 CD99 
3 

[5] 
anti-CD99 drugs retard atherogenesis that reduce risks of stroke and 
myocardial infarction as two most often causes of human death [52] 

→ 
20 
[5] 

increased mortality from septic shock in men [53] ← 

26 CDNF 
1 

[4] 
within a model of human diseases using CDNF-knockout mice, increased 

risks of degenerated enteric neurons [54] 
← 

4 
[4] 

within human disease models using exogenous CDNF injected into 
normal mice brain, prevented dopaminergic neuron degeneration [55] 

→ 

Genes: ADRA2C, ADRB2, and ADRB3, adrenoceptors α2C, β2, and β3, respectively; AKAP17A, A-kinase anchoring protein 17A; AMELY, amelogenin Y-linked; APOA1, apolipoprotein A1; 

AR, androgen receptor; ARTN, artemin; ASMT, acetylserotonin O-methyltransferase; ASMTL, N-acetylserotonin O-methyltransferase-like protein; AVPR1A and AVPR2, arginine 

vasopressin receptors 1A and 2, respectively; BDNF, brain derived neurotrophic factor; CC2D1A and CC2D1B, Freud-1 and Freud-2, respectively; CD99, CD99 molecule (synonym: Xg 

blood group); CDNF, cerebral dopamine neurotrophic factor.  
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# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

27 CDY2A 
1 

[5] 
male maturation arrest [56] ←  

partly repaired fertility in men, who have AZFc-deletion containing 
the CDY1 gene-paralog necessary to finalize spermatogenesis [57] 

→ 

28 CETP 
1 

[3] 
retarded atherogenesis that reduce risks of both stroke and myocardial 

infarction as two most often causes of human death [58] 
→ 

3 
[3] 

increased risks of hypercholesterolemia in late pregnancy [59] ← 

29 CHRM1 
1 

[4] 
within a model of human diseases using Chrm1-knockout mice, larger 

pancreatic intraepithelial neoplasia area and shorter overall survival [60] 
← 

1 
[4] 

increased risks for chronic fatigue syndrome [61] ← 

30 CHRM2 
1 

[4] 
within a model of human diseases using rats inoculated by Japanese 
encephalitis virus, worse spatio temporal learning and memory [62] 

← 
2 

[4] 
within a human cohort-based clinical study, improved susceptibility 

to antidepressant mood stabilizers in depressive disorders [63] 
← 

31 CHRM3  
within a model of human post-injury cure using human neurons, CHRM3-
antagonist improved oligodendrocyte repair in brain and spinal cord [64] 

→ 
1 

[4] 
within a human cancer cell clinical study ex vivo, increased risks of 

benign prostatic hyperplasia as a prostate disease precursor [65] 
← 

32 CHRM4 
1 

[4] 
within a model of human diseases using rats, increased risks of both acute 

and chronic arthritis [66] 
← 

2 
[4] 

within clinical study using cell lines of prostate cancer vs norm, 
increased risks of neuroendocrine prostate cancer [67] 

← 

33 CHRM5 
1 

[4] 
based on a clinical case of patient carrying de novo interstitial 5,3 Mb-deletion 
of chromosome 15 containing CHRM5, raised risks of mental retardation [68] 

← 
4 

[4] 
in human behavior models using mice, antidepressant imipramine 
upregulated CHRM5 to treat for chronic stress complications [69] 

→ 

34 CHRNA1 
1 

[4] 
within a model of human neuromuscular hyperactivity complications 

using zebrafish, motor axonal extension and muscular degeneration [70] 
← 

2 
[4] 

in human amyotrophic lateral sclerosis models using mice: skeletal 
gastrocnemius, quadriceps and soleus muscles denervation [71] 

← 

35 CHRNA2  
in human pregnancy models using Chrna2-null mice, prevented negative 

effects of maternal nicotine exposure on learning and memory in pups [72] 
→ 

7 
[4] 

within clinical study of pedigree segregating sleep-related epilepsy: 
higher risk of seizures, fear sensation, and nocturnal wanderings [73] 

← 

34 CHRNA3 
2 

[4] 
within a model of human diseases using songbirds,  

improved finding an opposite sex tribesman [74] 
→  

enhanced adverse effects of nicotine compounds on primordial 
oocytes [75] 

← 

35 CHRNA4  
within a model of human behavior using Chrna4-knockout mice, increased 

risks of anxiety [76] 
← 

13 
[4] 

within a model of human diseases using mice, increased risks of 
congestive heart failure [77] 

← 

36 CHRNA5 
4 

[4] 
within a model of human cord brain injury using Chrna5-knockdown rats, 

relieved mechanical pain [78] 
→ 

5 
[4] 

within a model of human cord brain injury using rats, 
hypersensitivity to mechanical pain [78] 

← 

37 CHRNA6 
2 

[4] 
enhanced maternal behavior [79] →  

within a model of human diseases using mice, increased risks of both 
neuropsychiatric disorders and social defeats [80] 

← 

38 CHRNA7 
2 

[4] 
within a model of human behavior using mice administered by Chrna7-

antagonist, improved antidepressant-like behavior [81] 
→ 

2 
[4] 

according to the retrospective exhaustive review, behavioral and 
cognitive benefits compared to norm due to excessive Ca(2+) ions [82] 

→ 

39 CHRNA9 
1 

[4] 
in human pain models using Chrna9-knockout mice, both the development 

and maintenance of chronic mechanical hyperalgesia were reduced [83] 
→ 

1 
[4] 

based on the bioinformatics meta-analysis of microarray datasets from 
ArrayExpress database, increased risks of gliomas and glioblastoma [84] 

← 

40 CHRNA10 
1 

[4] 
in human pain sensitivity models using adult male rats administered by 

Chrna10-antagonist, chronic neuropathic hyperalgesia reduced [85] 
→ 

1 
[4] 

in human viability models using human and rat blood cells stimulated 
with Chrna10-agonists, innate immune response estimate reduced [86] 

← 

41 CHRNB1 
3 

[4] 
based on the family history of calves carrying "Chrna1-loss of function" 
gene: increased risks of neuromuscular disorders and fetal lethality [87] 

← 
3 

[4] 
within a model of human motor activity using mice, reduced muscle 

size with increased efficiency of muscle functioning [88] 
→ 

Genes: CDY2A, chromodomain Y-linked 2A; CETP, cholesteryl ester transfer protein; CHRM1, CHRM2, CHRM3, CHRM4, and CHRM5, cholinergic muscarinic receptors 1, 2, 3, 4, and 5, 

respectively; CHRNA1, CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNA9, CHRNA10, and CHRNB1, cholinergic nicotinic receptor subunits α1, α2, α3, α4, α5, α6, α7, 

α9, α10, and β1, respectively.  
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# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

43 CHRNB3 
1 

[4] 
within a model of human depressive behavior using rats, increased risks of 

stress-induced both anhedonia and mood despair [89] 
←  

in human health models using Chrnb3-null mice, Chrnb3-excess may raises 
voluntary nicotine intake as a leading cause of preventable human death [90] 

← 

44 CHRNB4 
3 

[4] 
within a model of human depressive behavior using rats, increased risks of 

stress-induced both anhedonia and mood despair [89] 
← 

2 
[4] 

in human behavior models using transgenic mice carrying CHRNB4 on 
bacterial artificial chromosome: reduced work memory & impulsiveness [91] 

← 

45 CHRNE  
based on a case of a patient carrying genomic mutation reducing CHRNE 

level: predisposition to limb weakness and ophthalmoplegia [92] 
← 

3 
[4] 

within a cohort-based clinical study of human myasthenia gravis: 
predisposition to authoimmune-related muscle weakness [93] 

← 

46 CHRNG 
1 

[4] 
within a model of human embryogenesis using Chrng-knockout mice, 

increased risks of fetal lethality [94] 
←  

within a cohort-based clinical study, increased risks of 
rhabdomyosarcoma (embryonal rhabdomyosarcoma, 60% of cases) [95] 

← 

47 CNR1 
1 

[4] 
within a model of human behavior using Cnr1-knockout adult male mice, 

increased risks of anxiety and depression in men [96] 
← 

6 
[4] 

in human behavior models using mice carrying artificial "gain-of-
function" mutation of Cnr1 gene: adolescent behavior in adulthood [97] 

→ 

48 CNTF 
1 

[4] 
within a model of human behavior using Cntf-knockout mice, increased 

risks of both anxiety and depression [98] 
←  

in human post-injury vision repair models using CNTF-overexpressing 
neural stem cells injected into the mice eye injured, neuroprotection [99] 

← 

49 COMT 
6 

[4] 
within a model of human  behavior using the Comt-knockout female mice, 

increased risks of stress-induced both anxiety and depression [100] 
← 

17 
[4] 

in human depression models using the Flinders Sensitive Line (FSL) of 
rats, increased risks of anxiety and depressive-like behavior [101] 

← 

50 CRLF2 
2 

[5] 
weakened symptoms of acute respiratory tract infections in children and 

the elderly [102] 
→ 

4 
[5] 

increased risks of B-cell acute lymphoblastic leukemia in children 
[103] 

← 

51 CSF2RA 
9 

[5] 
Csf2ra-knockout mice (as models of human diseases using laboratory 

animals) have respiratory failure [104] 
← 

4 
[5] 

lentiviral vectors carrying the mouse Csf2ra gene have passed 
preclinical trials in mice for the treatment of respiratory failure [104] 

→ 

52 CXCR4 
1 

[4] 
within a model of human behavior using CXCR4-null mice, increased risks 

of both motor coordination and balance impaired [105] 
← 

3 
[4] 

in human behavior models using bee venom injection into rats, 
development and maintenance of persistent pain hypersensitivity [106] 

← 

53 CYP2A6 
2 

[3] 
reduced damage from passive smoking  
for non-smoking pregnant women [107] 

→  
Smilax china L. root extract increases CYP2A6 levels to detoxify 

nicotine from tobacco smoke condensate in the lungs [108] 
→ 

54 CYP2B6 
2 

[3] 
increased risk of hepatocellular carcinoma [109] ←  improved detoxification of toxins in the liver [110] → 

55 CYP17A1 
1 

[3] 
increased risk of reduced fertility [111] ← 

1 
[3] 

