

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Childhood obesity is negatively associated with completed educational level independent of socioeconomic status: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040432
Article Type:	Original research
Date Submitted by the Author:	13-May-2020
Complete List of Authors:	Lindberg, Louise; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Persson, Martina; Karolinska Institute, Department of Medicine, Clinical Epidemiology, Karolinska Institutet; Liljeqvist, Pernilla; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Hagman, Emilia; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Marcus, Claude; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, Paediatric endocrinology < PAEDIATRICS, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	Childhood obesity is negatively associated with completed
5 6 7	2	educational level independent of socioeconomic status: a
8 9 10	3	prospective cohort study
11 12 13	4	
14 15	5	Louise Lindberg ¹ , Martina Persson ^{2,3,4} , Pernilla Danielsson ¹ , Emilia Hagman ^{1*} , Claude
16 17 18	6	Marcus ¹
19 20 21	7	
22		
23	8	¹ Department of Clinical Science, Intervention and Technology, Division of Pediatrics,
24 25	9	Karolinska Institutet, Stockholm, Sweden
26	10	² Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet,
27 28	11	Stockholm, Sweden
29	12	³ Department of Diabetes and Endocrinology, Sachsska Children's Hospital Södersjukhuset,
30 31 32	13	Stockholm, Sweden
33	14	⁴ Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet,
34 35	15	Stockholm, Sweden
36 37	16	*Corresponding author e <u>-mail: emilia.hagman @ki.se</u> (EH)
38	17	Other contributing authors e-mail: louise.lindberg@ki.se ;

21 Abstract

Objectives

Children with obesity achieve lower educational level compared with normal-weight peers.
Parental socioeconomic status (SES) impacts both a child's academic achievement and risk
of obesity. The degree to which the association between obesity and education depend on
parental SES is unclear. Therefore, the primary aim is to investigate if individuals with
obesity in childhood are less likely to complete ≥12 years of schooling, independently of
parental SES. The secondary aim is to study how weight loss, level of education, and parental
SES are associated.

31 Methods

In this nationwide prospective cohort study, children aged 10-17 years, recorded in the Swedish Childhood Obesity Treatment Register (BORIS), and aged 20 years or older at follow-up were included (n=3,942). A comparison group was matched by sex, year of birth, and living area (n=18,728). Parental SES was based on maternal and paternal level of education, income, and occupational status. The main outcome, completion of \geq 12 years of schooling, was analysed with conditional logistic regression, and adjusted for group, migration background, ADHD/ADD, anxiety/depression, and parental SES.

Results

Among those with obesity in childhood, 56.7% completed ≥ 12 years in school compared with 74.4% in the comparison group (p<0.0001). High parental SES compared to low SES

was strongly associated with attained level of education in both children with and without
obesity, adjusted odds ratio (^aOR) [99% confidence interval (CI)]=5.40 [4.45 to 6.55].
However, obesity in childhood remains a strong risk factor of completing ≥12 school years,
independently of parental SES, ^aOR=0.57 [0.51 to 0.63]. Successful obesity treatment
increased the odds of completing ≥12 years in school even when taking parental SES into
account, ^aOR=1.34 [1.04 to 1.72].

Conclusions

Individuals with obesity in childhood have lower odds of completing ≥12 years of schooling,
independently of parental SES. Optimized obesity treatment may improve school results in
this group.

55 Article summary / Strengths and limitation of this study

- In this prospective cohort study, we have been able to investigate the level of education among a large number of individuals who have obesity in childhood (n= 3,942) in comparison with a matched group (n=18,728).
- The study design of using longitudinal data from several national registers provided the opportunity to control for important confounding factors, such as neuropsychiatric disorders, anxiety, depression and family socioeconomic status.
 - Factors such as free education, school lunches, and students' health care may have an impact on the generalizability of our data to other populations.