Malaysian propolis increases CYP17A1 level in the testes as a drug to 
overcome subfertility in diabetics [112] 

→ 

56 DHFR 
3 

[3] 
DHFR-inhibitors are anti-mycobacterial drugs for tuberculosis [113] → 

2 
[3] 

increased risks of ectopic pregnancy, metastatic choriocarcinoma, and 
gestational trophoblastic disease [114] 

← 

57 DHRSX 
6 

[5] 
within a human disease model using HeLa cells, DHRSX knockdown 

reduces autophagy level as response to starvation [115] 
← 

3 
[5] 

increased risk of stroke in men in middle age  
(i.e., reproductive age) [116] 

← 

58 DNMT1 
2 

[3] 
small doses of decitabine (a nucleoside analog) deplete the epigenetic 

DNMT1 regulator as a treatment for myeloid tumor [117] 
→ 

7 
[3] 

within model of human disease using mice, increased risks of 
epigenetic disorders of fetal brain development under stress [118] 

← 

59 DRD1  
within a model of human embryogenesis using osteoblast-specific Ddr1-

knockdown mice, reduced body weight and body length in newborns [119] 
← 

1 
[4] 

within a model of human behavior using adult male rats inoculated 
with a lentiviral vector carrying DRD1 gene, more sexual activity [120] 

→ 

Genes: CHRNB3, CHRNB4, CHRNE, and CHRNG, cholinergic nicotinic receptor subunits β3, β4, ε, and γ, respectively; CNR1, cannabinoid receptor 1; CNTF, ciliary neurotrophic factor; 

COMT, catechol-O-methyltransferase; CRLF2, cytokine receptor like factor 2; CSF2RA, colony stimulating factor 2 receptor subunit α; CXCR4, Fusin; CYP17A1, steroid 17α-monooxygenase; 

CYP2A6, xenobiotic monooxygenase; CYP2B6, 1,4-cineole 2-exo-monooxygenase; DHFR, dihydrofolate reductase; DHRSX, dehydrogenase/reductase X-linked; DNMT1, DNA 

methyltransferase 1; DRD1, dopamine receptors D1. 
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60 DRD2 
3 

[4] 
within a model of human behavior using Drd2-knockout mice, decreased 

risks of depressive-like behavior [121] 
→ 

10 
[4] 

within a model of human behavior using rats, increased risks of the chronic 
stress-induced depression-like behavior [122] 

← 

61 DRD3 
1 

[4] 
in human behavior models using Drd3-null mice, increased risks of 

depression in those adult who were exposed to stress in childhood [123] 
← 

3 
[4] 

within a model of human behavior using mice, increased motor activity 
and behavior motivation [124] 

→ 

62 DRD4 
1 

[4] 
within a model of human behavior using Drd4-knockout mice: increased 

locomotor activity and reduced stereotypic behavior [125] 
→ 

3 
[4] 

within a human cohort-based clinical psychiatric study, increased stress 
resilience [126] 

→ 

63 DRD5  
in models of human behavior using rats, Drd5-antagonist (rather Drd5-

agonist) blocks freezing behavior in conditioned fear [127] 
→ 

10 
[4] 

in models of human diseases using rats, prenatal nicotine exposure rises 
Drd5 level in the striatum as a cause of newborn mental disorders [128] 

← 

64 ESR2 
2 

[3] 
within model of human disease using rats, ESR2-deficiency in adolescents 

reduces sperm quality in adults [129] 
←  

within model of human disease using rats, ESR2-excess in adolescents 
reduces sperm quality in adults [129] 

← 

65 F2  
α1-antitrypsin inhibits F2 and, thereby, prevents thromboembolism and 

micro- and macrothrombosis in order to relieve COVID-19 [130] 
→ 

2 
[3] 

increased risks of preeclampsia as one of the most challenging problems of 
modern obstetrics [131] 

← 

66 F3 
2 

[3] 
ozone therapy suppresses F3 and, thereby, prevents thrombotic ischemic 

intestinal damage [132] 
→ 

5 
[3] 

increased risks of stroke and myocardial infarction as two most often 
causes of human death [133] 

← 

67 F7 
2 

[3] 
increased risks of episodic spontaneous difficult to stop  

life-threatening bleeding [134] 
← 

5 
[3] 

recombinant activated F7 is a life-saving drug for obstetric  
life-threatening bleeding [135] 

→ 

68 F8  
hemophilia A: spontaneous hemorrhages in the brain, joints, muscles, 

internal organs and, as a result, disability [136] 
← 

1 
[3] 

increased risks of thrombosis provoking stroke and myocardial infarction 
as the two most frequent causes of death in humans [137] 

← 

69 F9 
1 

[3] 
hemophilia B: spontaneous hemorrhages in the brain, joints, muscles, 

internal organs and, as a result, disability [138] 
← 

1 
[3] 

increased risks of myocardial fibrosis causing tachyarrhythmias, disability 
via heart failure and, ultimately, cardiovascular death [139] 

← 

70 F11 
1 

[3] 
coagulation factor XI insufficiency provoking spontaneous bleeding and, 

ultimately, disability [140] 
← 

5 
[3] 

increased risks of angioedema provoking hypercapnic coma  in case of 
carbon dioxide poisoning and, as a result, death [141] 

← 

71 FGF1 
6 

[4] 
within a retrospective review of publications on wound healing in rats and 

mice as human disease models, delayed skin wound healing [142] 
← 

5 
[4] 

in human disease models using mice with artificial skin wounds treated 
with bacterial plasmid carrying FGF1 gene, improved wound healing [143] 

→ 

72 FGF3  
within a model of human cord brain injury using zebrafish, inhibited 

formation of so-called "glial bridge" and prevented axon regeneration [144] 
← 

1 
[4] 

within a model of human cord brain injury using zebrafish, improved post-
traumatic neuron regeneration [144] 

→ 

73 FGF4  
within human disease models in vitro, miR-511 inhibits breast cancer 

proliferation and metastasis by down-regulating FGF4 expression [145] 
→ 

2 
[4] 

within a model of  human diseases using mice with artificial brain injury, 
improved post-traumatic neural tissue survival [146] 

→ 

74 FGF5 
1 

[4] 
in human cancer models in vitro using non-small cell lung cancer cells, 

prevented the cancer cell proliferation, migration and invasion [147] 
→ 

1 
[4] 

in human disease models using mice treated with intranasal Aspergillus 
fumigatis, tissue remodeling as complications of chronic inflammation [148] 

← 

75 FGF6 
2 

[4] 
in human disease models using mice at artificial injury treated with 

clodronate-containing liposomes, worsen skeletal muscle regeneration [149] 
← 

1 
[4] 

in human disease models using mice treated with intranasal Aspergillus 
fumigatis, tissue remodeling as complications of chronic inflammation [148] 

← 

76 FGF8 
2 

[4] 
within a model of human diseases using Fgf8-deficient mice, increased 

risks of stress-induced anxiety-like behavior [149] 
← 

4 
[4] 

in human disease models using transgenic mice carrying Fgf8 under mouse 
mammary tumor virus promoter, increased risks of breast cancer [150] 

← 

Genes: DRD2, DRD3, DRD4, and DRD5, dopamine receptors D2, D3, D4, and D5, respectively; ESR2, estrogen receptor 2 (β); F2, F3, F7, F8, F9, and F11, coagulation factors II (synonym: 

thrombin), III (synonyms: thromboplastin, tissue factor), VII (synonym: proconvertin), VIII (synonym: hemophilia A), IX (synonym: hemophilia B), and XI, respectively; FGF1, FGF3, FGF4, 

FGF5, FGF6, and FGF8, fibroblast growth factors 1, 3, 4, 5, 6, and 8, respectively.  
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77 FGF9 
1 

[4] 
in human disease models using young and aged mice carrying artificial 

skin injury, worsen post-traumatic wound healing [151] 
←  

in human male infertility models using adult male mice whos testis were 
injected with lentivirus carrying Fgf9, arrested spermatogenesis [152] 

← 

78 FGF10  
in human newborn model using Fgf10-null mice, a congenital duodenum 

obstruction that needs surgery in just the 1st day of life [153] 
← 

2 
[4] 

in human disease models using young and aged mice carrying artificial 
skin injury, improved post-traumatic wound healing [151] 

→ 

79 FGF11 
1 

[4] 
in human embryogenesis models using mice embryo carrying siRNA-
caused Fgf11-knockdown, hampered forelimb bud development [154] 

← 
1 

[4] 
in human disease models using fibroblast cells embedded into alginate 
scaffold with interconnected pores, better post-injury skin repair [155] 

→ 

80 FGF12 
3 

[4] 
in human embryogenesis models using rats, slowed increase in aversive 

behavior from generation to generation as response to prenatal stress [156] 
→ 

5 
[4] 

within a human subfertile female cohort-based clinical study, raised 
risks of adiposity worsening folliculogenesis & oocyte quality [157] 

← 

81 FGF13 
3 

[4] 
within a model of human diseases using FGgf13-knockout mice, increased 

risks of both obesity and inability to keep core temperature [158] 
← 

4 
[4] 

in human disease models using rats infected with lentivirus carrying 
Fgf13, improved post-injury axon repair, regeneration and regrowth [159] 

→ 

82 FGF14  
in human disease models using  in vivo FGF14-knockdown in adult 

Purkinje neurons, worsen motor activity, coordination and balance [160] 
← 

12 
[4] 

in human tumorigenesis models using lung tumor cells ex vivo, 
improved tumor suppression [170] 

→ 

83 FGF17 
1 

[4] 
in human behavior models using Fgf17-deficient mice, reduced social 

contacts within opposite-sex pairs to explore a novel environment [171] 
← 

2 
[4] 

within a human male cohort-based clinical study, increased risks of 
prostate cancer compared to benign prostatic hyperplasia [172] 

← 

84 FGF18 
1 

[4] 
within a model of human newborn using mice carrying a germline Fgf18-

knockdown: died shortly after birth [173] 
←  

in human behavior models using Fgf18-infusion into mice with cerebral 
ischemia: better cerebral blood flow, memory and motor abilities [174] 

→ 

85 FGF19  
within a human cohort-based clinical study, increased risks of coronary 

artery disease, which severity raises with FGF19-deficit raising [175] 
← 

1 
[4] 

clinical ursodeoxycholic acid treatment reduces both itch and bile acid level 
in intrahepatic cholestasis of pregnancy through FGF19-upregulation [176] 

→ 

86 FGF20 
1 

[4] 
within a model of human health models using Fgf20-deficient mice, 

impaired mammary gland morphogenesis during puberty [177] 
← 

9 
[4] 

in human disease models using rats with artificial brain trauma treated with 
Fgf20 supra-nigral infusion: neuroprotection for fine motor movement [178] 

→ 

87 FGF21  
within a model of human health using muscle-specific Fgf21-null mice, 

reduced risks of muscle loss and weakness during fasting [179] 
→ 

2 
[4] 

clinical valproate treatment against depression improves mood & metabolic 
states simultaneously in patients through FGF21-level increase [180] 

→ 

88 FGF22  
within a cohort-based clinical patient study, increased risks of depression 

[181] 
← 

4 
[4] 

in human chronic unpredictable mild stress models using mice treated with 
injections of lentiviral vector carrying FGF22, alleviated depression [181] 

→ 

89 FGFR1 
3 

[4] 
within a model of human embryogenesis using Fgfr1-null mice, where 
embryos displayed early growth defects and, eventually, lethality [182] 

← 
10 
[4] 

in human disease models using mice with artificial vocal fold injury treated by 
platelet-rich plasma: wound healing without scar due to Fgfr1 upregulation [183] 

→ 

90 FGFR2 
10 
[4] 

within a model of women firtility using defective Fgfr1-mutant female 
mice, increased risks of both subfertility and pregnancy loss [184] 

← 
11 
[4] 

within a cohort-based clinical gastric cancer patient study, higher risks 
of the primary gastric tumors with poor relapse-free survival [185] 

← 

91 FGFR3  
within a model of human diseases using mice carrying fibroblast-specific 

Fgfr3-knockdown, attenuated experimental skin fibrosis [186] 
→ 

8 
[4] 

within a model of human diseases using teratoma-susceptible mice 
strain 129/SvJ, higher risks of mitotic arrest in fetal male germ cells [187] 

← 

92 FGFR4 
4 

[4] 
in human disease models using adult Fgfr4-null mice: increased risks of airway 
inflammation, bronchial obstruction, and right ventricular hypertrophy [188] 

← 
1 

[4] 
within a cohort-based clinical facioscapulohumeral muscular dystrophy 
study, increased risks of both muscle fibrosis and disease severity [189] 

← 

93 FGFRL1 
3 

[4] 
in human embryogenesis models using Fgfrl1-knockout mice, newborn 

lethality through malformed diaphragm & lack metanephric kidneys [190] 
← 

6 
[4] 

within a model of lung cancer using a qPCR-based comparison between 
human’s lung cancer and lung norm cell lines: suppressed metastasis [191] 

→ 

94 FLT1 
3 

[4] 
within a cohort-based clinical study, reduced risks of preeclampsia as one 
of the main causes of maternal and neonatal mortality in the world [192] 

→ 
3 

[4] 
within a cohort-based clinical study, increased risks of preeclampsia as one 

of the main causes of maternal and neonatal mortality in the world [192] 
← 

Genes: FGF9, FGF10, FGF11, FGF12, FGF13, FGF14, FGF17, FGF18, FGF19, FGF20, FGF21, and FGF22, fibroblast growth factors 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, and 22, respectively; FGFR1, 

FGFR2, FGFR3, and FGFR4, fibroblast growth factor receptors 1, 2, 3, and 4, respectively; FGFRL1, fibroblast growth factor receptor like protein 1; FLT1, Fms-related receptor tyrosine kinase 1,.  
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95 FLT4 
2 

[4] 
FLT4-blockade suppresses metastasis of melanoma cells by impaired 

lymphatic vessels [193] 
→ 

11 
[4] 

increased risks of inflammatory neovascularization after injury [194] ← 

96 FLT3LG 
2 

[4] 
within a model of human diseases using Flt2lg-knockout mice: reduced 

severity of artificial hepatic ischemia/reperfusion injury [195] 
→ 

4 
[4] 

in human disease models using artificially burn-injured mice with 
injection of recombinant FLT3LG, resistant to wound infections [196] 

→ 

97 FOS 
4 

[2] 
in human obesity model using mice hypothalamic cells, Fos-inhibitor T-5224 

regains gonadotropin-releasing hormone level as fertility [197] 
→ 

8 
[2] 

improved maturation of oocytes [198] → 

98 GABARAP 
1 

[4] 
within a model of human diseases using adult male rats , reduced both fear-

potentiated startle and fear-memory [199] 
→ 

3 
[4] 

within a model of human diseases using HEK293 cells, 
hypersensitivity to pain caused by physical stimuli [200] 

← 

99 GABARAPL1 
9 

[4] 
in human disease models using rats with low-protein diet during pregnancy and 

lactation, higher risks of arterial hypertension in adult offsprings [201] 
← 

10 
[4] 

within a model of human health using mice performing a low-
intensity running exercise, reduced muscle endurance [202] 

← 

100 
GABARA

PL2 
4 

[4] 
retarded both neutrophilic differentiation and wound healing [203] ← 

10 
[4] 

improved autophagy within odontogenic differentiation of dental 
pulp cells during healing a tooth injury [204] 

→ 

101 GABBR1 
1 

[4] 
within a cohort-based clinical study, incresed risks of schizophrenia , bipolar 

disorder, and major depression [205] 
← 

1 
[4] 

in human disease models using transgenic mice injected with pCI-vector 
(Promega) carrying Gabbr1, reduced pathological pain sensitivity [206] 

→ 

102 GABBR2 
1 

[4] 
within a cohort-based clinical study, incresed risks of schizophrenia , bipolar 

disorder, and major depression [205] 
← 

5 
[4] 

in human disease models using mice with artificial injury of vestibular 
labyrinth and Gabbr2-agonist: accelerated repair of gait and reflexes [207] 

→ 

103 GABRA1 
4 

[4] 
in human disease models using pregnant mice injected with valproic acid as 

autism spectrum disorder inductor: social disorders in offsprings [208] 
← 

4 
[4] 

in human disease models using mutant mice Gabba1:270S>H increasing 
GABA-sensitivity: less body size, motor coordination and viability [209] 

← 

104 GABRA2 
5 

[4] 
in human disease models using mice with artificial sciatic nerve injury 
treated, where Gabra2-antisence worsens pain hypersensitivity [210] 

← 
7 

[4] 
in human behavior models using chronic social defeat stress in male 

mice, increased risks of mixed anxiety/depression-like state [211] 
← 

105 GABRA5 
2 

[4] 
in human behavior models using rats infused with chloroform, increased risks 

of both memory impairment and learned helplessness [212] 
← 

12 
[4] 

within a model of human neuropsychiatric and neurodevelopmental 
disorders using mutant mice, higher risk of anxiety-like behavior [213] 

← 

106 GABRA6 
1 

[4] 
in human pregnancy models using vitamin C-deficient pregnant mice 

supplemented with vitamin C (norm) and without it: higher risk of stillbirths [214] 
← 

6 
[4] 

a cohort-based clinical study of SNPs within miRNAs, norm of 
which represses GABRA6, associated them with panic disorder [215] 

← 

107 GABRB1 
2 

[4] 
within a retrospective review of many cohort-based clinical studies, increased 

risks of epilepsy, autism, bipolar disorder and schizophrenia [216] 
←  

only simultaneous silencing of gabrb1 expression and gabrb1-protein 
inhibition lows the prion protein level in neuroblastoma cells [217] 

← 

108 GABRB2 
3 

[4] 
in human disease models using pregnant mice injected with valproic acid as 

autism spectrum disorder inductor: social disorders in offsprings [208] 
← 

3 
[4] 

in human pregnancy models using rats with artificial flurothyl-induced 
neonatal recurrent seizures: accelerated developing brain injury [218] 

← 

109 GABRB3 
5 

[4] 
within a model of human embryogenesis using Gabrb3-knockout mice, 

increased risks of either newborn lethality or reduced life span [219] 
← 

7 
[4] 

in human disease models using pregnant mice at ethanol diet, higher risk of 
autism-like asocial behavior and memory deficits in male offsprings [220] 

← 

110 GABRD  
within a cohort-based clinical spermatozoa-related study,  

increased risks of male infertility [221] 
← 

1 
[4] 

within a model of human activity-based anorexia using adolescent mice, 
higher risk of stress-caused anxiety and weight loss in adolescence [222] 

← 

111 GABRE 
2 

[4] 
in human pregnancy model using female rats administered with Gabre-

agonist, increased risks of life-threatening respiratory rhythm disorder [223] 
←  

within a model of human pentobarbital side effects using rat neurons 
transfected with adenovirus carrying Gabre, cardioprotection [224] 

→ 

Genes: FLT4, Fms-related receptor tyrosine kinase 4; FLT3LG, Fms-related receptor tyrosine kinase 3 ligand; FOS, AP-1 transcription factor subunit Fos proto-oncogene; GABARAP, gamma-

aminobutyric acid type A (GABA(A)) receptor-associated protein; GABARAPL1 and GABARAPL2, GABA(A) receptor-associated protein like proteins 1 and 2, respectively; GABBR1 and 

GABBR2, GABA(B) receptor subunits 1 and 2, respectively; GABRA1, GABRA2, GABRA5, and GABRA6, GABA(A) receptor subunits α1, α2, α5, and α6, respectively; GABRB1, GABRB2, 

GABRB3, GABRD, and GABRE, GABA(A) receptor subunits β1, β2, β3, δ, and ε, respectively. 
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112 GABRG1  
in human disease models using sodium-butyrate treated mice administered 

with Gabg1-agonist, higher risk of asocial autism-like behavior [225] 
← 

1 
[4] 

within a model of human disease using sodium-butyrate treated 
mice, improved social behavior [225] 

→ 

113 GABRG2 
2 

[4] 
within a model of human diseases using Gabrg2-knockout mice, increased 

risks of asocial depressive behavior [226] 
← 

1 
[4] 

within a model of human diseases using male mice stressed in infant 
age, increased risks of anxiety-like asocial behavior in adult age [227] 

← 

114 GABRG3 
3 

[4] 

within a model of human diseases using mice carrying natural Gabrg3-
deletion, higher risk of both Angelman's and Prader-Willi's syndromes 