65 Introduction

During the last 40 years, the prevalence of childhood obesity has increased exponentially in many parts of the world.¹ Childhood obesity is associated with increased risks of somatic morbidity and risk of premature death in adulthood.²⁻⁵ Psychosocial maladjustment, anxiety and depression are also prevalent⁶⁷ and may contribute to the obesity-related long-term morbidity and mortality.⁵ Most studies report that children with obesity more often have lower school grades and reach a lower level of education compared with normal-weight peers,⁸⁻¹⁰ but in a recent study, only girls with obesity were affected.¹¹ We have previously confirmed the association between obesity and lower attained level of education among both girls and boys.⁹ We also found that successful obesity treatment was positively correlated with completing ≥ 12 school years, although without taking socioeconomic status (SES) into account.9

Low parental SES is a well-established risk factor for both childhood obesity and poorer academic achievement.¹² In particular, parental education has been demonstrated to influence the child's performance at school.¹³⁻¹⁵ In addition, depression¹⁶ and neuropsychiatric disorders, including Attention Deficit Disorder with or without Hyperactivity (ADHD/ADD),¹⁷ may adversely affect school results. Depression and neuropsychiatric disorders are more common in children with obesity compared to the general population.⁹¹⁸. Investigating the impact of obesity alone on attained level of education requires that these and other confounders are considered. The primary aim of this study was to disentangle the association of childhood obesity and parental SES on completed level of education. The

secondary aim was to study if positive effects of weight loss on attained level of education isaffected by parental SES.

Methods

89 Study population

This prospective cohort study included children with obesity,¹⁹ aged 10-17 years at the start of obesity treatment (December 1994 to December 2015), and aged 20 years or older and living in Sweden at follow-up (December 31st 2017; n=3,942). Data on subjects receiving treatment for childhood obesity was collected from the Swedish Childhood Obesity Treatment Register (BORIS). BORIS has been thoroughly described elsewhere.²⁰ but in short: The main purpose of the register is quality assessment and long-term evaluation of childhood obesity treatment. Treatment is individualized and consists primarily of lifestyle modification (i.e. diet and physical activity).

A comparison group from the general population was randomly identified using the Swedish Total Population Register and matched by sex, year of birth, and living area at the year obesity treatment was initiated (n=18,728). Using density matching without replacement, five individuals were matched to each individual from the childhood obesity cohort. Siblings of children registered in the childhood obesity cohort were excluded from the comparison group. Children with a diagnosis of mental retardation or genetic syndromes were excluded from both the childhood obesity cohort and the comparison group (Fig 1 and S1 Table).

106 Fig 1. Participant flowchart.

BMJ Open

Families were informed in written or verbal about data collection in the Swedish Childhood Obesity Treatment Register. Post an opt-out approval by parents/guardians, data of the children's weight and height were recorded by the local health care provider during treatment visits. There was no data of weight and height of individuals in the comparison group. However, less than 1% of the individuals in the comparison group were found in the National Patient Register with a diagnosis of obesity in childhood. In Sweden, health care is free of charge for children and adolescents until 18 years of age. The study was approved by the regional Ethics Committee in Stockholm, Sweden (No. 2016/922-31/1).

115 Data sources

Using the Swedish identity number, which is unique to each resident in Sweden, data from several national registers were linked ²¹. Data on education, income, and occupational status were obtained from the Longitudinal Integration Database for Health Insurance and Labour Market Studies. Information on migration background for children and their parents was obtained from the Swedish Total Population Register ²². Both these registers are held by Statistics Sweden, a governmental agency that collects and provide official statistics (www.scb.se/en).

Data on diagnoses of mental retardation, genetic syndromes, ADHD/ADD, anxiety, and depression were identified based on codes according the International Classification of Diseases (10th revision; S1 Table) and retrieved from the National Patient Register ²³. Information on prescriptions of psychostimulant drugs for ADHD/ADD as well as antidepressants and tranquilizers for anxiety and depression were identified using the Anatomical Therapeutic Chemical classification system (S1 Table) retrieved from the

Swedish Prescribed Drug Register ²⁴. Data on deaths were retrieved from the Cause of Death
Register ²⁵. These registers are held and were linked by the governmental agency the National
Board of Health and Welfare (www.socialstyrelsen.se/english).

Definition of outcome

The main outcome was defined as completion of ≥ 12 years of schooling, and based on the International Standard Classification of Education ²⁶. In Sweden, children start school at the age of 6 or 7 years and attend compulsory school for 9 years. Upper secondary school includes three additional years of schooling and provides the requirements to attend higher education. Usually students graduate from secondary school at 18 or 19 years of age. All education in Sweden is free of charge. Students in compulsory and upper secondary school are provided school lunches and health care at schools, also free of charge.