[228] 

← 
9 

[4] 
in human disease models using artificial temporal hearing loss in rats, 
increased risks of hyperacusis up to asocial depressive behavior [229] 

← 

115 GABRP 
3 

[4] 
within a cohort-based clinical study of cervical cancer women overexpressing 

microRNA-320c targeting GABRP, reduced risks of metastasis [230] 
→ 

1 
[4] 

within a metastatic xenograft mouse model using human ovarian 
carcinoma SK-OV-3 cells, increased risks of metastasis [231] 

← 

116 GABRR1  
within a model of human behavior using Gabrr1-knockout mice, increased 

risks of mechanical pain hypersensitivity [232] 
← 

1 
[4] 

in human health models using CD34+ cells treated with GABRR1 agonists: 
improved megakaryocyte colonies as sources for platelet in blood [233] 

→ 

117 GABRR2 
1 

[4] 
within a model of human diseases using rats studied with polyclonal 
GABRR2-antibodies: increased threshold for mechanical pain [234] 

→  
within a model of human pregnancy using pregnant rats: improved 
"maternal brain" development and, thus, "maternal behavior" [235]  

→ 

118 GABRR3 
2 

[4] 
within a cohort-based clinical human blood samples study, worsen healing 

of wounds owing to accelerated platelet senescence [236] 
← 

2 
[4] 

in human disease models using mice treated with polyinosinic-
polycytidylic acid, hypersusceptibility to excitotoxic brain insult [237] 

← 

119 GCG 
2 

[3] 
reduced pregnancy rate [238] ←  reduced pregnancy rate [239] ← 

120 GDNF 
1 

[4] 
within a model of human spermatogenesis using mice: hindered 

spermatogonial stem cells self-renewal and impaired fertility [240] 
← 

1 
[4] 

in human spermatogenesis models using mice spermatogonial progenitor 
cells and GDNF: improved proliferation of these cells & male fertility [241] 

→ 

121 GFRA1 
2 

[4] 
in human spermatogenesis models using adult male rats treated with 

pyrethroids: impaired sperm production and development[242] 
← 

1 
[4] 

in human spermatogenesis models using mice pup spermatogonial 
progenitor cells treated with diethylstilbestrol: testicular cancer in adult [243] 

← 

122 GFRA2  
within a model of human diseases using Gfra2-knockout mice,  

impaired gastrointestinal transit rate [244] 
← 

1 
[4] 

within human disease models using mice, improved post-injury survival 
of all motoneurons except oculomotor and abducens nerves [245] 

→ 

123 GFRA3 
1 

[4] 
increased risks of somatosensory system neurodegeneration [246] ←  improved neural regeneration after injury [247] → 

124 GFRA4 
3 

[4] 
within a model of human diseases using GFRA4-knockout mice, calcitonin 

deficit rises prematurely bone formation rate in adolescent [248] 
← 

2 
[4] 

improved neuronal survival and neurite outgrowth [249] → 

125 GH1 
2 

[3] 
increased mortality from cardiovascular disease [250] ← 

2 
[3] 

somatotropin is used as a drug to prolong  
the reproductive age in women [251] 

→ 

126 GJA5 
3 

[3] 
increased risks of the heart morphogenesis disorders, which result in 

arrhythmias and cardiovascular diseases [252] 
←  

increased arteriogenesis as the human body response to a low oxygen 
level at chronic hypoxia [253] 

→ 

127 GMFB 
2 

[4] 
within a model of human diseases using Gmfb-knockout mice, reduced 
neurodegenerative effects on motor coordination in brain injury [254] 

→  
in human disease models using male mice with artificial brain injury: 
increased risks of lung injury as a complication of brain injury [255] 

← 

128 GMFG 
2 

[4] 
within a model of human muscle ischemic injury complications using 

human cardiomyocyte cells, increased risks of necrosis [256] 
← 

4 
[4] 

in women fertility models using both granulosa and theca cells from 
antral bovine follicles, improved ovarian functions [257] 

→ 

Genes:, GABRG1, GABRG2, GABRG3, GABRP, GABRR1, GABRR2, and GABRR3, GABA(A) receptor subunits γ1, γ2, γ3, π, ρ1, ρ2, and ρ3, respectively; GCG, glucagon; GDNF, glial cell 

derived neurotrophic factor; GFRA1, GFRA2, GFRA3, and GFRA4, glial cell line-derived neurotrophic factor receptor α1, α2, α3, and α4, respectively; GH1, growth hormone 1 (synonym: 

somatotropin); GJA5, connexin 40 (synonym: gap junction protein α5); GMFB and GMFG,, glia maturation factor β and γ, respectively.  
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129 GPR18 
2 

[4] 
in human disease models using rats with artificial ischemic stroke 

administered with GPR18-antagonist, worsen post-injury repair [258] 
← 

1 
[4] 

in human disease models using rats with artificial injury treated with 
N-arachidonoyl-serotonin, increased pain sensitivity threshold [259] 

→ 

130 GPR55 
1 

[4] 
within a model of women infertility using female mice administered with 

GPR55-antagonist, impaired oocyte maturation [260] 
← 

4 
[4] 

in human disease models using rats with intravenous administration 
of GPR55-receptor agonist, reduced pain-related behavior [261] 

→ 

131 GPR119 
2 

[4] 
within a model of human diseases using Gpr119-knockout mice: resistant 

to hypophagia due to normalized gut hormone levels and food intake [262] 
→ 

2 
[4] 

in human obesity models using high-fat-fed rats with oral administration 
of GPR119-agonist: reduced both food intake and body weight gain [263] 

→ 

132 GRIA1 
2 

[4] 
within a retrospective clinical cohort-based transcriptome meta-analysis, 

increased risks of polycystic ovary syndrome [264] 
← 

3 
[4] 

in human behavior models using pregnant rats at a high-caloric 
palatable diet, increased risks of anxiety in male offsprings [265] 

← 

133 GRIA2 
7 

[4] 
within a model of human behavior models using Gria2-knockout mice: 

impaired stimulus-reward learning with conditioned stimuli[266] 
← 

10 
[4] 

within a retrospective clinical cohort-based transcriptome meta-
analysis, increased risks of uterine leiomyomas and infertility [267] 

← 

134 GRIA4 
2 

[4] 
within a model of human behavior using Gria4-knockout mice, improved 

spatial working memory and reduced fright behavior [268] 
→ 

6 
[4] 

within a clinical cohort-based transcriptome of postmortem subjects, 
increased risks of major depressive disorder up to suicide [269] 

← 

135 GRIK1 
1 

[4] 
within a model of human behavior using Grik1-knockout mice: reduced 
sensitivity to itching and scratch pain that improves wound healing [270] 

→ 
5 

[4] 
within a model of human behavior using mice treated with 

pharmacological Grik1-activation: pain hypersensitivity [271] 
← 

136 GRIK2 
6 

[4] 
based on a case of father carrying a GRIK2-damage: increased risks of 
stillbirth, miscarriage, as well as son severe intellectual disability [272] 

← 
3 

[4] 
in human behavior model using rats injected with formalin into 

rectum mucosa: hypersensitivity to acute inflammatory pain [273] 
← 

137 GRIK3  
based on a case of girl carrying a GRIK3-damage: increased risks severe 

developmental delay affecting language and fine motor skills [274] 
← 

1 
[4] 

within a clinical cohort-based transcriptome of postmortem subjects, 
increased risks suicide in major depressive disorder [269] 

← 

138 GRIK5 
1 

[4] 
within a model of human aging using mice administered with D-
galactose in order to induce aging artificially: delayed aging [275] 

→ 
3 

[4] 
according to a pharmaceuticals report, γ-aminobutyric acid treats 

bipolar disorder through an GRIK5-upregulation [276] 
← 

139 GRIN1 
1 

[4] 
within a model of human pregnancy using pregnancy rats under artificial 

hypoxia, impaired learning and memory ability in adolescent offspring [277] 
← 

8 
[4] 

in human behavior models using pregnant rats at a high-caloric 
palatable diet, increased risks of anxiety in male offspring [265] 

← 

140 GRIN2A 
2 

[4] 
in human behavior models using mice under scream sound stress during 21 
postnatal days, impaired spatial learning and memory in adult males [278] 

← 
2 

[4] 
in human behavior models using transgene mice overexpressing 

Grin2a in neurons, improved long-term fear memory [279] 
← 

141 GRIN2C 
2 

[4] 
in human pregnancy models using pregnant mice with voluntary alcohol 
drinking, anxiety and learning deficits in adolescent male offspring [280] 

←  
within a model of human disease using mice infused with Grin2C-

agonists, improved motor function [281] 
→ 

142 GRIN2D  
within a model of human behavior using Grin2d-knockout male mice: 

exacerbated negative emotional behavior [282] 
← 

4 
[4] 

within a model of human disease using rats with artificial pulpitis 
with bacterial infection, neuropathic pain hypersensitivity [283] 

← 

143 GRIN3A  
in a model of human drug addiction using Grin3a-knockout mice, no 

cocaine-caused long-term burst firing of dopamine neurons [284] 
→ 

1 
[4] 

increased risks of inattentive behavior [285] ← 

144 GRIN3B  
within a model of human behavior using Grin3b-knockout mice: 
significant impairment in motor learning or coordination [286] 

← 
4 

[4] 
in human behavior models using norm versus Grin3b-knockout mice: 
improved motor learning or coordination and reduced anxiety [286] 

← 

145 GRINA 
3 

[4] 
within a clinical cohort-based pharmacological study, topiramate as a 
drug reduces drug addiction through GRINA-downregulation [287] 

← 
8 

[4] 
within a clinical cohort-based postmortem study, increased risks of 

major depressive disorder [288] 
← 

Genes: GPR18, GPR55, and GPR119, G protein-coupled receptors 18, 55, and 119, respectively; GRIA1, GRIA2, and GRIA4, glutamate ionotropic receptor AMPA type subunits 1, 2, and 4, 

respectively; GRIK1, GRIK2, GRIK3, and GRIK5, glutamate ionotropic receptor kainate type subunits 1, 2, 3, and 5, respectively; GRIN1, GRIN2A, GRIN2C, GRIN2D, GRIN3A and GRIN3B, 

glutamate ionotropic receptor NMDA type subunits 1, 2A, 2C 2D, 3A, and 3B; GRINA, glutamate ionotropic receptor NMDA type subunit associated protein 1. 
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146 GRM1  
within a pharmacological clinical study, isoflurane as a drug protects the 

myocardium against ischemia and injury by upregulating GRM1 [289] 
← 

4 
[4] 

within a clinical cohort-based transcriptome of postmortem subjects, 
increased risks of major depressive disorder up to suicide [269] 