Definition of main exposures

Body Mass Index Standard Deviation Score (BMI SDS) is standardized by sex and age and used to measure degree of obesity in growing children ¹⁹. Baseline measures (continuous) were used for the variable BMI SDS at start of treatment. Response to obesity treatment was based on the change of BMI SDS from the first to the last clinical visit and categorized into four groups ^{27 28}: good response, a reduction of BMI SDS by 0.25 units or more; no response, a change of BMI SDS by +/- 0.25 units; poor response, an increase of BMI SDS by 0.25 units or more; and dropouts, children with less than one year between their first and last measure or without clinical follow-up after their first registered visit.

Page 9 of 35

BMJ Open

Parental SES was based on maternal and paternal level of education, income, and occupational status at the year the child turned 15 years, which is about the same time as the child starts upper secondary school. In case of the child was adopted, the SES of adoptive parents was used (childhood obesity cohort n=24 and comparison group n=164). The rationale of treating SES as a composite variable was to capture more of the social context and a potential inequality embedded there. Thus, by taking three variables into account instead of one, we get a more wide and robust measure of SES. Maternal and paternal educational level was categorized into compulsory school, upper secondary school, or university degree. Annual disposable income was used to reflect maternal and paternal economic capacity. The annual disposable income includes all taxable (direct labour income, capital gains from shares etc.) and tax-free income (housing and child benefits, student aid etc.), minus final tax and other negative transfers such as capital loss from shares and properties. Disposable income from different years was converted to 2017 prices using the Consumer Price Index for Sweden provided by Statistics Sweden (www.scb.se/en). Income was categorized into quartiles based on data from the parents in the comparison group. No occupation was defined as either unemployment 6 months or more, or income from long-term sick leave exceeding any income from the individual's gross salary. Individuals considered to have an occupation included those registered as employed or having an income from student grants/loan equivalent to full-time studies for at least one semester. Parental SES was weighted according to maternal and paternal education (0, 1, 2), income (0, 1, 2, 3), and occupational status (0, 1). The mean parental SES score (i.e. the sum of the mother's and father's all SES indicators divided by two) was applied to their child. The SES-variable was

171 categorized into four levels; low SES (0 to 1.5 points), medium-low SES (2 to 3 points),

172 medium-high SES (3.5 to 4.5 points), and high SES (5 to 6 points).

The prevalence of both ADHD/ADD ⁹ and depression ¹⁸ is higher in children with obesity and may negatively influence attained level of education ⁹ ¹⁶ ¹⁷. ADHD/ADD and anxiety/depression in children were identified based on diagnosis or dispensed prescribed medication (S1 Table).

Definition of covariates

The migration background of children in Sweden may impact school achievements and is therefore an important factor to control for in the analyses ⁹¹⁴. Migration background was categorized as Nordic or non-Nordic. Nordic was defined as born in a Nordic country (Sweden, Norway, Denmark, Finland, or Iceland) with one or two parents born in the Nordic. Children were classified as non-Nordic if born outside the Nordic or born in the Nordic with two parents born outside the Nordic. Other covariates included sex and age (continuous) at start of obesity treatment.

185 Statistical analysis

186 Descriptive statistics are presented as means and confidence intervals (CI), medians and 187 interquartile ranges (IQR), or frequencies and percentages. Conditional logistic regression 188 was used to calculate odds ratios (OR's) with 99% CI for the main outcome, i.e. completing 189 \geq 12 school years. Conditional logistic regression was used above ordinary logistic regression 190 as the childhood obesity cohort and the comparison group were matched by several variables. 191 Independent variables included in the adjusted analyses were migration background,

BMJ Open

ADHD/ADD, anxiety/depression, parental SES, and group (childhood obesity cohort or comparison group) in analyses including both groups, otherwise stratified by group. Interaction between childhood obesity and parental SES was tested. The association of each SES indicator on the odds of completing ≥12 school years was also analysed separately for mothers and fathers. Sensitivity analyses excluding individuals with ADHD/ADD or anxiety/depression were performed.

198 Secondary analyses were performed within the childhood obesity cohort to examine 199 associations between patient characteristics and completed educational level. In ordinary 200 logistic regressions, odds were adjusted for sex, migration background, parental SES, age 201 and BMI SDS at start of treatment, treatment response, ADHD/ADD, and 202 anxiety/depression. We tested for possible interaction between parental SES and treatment 203 response for the odds of completing \geq 12 years of schooling.

As missing data on parental SES was rare in both groups (Table 1), records with missing data were excluded from the analyses, i.e. data were not imputed. P-values <0.01 were considered statistically significant. All analyses were performed using SAS statistical software (version 9.4, Cary, NC, USA).

Table 1. Characteristics of the participants (n=22.670)

		Childho (n=3,94	ood obesity cohort	Compar (n=18,7	rison grou 728)
		n	%	n	%
	Female sex	1,825	46.3	8,701	46.5
	Nordic	2,905	73.7	14,048	75.0
	Age at end of follow-up (years)	23.4*	21.4-26.3*	23.4*	21.5-26.1
	ADHD/ADD	617	15.7	1,044	5.6
		831	21.1	2,158	11.5
	Anxiety/Depression Parental SES	651	21.1	2,138	11.5
		0.67	22.0	2 700	14.4
	Low	867	22.0	2,700	14.4
	Medium-low	1,540	39.1	6,023	32.1
	Medium-high	1,159	29.4	6,587	35.2
	High	355	9.0	3,218	17.2
	Missing	21	0.5	200	1.1
	Maternal education				
	Compulsory school	1,582	40.1	5,615	30.0
	Upper secondary school	1,541	39.1	7,167	38.3
	University degree	730	18.5	5,383	28.7
	Missing	89	2.3	563	3.0
	Paternal education	07	2.3	505	5.0
		1.072		4 402	22.5
	Compulsory school	1,273	32.3	4,402	23.5
	Upper secondary school	1,890	48.0	9,095	48.6
	University degree	482	12.2	3,912	20.9
	Missing	297	7.5	1,319	7.0
	Maternal income				
	Q1	1,173	29.8	4,887	26.1
	Q2	1,281	32.5	5,843	31.2
	Q3	931	23.6	4,585	24.5
	Q4	486	12.3	2,988	15.9
	Missing	71	1.8	425	2.3
	Paternal income	/ 1	1.0	423	2.5
	Q1	1,127	28.6	3,917	20.9
	Q2	760	19.3	3,128	16.7
	Q3	889	22.5	4,389	23.4
	Q4	864	21.9	5,986	32.0
	Missing	302	7.7	1,308	7.0
	Maternal occupational status				
	Occupation	2,963	75.2	15,405	82.2
	No occupation	916	23.2	2,956	15.8
	Missing	63	1.6	367	2.0
	Paternal occupational status				
	Occupation	2,868	72.8	14,906	79.6
	No occupation	800	20.3	2,627	14.0
	Missing	274	6.9	1,195	6.4
	Data are n % if not else stated		ion: SES, socioecono	omic statu	s; Q, quar
	*Median with interquartile ra	nges			
;	`				
)					
ļ					
			11		

Results

In total, 3,942 individuals in the childhood obesity cohort and 18,728 individuals in the comparison group were included in the study (Table 1). In both groups, 46% of the participants were girls and the median age at follow-up was 23.4 years. The proportions of individuals of Nordic origin were similar in both groups (73.7% vs. 75.0%; p=0.02). Despite the groups being matched for living area, a greater proportion of children with obesity grew up in households with low SES compared with the comparison group (22.0% vs. 14.4%; p<0.0001).

Parental SES, childhood obesity and the child's attained level of education

In the childhood obesity cohort, 56.7% completed ≥12 years in school, compared with 74.4%
in the comparison group. Girls more frequently completed ≥12 years of schooling than boys
in both groups (S2 Table).

Higher parental SES was positively associated with completion of ≥12 years of schooling in
both the childhood obesity cohort and in the comparison group (Fig 2). The odds were more
than five times higher among children growing up in high SES households compared with
those growing up in low SES households (Table 2). However, even when taking parental
SES and other risk factors into account, individuals in the childhood obesity cohort were
almost half as likely to complete ≥12 school years compared with those in the comparison
group (Table 2). The adjusted odds ratio (^aOR) [99% CI] to complete ≥12 years of schooling

for the childhood obesity cohort versus the comparison group were lower in the higher level of SES: ^aOR low parental SES = 0.69 [0.50 to 0.95], p=0.0026; ^aOR medium-low parental SES = 0.59 [0.48 to 0.72], p<0.0001; aOR medium-high parental SES = 0.46 [0.35 to 0.60], p < 0.0001; ^aOR high parental SES = 0.27 [0.14 to 0.54], p < 0.0001. P-value for interaction test for childhood obesity and parental SES reaches a p of 0.0015. The association of parental SES on school performance was more pronounced in the comparison group than in the childhood obesity cohort. For example, stratified analyses show that adjusted OR of completing ≥ 12 years in school in low SES compared with high SES in the comparison group was 0.17 (99% CI 0.14 to 0.21, p<0.0001) and in the childhood obesity

cohort 0.31 (99% CI 0.22 to 0.45, p<0.0001). Regardless of how we divide the childhood
obesity population (into age- or calendar year at start of obesity treatment, SES sub-scores),

247 large differences between the two groups remain (Table 2 and S3 Table).