← 

147 GRM2 
1 

[4] 
within a model of human behavior using rats microinjected with GRM2-
antagonist: increased risks of fearful motivation in form of burying [290] 

← 
1 

[4] 
within a model of human diseases using human sensory neurons from 
donors without a history of chronic pain: reduced pain sensitivity [291] 

→ 

148 GRM3 
1 

[4] 
within a model of human behavior using Grm3-knockout mice: increased 
risks of schizophrenia-like hyperactive asocial aggressive behavior [292] 

← 
3 

[4] 
within a model of human behavior using normal mice administered with 

selective negative allosteric Grm3-modulator: worsen learning [293] 
→ 

149 GRM4 
2 

[4] 
weakened microglial inflammation during post-injury brain repair [294] → 

5 
[4] 

increased risks of depression-like behavior [295] ← 

150 GRM5 
2 

[4] 
in human behavior models using mice administered with Grm5-

antagonist: reduced pain sensitivity [296] 
→ 

3 
[4] 

in human behavior models using pregnant rats exposed to repeated 
episodes of restraint stress: reduced stress resilient in adult offspring [297] 

← 

151 GRM7 
3 

[4] 
within a model of men subfertility using adult male Grm7-knockout mice: 

subfertility, lowed insemination capability, excess defective spermatozoa [298] 
← 

6 
[4] 

in human embryo models using Grm7-knockdown pregnant mice injected with 
plasmid carrying Grm7 into fetal brain: ameliorated neurogenesis defects [299] 

→ 

152 GRM8 
4 

[4] 
within a model of human behavior using Grm8-deficient mice: dramatic 

reduction in contextual fear [300] 
→ 

5 
[4] 

in human behavior models using rats exposed with artificial injury and 
Grm8-agonist microinjection into brain: reduced pain sensitivity [301] 

← 

153 GSTM3 
2 

[3] 
increased risk of non-obstructive azoospermia [302] ← 

2 
[3] 

within human diseases model using cows, increased frequency of 
natural fertilization compared to artificial fertilization [303] 

→ 

154 GTPBP6 
3 

[5] 
increased intelligence quotient IQ scores in men [304] that is negatively 
significantly associated with amount of their siblings and cousins [305] 

← 
3 

[5] 
reduced intelligence quotient IQ scores in men [304] that is positively 

significantly associated with amount of their siblings and cousins [305] 
→ 

155 HBB 
9 

[3] 
thalassemia impairs women's reproductive health [306] ←  

within traditional Chinese medicine, Jian-Pi-Yi-Sheng decoction (JPYS) 
rises hemoglobin to treat anemia in chronic kidney diseases [307] 

→ 

156 HBD 
2 

[3] 
thalassemia impairs women's reproductive health [306] ←  within code for hemoglobin subunits α, β [307] → 

157 HBG2 
1 

[3] 
thalassemia impairs women's reproductive health [306] ←  

within traditional Chinese medicine, Jian-Pi-Yi-Sheng decoction (JPYS) 
rises hemoglobin to treat anemia in chronic kidney diseases [307] 

→ 

158 HSD17B1 
3 

[3] 
increased risk of breast cancer [308] ← 

1 
[3] 

increased risk of breast cancer [309] ← 

159 HTR1A 
1 

[4] 
within a model human behavior using Htr1a-knockout mice: increased 

risks of anxiety-like behavior [310] 
← 

1 
[4] 

in human behavior models using chicken embryos exposured with 
corticosterone during incubation: aggressiveness in chicks [311] 

→ 

160 HTR1B  
within a model human behavior using Htr1b-knockout mice: increased 

risks of aggressive behavior [312] 
→ 

3 
[4] 

within human behavior models using transgene mice infected with viral 
vector carrying Htr1b: increased risks of stress-induced anxiety [313] 

← 

161 HTR1F 
1 

[4] 
in human milk feeding baby models using dairy calves fed with milk and 

serotonin precursor: better serotonergic regulation of energy metabolism [313] 
→  

within a model human behavior using rats injected with formalin and, 
next, administered Htr1f-agonist: reduced inflammatory pain [314] 

← 

162 HTR2A 
1 

[4] 
within a model human disease using adipose tissue-specific Htr2a-

knockout mice: resistance to obesity during high-fat diet [315] 
→  

within a clinical cohort-based study, increased risks of hypertrophic 
hearts as the leading cause of sudden death in young athletes [316] 

← 

Genes: GRM1, GRM2, GRM3, GRM4, GRM5, GRM7, and GRM8, glutamate metabotropic receptors 1, 2, 3, 4, 5, 7, and 8, respectively; GSTM3, glutathione S-transferase μ3; GTPBP6, GTP-binding 

protein 6; HBB, HBD, and HBG2, hemoglobin subunits β, δ, and γ2, respectively; HSD17B1, hydroxysteroid 17β dehydrogenase 1; HTR1A, HTR1B, HTR1F, and HTR2A, 5-hydroxytryptamine 

receptor 1A., 1B, 1F, and 2A, respectively. 
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163 HTR2C  
in human health models using neuroblastoma cells treated with psychoactive 
drugs at environmental levels: higher risk of autism spectrum disorders [317] 

← 
1 

[4] 
within a model human behavior using tame and aggressive rats bred 

artificially, inhibited fear-evoked aggressive behavior [318] 
← 

164 HTR3A 
3 

[4] 
increased risks of sudden cardiac death during pregnancy [319] ←  

within a model of human health using mice, improved hippocampal 
neurogenesis and antidepressant effects caused by physical exercise [320] 

→ 

165 HTR3B 
1 

[4] 
within a model of human’s both 'anger-in' and 'anger-out' emotions using 

rats, decreased risks of anger-related resolute behavior [321] 
←  

reduced risks of pulmonary embolism, severe cases of which can lead to 
passing out, abnormally low blood pressure, and sudden death [322] 

→ 

166 HTR3C 
1 

[4] 
within a model of human diseases using HEK293 cell line treated with 

antibody against HTR3C: enhanced aggressive behavior [323] 
→ 

2 
[4] 

within a model of human diseases using HEK293 cell line treated with 
antibody against HTR3C: reduced aggressive behavior [323] 

← 

167 HTR3D 
1 

[4] 
within a model of human diseases using HEK293 cell line treated with 

antibody against HTR3D: reduced aggressive behavior [323] 
← 

2 
[4] 

within a model of human diseases using HEK293 cell line treated with 
antibody against HTR3D: enhanced aggressive behavior [323] 

→ 

168 HTR3E 
4 

[4] 
within a model of human diseases using HEK293 cell line treated with 

antibody against HTR3E: reduced aggressive behavior [323] 
← 

1 
[4] 

within a model of human diseases using HEK293 cell line treated with 
antibody against HTR3E: enhanced aggressive behavior [323] 

→ 

169 HTR4 
2 

[4] 
within a model of human behavior using mice, increased risks of 

depression, anxiety and affective disorders [324] 
← 

13 
[4] 

within a model of human newborns using neonatal calves, improved 
development of the immune system and gastrointestinal tract [325] 

→ 

170 HTR5A  
within a model of human newborns using pregnant Brahman cows under 

stress, elevated temperament scores in male offspring [326] 
→ 

1 
[4] 

within a clinical cohort-based pregnant women study, increased risks of 
fetal growth restriction [327] 

← 

171 HTR7  
within a clinical cohort-based irritable bowel syndrome study, visceral 

abdominal pain hypersensitivity up to sexual disfunction [328] 
← 

1 
[4] 

in human lactogenesis models using pregnant rats under high-fat diet, 
delayed lactogenesis onset leading to mammary gland inflammation [329] 

← 

172 IGF1 
2 

[4] 
within a model of women fertility using Holstein Friesian cows, imbalanced 

transition from pregnancy to lactation up to subfertility in future [330] 
←  

within a model of women fertility using female rats injected with human 
amnion epithelial cells in uterine,  increase pregnancy rate [331] 

→ 

173 IGF2 
2 

[4] 
within bioinformatics retrospective meta-analysis of the public biomedical 
databases, higher risk of diminished ovarian reserve up to subfertility [332] 

← 
1 

[4] 
in women fertility models using IGF2 supplementation in oocyte cultures 

from aged female mice, improved oocyte developmental competence [333] 
→ 

174 IGF1R 
5 

[4] 
within a model of human embryogenesis using  blastocysts from female 

rabbites with artificially induced type 1 diabetes: subfertility [334] 
← 

5 
[4] 

within a model of human embryogenesis using  mice embryos under 
hypoxia: improved symmetric division during embryogenesis [335] 

→ 

175 IL1B 
1 

[3] 
reduced risks of bone marrow hyperplasia and bone deformation in case of 

bacterial invasion [336] 
→ 

1 
[3] 

increased circadian hypersensitivity to pain [337] ← 

176 IL3RA 
2 

[5] 
within a human cancer model using acute myeloid leukemia cells, SS30 

thioaptamer inhibites IL3RA that increases survival [338] 
→ 

3 
[5] 

increased risks of acute myeloid leukemia in children [339] ← 

177 IL6 
3 

[4] 
in human "mother-offspring" relationship models using pregnant pigs under 
alfalfa meal diet reducing IL6 level: more fertility and offspring survival [340] 

→ 
3 

[4] 
in women reproductive ageing models using immune cell populations from 
mice ovaries: accelerated decline in follicle number and oocyte quality [341] 

← 

178 IL6R 
5 

[4] 
within a model of human diseases using transgenic mice under bacterial 
infection: reduced risks of tumorigenesis in chronic inflammation [342] 

→ 
5 

[4] 
within a clinical cohort-based study using peritoneal fluid from patients 
with versus without endometriosis, higher risk of endometriosis [343] 

← 

179 IL6ST 
7 

[4] 
in a model of human diseases using mice, exacerbated inflammatory 
responses that is eventually, increased mortality during sepsis [344] 

← 
8 

[4] 
increases sensitivity to fatigue during submaximal exercise in sedentary 

middle-aged men (i.e., reproductive age men) [345] 
← 

Genes: HTR2C, HTR3A, HTR3B, HTR3C, HTR3D, HTR3E, HTR4, HTR5A, and HTR7, 5-hydroxytryptamine receptors 2C, 3A, 3B, 3C, 3D, 3E, 4, 5A, and 7, respectively; IGF1 and IGF2, insulin-

like growth factors 1 and 2, respectively (synonyms: somatomedin C and preptin, respectively); IGF1R, insulin like growth factor 1 receptor; IL1B, interleukin 1β; IL3RA, interleukin 3 

receptor subunit α; IL6, and IL6R, interleukin 6 (synonym: interferon β2) and its receptor, respectively; IL6ST, interleukin 6 signal transducer. 
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180 IL9R 
1 

[5] 
trophoblast implantation impaired within preeclampsia [346] ← 

1 
[5] 

increased risks of life-threatening anaphylactic shock [347] ← 

181 IL11  
in women fertility models using pregnant mice administered with IL11-

blockator: reduced risks of pregnancy and preserved fertility in cancer [348] 
→ 

5 
[4] 

within a model of women fertility using transgenic female mice: 
enhanced decidualization [349] 

→ 

182 IL11RA  
within a model of women fertility using Il11ra-knockout female mice: 

infertility through impaired decidualization [350] 
← 

7 
[4] 

within a model of human diseases using mice: increased risks of 
osteosarcoma [351] 

← 

183 IL27 
1 

[4] 
within a clinical cohort-based study: increased risks of autoimmunity-

related recurrent pregnancy loss [352] 
← 

1 
[4] 

within a clinical cohort-based study: increased risks of preterm birth 
through excessive inflammatory response in fetal membranes [353] 

← 

184 INS 
1 

[3] 
within a model of human diseases using sheeps, hypoinsulinemia slows 

down fetal growth and development [354] 
← 

2 
[3] 

increased risks of neonatal diabetes mellitus, which can often 
progress to type I diabetes mellitus [355] 

← 

185 KDM5D 
3 

[5] 
increased risks of aggressive prostate cancer [356] ←  increased risks of cardiovascular diseases [357] ← 

186 LEP 
1 

[1] 
increased risks of hypothalamic amenorrhea with dysfunction of 
hypothalamus endocrine axes and, ultimately, subfertility [358] 

← 
1 

[1] 
increased risks of subfertility as an obesity complication [359] ← 

187 LGI4  
within a clinical cohort-based loss-of-functuion LGI4 family study: 

increased risks of arthrogryposis multiplex congenita [360] 
← 

2 
[2] 

within a model of human behavior using tame and aggressive rats: 
increased risks of aggressive behavior [361] 

→ 

188 LIFR  
within a clinical cohort-based infertile versus fertle women study: increased 

risks of infertility [360] 
← 

6 
[4] 

in human disease models using female rhesus macaque administered 
with soluble LIFR: increased risks of blocked ovulation [361] 

← 

189 MBL2 
2 

[3] 
increased risks of recurrent late pregnancy losses at unclear etiology [362] ← 

1 
[3] 

exogenous recombinant human MBL2 is used as a nonspecific 
immunomodulatory within adjuvant therapy against COVID-19 [363] 

→ 

190 MMP12 
2 

[3] 
within models of human diseases using MMP12-knockout mice, low 

differentiation of oligodendrocytes of the central nervous system [364] 
←  trophoblast implantation improved within pregnancy [365] → 

191 MTHFR 
2 

[3] 
increased risks of adverse pregnancy outcomes [366] ← 

4 
[3] 

increased risks of preeclampsia as one of the most challenging 
problems of modern obstetrics [367] 

← 

192 NGFR  
within a model of human embryogenesis using rat embryos: increased risks 

of fetal death [368] 
← 

3 
[1] 

in human disease models using newborn rats administered with 
estradiol valerate: increased risks of infertility in adul [369] 

← 

193 NLGN4Y 
1 

[5] 
increased risks of both primary prostate cancer and its biochemically-

induced recurrence [370] 
← 

2 
[5] 

increased risks of male infertility [371] ← 

194 NOS2  
in a model of human diseases using triple NOS1,2,3-knockout (because of 

their interchangeability) mice, reduced survival and fertility [372] 
← 

1 
[3] 

increased risks of diabetes mellitus in pregnancy, which is 
conventionally considered as pre-diabetes of both type I and II [374] 

← 

195 NPY 
3 

[4] 
in a model of human health using Vgf-knockout mice, small size, low fat 
stores, hypermetabolism, hyperactivity, hypoleptinemia, infertility [375] 

← 
1 

[4] 
within a model of human obese using obese mice ob/ob line, rised 
risks of obesity, type 2 diabetes, and, eventually, subfertility [376] 

← 

196 NPY1R 
7 

[4] 
within a model of human "mother-offspring" relationship using pregnant rats 

under high-fat diet embryos: increased risks of obesity in offspring [377] 
← 

5 
[4] 

within a model of human diseases using streptozotocin-induced type 
I diabetes in male rats: increased risks of type I diabetes [378] 

← 

Genes: IL9R, interleukin 9 receptor; IL11 and IL11RA, interleukin 11 and its receptor subunit α, respectively; IL27, interleukin 27; INS, insulin; KDM5D, lysine demethylase 5D; LEP, leptin; 

LGI4, leucine-rich glioma-inactivated gene 4; LIFR, leukemia inhibitory factor receptor α; MBL2, mannose binding lectin 2; MMP12, matrix metallopeptidase 12 (synonym: macrophage 

elastase); MTHFR, methylenetetrahydrofolate reductase; NGFR, nerve growth factor receptor; NLGN4Y, neuroligin 4 Y-linked;; NOS2, nitric oxide synthase (inducible, hepatocytes, 

macrophage;); NPY, neuropeptide Y; NPY1R, neuropeptide Y receptors Y1. 
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197 NPY2R  
in human disease models using mice with artificial albuminuria treated with 

NPY2R-inhibitor: lesser risks of kidney failure and premature death [379] 
→ 

2 
[4] 

within a clinical cohort-based study: increased risks of depression-like 
behavior, which may be relieved due to antidepressants [380] 

← 

198 NPY4R  
in human newborn models using newborn mice milk-fed with polychlorinated 

biphenyls at environmental levels: anxiety-like behavior in adulthood [381] 
← 

1 
[4] 

within a clinical cohort-based study on NPY4R copy number natural 
variation in-between 2 and 4: increased risks of obesity [382] 

← 

199 NPY5R  
within a model of human obesity using Npy5r-knockout mice at high-fat 
diet with anorectic agents: resistance to anorectic drugs in obesity [383] 

← 
5 

[4] 
within a model of human pregnancy using mid- and late-pregnant rats: 

improved maternal behavior [79] 
→ 

200 NR5A1  gender-specifically increased risks of gonadal dysgenesis in men [384] ← 
4 

[3] 
gender-specifically improved sexual determination/differentiation, 

adrenal and gonadal development in men [385] 
→ 

201 NRG1 
5 

[4] 
within a model of human embryogenesis using tissue-specific Nrg1-

knockout male mice embryos: impaired testis development [386] 
← 

18 
[4] 

in human disease models using juvenile mice administered with 
exogenous NRG1: higher risk of schizophrenia neuropathology [387] 

← 

202 NRG2 
3 

[4] 
within a model of human behavior using Ng2-knockout mice: reduced 

anxiety-like behavior, hyperactivity and prepulse inhibition deficit [388] 
→ 

7 
[4] 

in human behavior models using high- and low-anxious male rats 
according to behavioral tests: higher risk of anxiety-like behavior [389] 

← 

203 NRG3 
3 

[4] 
within a model of human behavior using Nrg3-knockout mice: 

hyperactivity, impaired prepulse inhibition and fear deficiency [390] 
→ 

1 
[4] 

within a model of human spermatogenesis using mice testis fragments 
cultured with NRG3: improved spermatogonia proliferation [391] 

→ 

204 NRG4  
within a model of human obesity using tissue-specific conditional Nrg4-
knockout mice: vascular rarefaction within adipose tissue in obesity [392] 

→ 
2 

[4] 
within a clinical cohort-based women study: increased risks of obesity-

related polycystic ovary syndrome up to subfertility [393] 
← 

205 NRP1 
12 
[4] 

within a model of women reproductive health using tissue-spesific Nrp1-
knockdown mice: impaired ovariogenesis [394] 

← 
16 
[4] 

in human cancerogenesis models using human glioma cells exposed 
with synthetic NRP1-blocking peptides: retarded glioma growth [395] 

← 

206 NRP2 
3 

[4] 
in models of human diseases using NRP2-knockout bladder cancer cell 
lines, improved patient survival in antitumor radiochemotherapy [396] 

→ 
1 

[4] 
increased risks of post-traumatic vascular neointimal hyperplasia [397] ← 

207 NRTN 
2 

[4] 
within a model of human diseases using Nrtn-knockout mice: the enteric 

nervous system defects (e.g., reduced gastrointestinal motility) [398] 
← 

1 
[4] 

in human behavior models using transgenic mice overexpressing Nrtn: 
behavioral hypersensitivity to environmental stimuli [399] 

← 

208 NTF3 
1 

[4] 
within a clinical cohort-based study:  

increased risks of depressive behavior [400] 
← 

3 
[4] 

in human disease models using mice with artificial multiple sclerosis treated 
with full-term human placenta: Ntf3 excess biomarks this disease relief [401] 

→ 

209 NTF4  
within a clinical cohort-based post-mortem brain study:  

increased risks of cognitive impairment [402] 
← 

2 
[4] 

in human "mother-offspring" relationship models using pregnant rats of low 
and high physical activity: improved learning and memory in offspring [403] 

→ 

210 NTRK1 
1 

[4] 
within a clinical cohort-based study of women with silent NTRK1 gene 

versus norm: increased risks of external genital endometriosis [404] 
← 

1 
[4] 

in human pain sensitivity models using mice with artificially induced 
mechanical pain: reduced neuropathic allodynia [405] 

← 

211 NTRK2  
within a model of women reproductive health using mutant Ntrk2-deficient 
female mice: post-pubertal oocyte death and early adulthood infertility [406] 

← 
4 

[4] 
in human "mother-offspring" relationship models using pregnant rats of low & high 

physical activity: tendency to improve learning & memory in offspring [403] 
→ 

212 NTRK3 
3 

[4] 
in human diseases models using Ntrk3-knockout and Ntrk3-excessive mice: loss 

of kidney podocytes that accelerates aging through glomerular disease [407] 
← 

19 
[4] 

in human "mother-offspring" relationship models using pregnant mice infected 
artificially: higher risk of schizophrenia and autism in offspring [408] 

← 

213 OGFR 
1 

[4] 
within a clinical case report on human male newborn carrying loss-of-function 

mutation within OGFR gene:  lifelong inflammation of skin, bowel, & lungs [409] 
← 

4 
[4] 

within a model of human diseases using transgenic mice 
overexpressing Ogfr: impaired wound healing [410] 

← 

214 OPRD1  
within a model of human behavior using Oprd1-knockout mice: increased 

risks of both anxiogenic- and depressive-like behavior [411] 
← 

1 
[4] 

in human men subfertility model using mice sperm incubated with OPRD1-
agonist: reduced both fertilization rate and number of reached blastocysts [412] 

← 

Genes: NPY2R, NPY4R, and NPY5R, neuropeptide Y receptors Y2, Y4, and Y5, respectively; NR5A1, steroidogenic factor 1; NRG1, NRG2, NRG3, and NRG4, neuregulins 1, 2, 3, and 4, 

respectively; NRP1 and NRP2, neuropilin 1 and 2, respectively; NRTN, neurturin; NTF3 and NTF4, neurotrophins 3 and 4, respectively; NTRK1, NTRK2, and NTRK3, neurotrophic receptor 

tyrosine kinase 1, 2, and 3, respectively; OGFR, opioid growth factor receptor; OPRD1, opioid receptor δ1. 
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215 OPRK1 
1 

[4] 
within a model of human behavior using flocks of male starlings during 

the breeding season:  improved sexual/agonistic aggressiveness [413] 
→ 

1 
[4] 

within a clinical cohort-based study:  
increased risks of breast cancer [414] 

← 

216 OPRL1 
1 

[4] 
within a model of human behavior using mice:  

increased risks of fear-related behavior [415] 
← 

1 
[4] 

within a clinical cohort-based study: increased risks of pain 
hypersensitivity [416] 

← 

217 OPRM1 
6 

[4] 
in human behavior models using Oprm1-knockout mice administered 

with morphine as OPRM1-agonist: pain hypersensitivity [417] 
← 

11 
[4] 

in human men subfertility model using mice sperm incubated with OPRD1-
agonist: reduced both fertilization rate and number of reached blastocysts [418] 

← 

218 OSM  
within a model of women fertility using pregnant mice with artificial 

injury in endometrium: reduced fertility [419] 
← 

1 
[4] 

in human disease models using mice with artificial spinal cord injury 
treated with exogenous OSM: improved post-injury recovery [417] 

→ 

219 OSMR 
1 

[4] 
in traditional Chinese medicine, Fei-Yang-Chang-Wei-Yan capsule (FYC) 

reduces OSMR level to treat gastroenteritis and dysentery [420] 
→ 

6 
[4] 

worsened skin wound healing because of severe pruritus [421] ← 

220 OXTR 
1 

[4] 
within a model of human behavior using Oxtr-knockout mice: increased 

intermale aggressive behavior [422] 
→ 

2 
[4] 

in human maternal behavior models using lactating female rats 
versus nulliparous female mice: increased maternal aggression [423] 

→ 

221 PDGFA 
1 

[4] 
in human disease models using mice with artificial atrial fibrillation 
treated with anti-PDGFA antibody: attenuated atrial fibrosis [424] 

→  
in women fertility models using endometrial biopsies from women undergoing 
curettage for benign conditions: improved embryo implantation [425] 

→ 

222 PDGFB 
2 

[4] 
within a clinical cohort-based ovarian ageing study: increased risks of 

diminished ovarian reserve [426] 
← 

6 
[4] 

within a model of human behavior using transgenic mice 
overexpressing Pdgfb: increased risks of locomotor dysfunction [427] 

← 

223 PDGFC 
1 

[4] 
in women subfertility models using mice with artificial intrauterine adhesions 

injected with human amnion epithelial cells: increased pregnancy rate [428] 
→  

within a clinical cohort-based surgical thyroid tissue biopsie study: 
increased risks of papillary thyroid carcinomas [429] 

← 

224 PDGFD 
1 

[4] 
in human disease models using Pdgfd-knockout mice: increased risks of 

cardiac vasculature disorganization and arterial hypertension [430] 
← 

2 
[4] 

within a model of human diseases using transgenic mice 
overexpressing Pdgfd: improved skin wound healing [431] 

→ 

225 PDGFRA 
1 

[4] 
increased risks of skeletal defects in newborns [432] ← 

2 
[4] 

increased risks of fibrotic scar formation in infection and, thereby, 
infertility [433] 

← 

226 PDGFRB 
1 

[4] 
within a model of human diseases using Pdgfrb-deficient mice: worsened 

post traumatic skin wound healing [434] 
← 

6 
[4] 

within a model of women fertility using female goats having whether 
two lambs or one lamb in offspring: improved fertility [435] 

→ 

227 PDGFRL  
in renal cell carcinoma patients, lesser tumor mutation burden with lesser 

risks of worse prognosis, tumor metastasis and development [436] 
→ 

2 
[4] 

increased risks of hypertensive behavior and myocardial hypertrophy 
[437] 

← 

228 PDYN  
in a model of human infertility using Zucker’s fatty female rats, obese 

reduces Pdyn level compared to Zucker’s lean female rats as a norm [438] 
← 

3 
[4] 

prevented behavior of conditioned fear [439] → 

229 PENK 
2 

[4] 
within a model of human behavior using Penk-knockout mice:  

increased risks of anxiety-like behavior in acute stress situations [440] 
← 

11 
[4] 

within a model of woman puberty using pre- and postpubertal female 
cattle: accelerated reproductive maturation [441] 

→ 

230 PGF 
3 

[4] 
within a model of human development using Pgf-knockout mice treated 

with PGF-injections: increased risks of depression-like behavior [442] 
← 

7 
[4] 

within a model of human fertility using female buffaloes injected with 
PGF-analog: increased viable embryos rate [443] 

→ 

231 PGR 
1 

[3] 
within a model of human diseases using PGR-knockout mice, infertility 

through embryo attachment impaired [444] 
← 

1 
[3] 

improved recidive-free survival after an estrogen receptor positive 
breast cancer recovery [445] 

→ 

Genes: OPRK1 and OPRM1, opioid receptor κ1, and μ1, respectively; OPRL1, opioid related nociceptin receptor 1; OSM and OSMR, oncostatin M and its receptor, respectively; OXTR, oxytocin 

receptor; PDGFA, PDGFB, PDGFC, and PDGFD, platelet-derived growth factor subunits A, B, C, and D, respectively; PDGFRA and PDGFRB, platelet derived growth factor receptor α and β, 

respectively; PDGFRL, platelet derived growth factor receptor-like protein; PDYN, prodynorphin; PENK, proenkephalin; PGF, placental growth factor.; PGR, progesterone receptor; 
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232 PLCXD1 
15 
[5] 

increased risks of ischemic stroke and its complications in men of middle 
(reproductive) age [446] 

← 
35 
[5] 

within human cancer models using melanoma cells, transfection of a 
vector with PLCXD1 gene cDNA inhibits their proliferation [447] 

→ 

233 PNOC 
1 

[4] 
within a model of human behavior using adult male mice with artificial 

pain induction: reduced pain sensitivity [448] 
→ 

3 
[4] 

within a model of men embryogenesis using mice embryos: improve 
fetal gubernaculum development and testis descent [449] 

→ 

234 POMC 
4 

[4] 
within a model of human behavior using Pomc-deficient mice: increased 

acute aggressive response to social conflicts [450] 
→ 

1 
[4] 

in human behavior model using mice injected with viral construct carrying 
POMC: reduced both weight gain & adipose tissue reserves [451] 

→ 

235 PPP2R3B 
3 

[5] 
within a model of human diseases using endemic for China carp fish 

Gobiocypris rarus, impaired spermatogenesis [452] 
← 

15 
[5] 

within human cancer models using melanoma cells, transfection of a 
plasmid with the PPP2R3B gene cDNA inhibits their growth [453] 

→ 

236 PROC 
2 

[3] 
increased risks of life-threatening fulminant purpura in newborns [454] ← 

6 
[3] 

within a model of human diseases using mice,  
increased risks of premature pregnancy loss [455] 

← 

237 PSPN  
within a model of human diseases using Pspn-deficient mice: 

hypersensitivity to cerebral ischemia [456] 
← 

1 
[4] 

within a model of human behavior using organotypic spinal cord 
culture: reduced excitotoxic death of motor neurons in overload [457] 

→ 

238 P2RY8 
2 

[5] 
increased risks of acute lymphoblastic leukemia in children [458] ← 

2 
[5] 

increased risk of acute leukemia [459] ← 

239 RET 
3 

[4] 
in human disease models using Ret-knockout mice embryos: non-viability after 
birth via impaired development of the respiratory and nervous systems [460] 

← 
3 

[4] 
within a model of human diseases using transgenic male mice: 

increased risks of men sterility through spermatogenesis defects [461] 
← 

240 RPS4Y2 
1 

[5] 
increased risks of male infertility [462] ←  

increased risks of metabolic fatty liver diseases leading to liver 
cirrhosis and eventually cancer [463] 

← 

241 SHOX 
5 

[5] 
increased risks of disproportionate short stature and Madelung's 

deformity as clubhand [464] 
← 

3 
[5] 

increased risks of pathoembryogenesis [465] ← 

242 SLC6A3 
1 

[4] 
within a model of human behavior using Slc6a3-knockout mice: 

increased risk-taking behavior [466] 
←  

in human behavior models using female mice & their male offspring 
under various diets: higher locomotion level regardless diets [467] 

→ 

243 SLC6A4 
2 

[4] 
in models of human health using SLC6A4-knockout mice, improved both 

neuroplasticity and functioning of the small intestine [468] 
→ 

1 
[4] 

increased risks of depression, anxiety, spatial dullness, and cognitive 
inertia [469] 

← 

244 SLC25A6 
1 

[5] 
increased risks of muscular dystrophy [470] ← 

4 
[5] 

increased resistance to human herpesvirus type 5, which increases 
morbidity and mortality with weakened immunity [471] 

→ 

245 SNCA 
5 

[2] 
within a model of human behavior using Snca-knockout mice: functional 

deficits in the nigrostriatal dopamine system [472] 
← 

3 
[2] 

within a model of human behavior using thransgenic mice 
overexpressing Snca: increased risk of motor deficits [473] 

← 

246 SOD1 
1 

[3] 
decreased sperm motility and fertility in vivo [474] ←  

increased both the bioavailability of copper in the germ cells and their 
protection against copper toxicity and oxidative stress [475] 

→ 

247 SPRY3  enhanced angiogenesis in tumors and cancer [476] ← 
10 
[5] 

gender-specifically increased risks of autism  
among men compared to women [477] 

← 

248 STAR 
1 

[3] 
increased risks of lipoid congenital adrenal hyperplasia [478] ←  increased risks of primary adrenal tumors [479] ← 

Genes: PLCXD1, phosphatidylinositol-specific phospholipase C, X domain containing 1; PNOC, prepronociceptin; POMC, proopiomelanocortin; PPP2R3B, protein phosphatase 2 

regulatory subunit β''β; PROC, protein C (synonym:  inactivator of coagulation factors Va and VIIIa); PSPN, persephin; P2RY8, G-protein coupled purinergic P2Y receptor 8; RET, Ret proto-

oncogene; RPS4Y2, ribosomal protein S4 Y-linked 2; SHOX, short stature homeobox; SLC6A3 and SLC6A4, dopamine and serotonin transporters, respectively; SLC25A6, adenine nucleotide 

translocator 3; SNCA, synuclein α; SOD1, superoxide dismutase 1; SPRY3, sprouty RTK signaling antagonist 3; STAR, steroidogenic acute regulatory protein;. 
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Table S1. Cont. 

# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

249 TAC1 
1 

[4] 
within a model of human reproductive health using Tac1-knockout mice: 

delayed puberty onset [480] 
←  

within a cohort-based human brain tissue  transcriptome study:  
behavioral dysfunction in depression [481] 

← 

250 TAC3  
Tac3 receptor lack mice are subfertilite as a model of human diseases 

[482] 
← 

4 
[4] 

within a model of human fertility using female Damaraland mole-rats, 
antagonized to the socially induced infertility [483] 

→ 

251 TAC4 
1 

[4] 
in human pain behavior models using rats injected with carrageenan: 

hyperalgesia and increased scratching post-injury behavior [484] 
← 

2 
[4] 

within a model of human pain using mice under artificial inflammatory 
orofacial pain: facial hyperallodynia [485] 

← 

252 TACR1  
within a model of human pain using mice Tacr1-knockout mice:  

reduced liver fibrosis and biliary inflammation [486] 
→ 

1 
[4] 

within a model of human pain using mice administered with TACR1-
agonists: advanced puberty onset [487] 

→ 

253 TACR2  
within a model of human pain using mice Tacr2-knockout female mice: 

increased breeding intervals [488] 
← 

1 
[4] 

within a clinical cohort-based study:  
increased risks of recurrent major depressive disorder [489] 

← 

254 TBL1Y  
increased risks of violations of  

both cardiogenesis and heart rate in men [490] 
← 

2 
[5] 

decreased risks of violations of  
both cardiogenesis and heart rate in men [490] 

→ 

255 TGFB1 
2 

[4] 
in men subfertility models using busulfan-treated mice, which were next 

treated with small molecule TGFB1-inhibitor: repaired fertility [491] 
→  

within a clinical cohort-based study:  increased rsks of intervertebral 
disc degeneration [492] 

← 

256 TGFB2 
1 

[4] 
within a model of human diseases using Tgfb2-knockout mice, increased 

risks of perinatal mortality [493] 
←  

impaired neuroregeneration through formation of post-traumatic 
collagen scar during wound healing [494] 

← 

257 TGFB3 
1 

[4] 
within clinical study in assisted reproduction technologies, male 

infertility through reduced semen quality [495] 
← 

1 
[4] 

increased risks of infertility via uterine fibroids impairing 
decidualization [496] 

← 

258 TGFBI 
4 

[4] 
within a model of human health using Tgfbi-deficient mice:  

suppressed tumor growth and metastasis [497] 
→ 

14 
[4] 

within a clinical cohort-based histopathological study:  
increased risks of oral squamous cell carcinoma [497] 

← 

259 TGFBR1 
2 

[4] 
within a model of human diseases using Tgfbr1-knockout mice: severe 

aneurysmal degeneration of thoracic aortas [498] 
← 

4 
[4] 

in human disease models using primary human gingival fibroblasts ex 
vivo: improved neuroregeneration in oral tissue wound healing [499] 

→ 

260 TGFBR2 
2 

[4] 
according to the ClinVar database, increased risks of thoracic aortic 

aneurysm and aortic dissection [500] 
←  

within a clinical cohort-based nasopharyngeal carcinoma tissue study:  
suppressed nasopharyngeal carcinoma progression [501] 

→ 

261 TGFBR3 
2 

[4] 
within a model of human diseases using old male mice under maxillary 

molar tooth extractions: slowed oral cavity wound healing [502] 
← 

2 
[4] 

within a model of human diseases using rats with grafts: accelerated 
wound healing due to increased vascularization[504] 

→ 

262 TH 
1 

[2] 
within a model of women reproductive health using female rats with 

small litters compared with those with normal litters: subfertility [505] 
←  

in human disease models using colitis rats treated with electroacupuncture: 
reduced pain hypersensitivity due to suppressed Th expression [506] 

← 

263 THBD 
1 

[3] 
increased risks of placental insufficiency and fetal loss [507] ←  

exogenous recombinant soluble human thrombomodulin is widely used 
as a drug against disseminated intravascular blood coagulation [508] 

← 

264 TMSB4Y  increased risks of prostate cancer [509] ← 
1 

[5] 
gender-specific improved tumor suppression in men [510] → 

265 TPH2  
within a model of human newborn using Tph2-knockout mice: increased 

risks of mortality in childhood [511] 
← 

1 
[4] 

within a model of human behavior using transgenic mice: reduced 
aggressiveness [512] 

← 

Genes: TAC1, TAC3, TAC4, TACR1, and TACR2, tachykinin precursors 1, 3, 4, as well as receptors 1 and 2, respectively; TBL1Y, transducin β like 1 Y-linked; TGFB1, TGFB2, and TGFB3, transforming 

growth factors β1, β2, and β3, respectively; TGFBI, kerato-epithelin (synonym: as transforming growth factor β induced); TGFBR1, TGFBR2, and TGFBR3, transforming growth factor β receptor 1, 

2, and 3, respectively; TH, tyrosine hydroxylase; THBD, thrombomodulin; TMSB4Y, thymosin β4 Y-linked; TPH2, tryptophan hydroxylase 2. 
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# 
Human 

Gene 

Deficit (↓) Excess (↑) 

NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 

266 TPI1 
2 

[3] 
within a model of human diseases using mice,  

increased risks of asthenospermia [513] 
←  

increased risks of intrahepatic cholangiocarcinoma as the second most 
common primary tumor leading to liver cancer [514] 

← 

267 TSPY2 
1 

[5] 
increased risks of male infertility [515] ← 

2 
[5] 

increased risks of testicular maturation arrest [515] ← 

268 TSPY4  increased risks of spermatogenesis disorders [516] ← 
1 

[5] 
a synthetic agonist of gonadotropin-releasing hormone as a drug for 

male infertility increases TSPY4 level [516] 
→ 

269 USP9Y  
within a model of human diseases using mice,  

reduced sperm quality [517] 
← 

1 
[5] 

increased risk of de novo heart failure in men [518] ← 

270 UTY 
1 

[5] 
within a model of human diseases using mice, increased risks of 

developmental defects in male embryos [519] 
←  

gender-specifically improve neurogenesis within the treatment of the 
nervous system in men [520] 

→ 

271 VAMP7 
4 

[5] 
increased overall survival of patients with esophageal 

adenocarcinoma [521] 
← 

9 
[5] 

within a model of human diseases using mice,  
increased risks of subfertility [522] 

← 

272 VEGFA 
4 

[4] 

within a clinical cohort-based study: antioxidant treatment with N-
acetylcysteine protect ovarian follicles from ischemia-reperfusion 

injury due to reduced VEGFA expression [523] 

→ 
20 
[4] 

within a model of human diseases using rats with artificial wounds: 
improved skin wound healing[524] 

→ 

273 VEGFB  
within a model of human embryogenesis using Vegfb-knockout 

mice: embryonic lethality [525] 
← 

2 
[4] 

within a model of human embryogenesis using mice under 
intracerebroventricular VEGFB administration: improved 

neurogenesis when brain injury causes central neuronal loss [526] 

→ 

274 ZBED1 
1 

[5] 
increased risks of subfertility through adenovirus excess within 

spermatozoa in the later stages of infection [527] 
← 

11 
[5] 

increased risks of subfertility through adenovirus excess within 
spermatozoa in the early stages of infection [527] 

← 

275 ZFY  
within a model of human diseases using bulls,  

reduced spermatozoa motility [528] 
← 

2 
[5] 

increased risks spermatocyte meiosis arrests leading to their 
apoptosis, azoospermia and, ultimately, infertility [529] 

← 

Genes: TPI1, triosephosphate isomerase 1; TSPY2 and TSPY4, testis specific protein Y-linked 2 and 4, respectively; USP9Y, ubiquitin specific peptidase 9 Y-linked; UTY, ubiquitously 

transcribed tetratricopeptide repeat containing, histone demethylase UTY Y-linked; VAMP7, vesicle associated membrane protein 7 (synonym: synaptobrevin-like protein 1); VEGFA and 

VEGFB, vascular endothelial growth factor A and B, respectively; ZBED1, DNA replication-related element binding factor; ZFY, Zinc-finger protein Y-linked. 
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