Fig 2. Percentage of individuals completing ≥12 years of schooling by SES level in the
childhood obesity cohort (n=3,921, solid bars) and the comparison group (n=18,528,
dotted bars).

BMJ Open

Table 2. Crude and adjusted odds ratio (99% CI); p-value of subjects completing ≥12 years of schooling

	Table 2. Crude and aujusted odds rat	10 (>> /0 CI), p-value of	subjects completing -1				
2		Crude estimates	Model 1, n=22 449	Model 2, n=20 610	Model 3, n=20 691	Model 4, n=20 885	Model 5, n=20 420
3	Childhood obesity cohort vs. comparison group	0.44 (0.40 to 0.48); <0.0001	0.57 (0.51 to 0.63); <0.0001	0.55 (0.50 to 0.62); <0.0001	0.54 (0.48 to 0.61); <0.0001	0.53 (0.48 to 0.59); <0.0001	0.59 (0.52 to 0.66); <0.0001
4	Non-Nordic vs. Nordic	0.70 (0.63 to 0.78); <0.0001	0.85 (0.75 to 0.97); 0.001	0.77 (0.67 to 0.88); <0.0001	0.87 (0.76 to 0.99); 0.0068	0.81 (0.71 to 0.92); <0.0001	0.97 (0.84 to 1.12); 0.5687
	ADHD/ADD vs. non-ADHD/ADD	0.19 (0.17 to 0.23); <0.0001	0.28 (0.24 to 0.33); <0.0001	0.27 (0.22 to 0.33); <0.0001	0.27 (0.22 to 0.32); <0.0001	0.26 (0.22 to 0.31); <0.0001	0.28 (0.23 to 0.34); <0.0001
5	Anxiety/depression vs. no anxiety/depression	0.31 (0.27 to 0.35); <0.0001	0.39 (0.34 to 0.45); <0.0001	0.36 (0.31 to 0.41); <0.0001	0.38 (0.33 to 0.44); <0.0001	0.39 (0.33 to 0.44); <0.0001	0.36 (0.31 to 0.42); <0.0001
6	Parental SES						
7	Medium-low vs. low parental SES	1.74 (1.54 to 1.97); <0.0001	1.69 (1.48 to 1.93); <0.0001				
8	Medium-high vs. low parental SES	3.33 (2.92 to 3.81); <0.0001	2.99 (2.59 to 3.45); <0.0001				
9	High vs. low parental SES	6.21 (5.19 to 7.44); <0.0001	5.40 (4.45 to 6.55); <0.0001				
10	Maternal education						
	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.08); <0.0001		1.63 (1.45 to 1.83); <0.0001			1.51 (1.34 to 1.71); <0.0001
11	University degree vs. compulsory school	3.23 (2.86 to 3.66); <0.0001		2.45 (2.12 to 2.83); <0.0001			2.17 (1.87 to 2.53); <0.0001
12	Paternal education						
13	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.09); <0.0001		1.58 (1.40 to 1.77); <0.0001			1.42 (1.26 to 1.60); <0.0001
14	University degree vs. compulsory school	3.07 (2.66 to 3.55); <0.0001		2.09 (1.77 to 2.45); <0.0001			1.81 (1.53 to 2.15); <0.0001
15	Maternal income						
	Q2 vs. Q1	1.28 (1.15 to 1.43); <0.0001			1.25 (1.10 to 1.41); <0.0001		1.07 (0.93 to 1.23); 0.2065
16	Q3 vs. Q1	1.45 (1.28 to 1.63); <0.0001			1.35 (1.17 to 1.55); <0.0001		1.05 (0.90 to 1.23); 0.4224
17	Q4 vs. Q1	1.86 (1.60 to 2.15); <0.0001			1.52 (1.28 to 1.81); <0.0001		1.07 (0.88 to 1.28); 0.3831
18	Paternal income						
19	Q2 vs. Q1	1.36 (1.19 to 1.55); <0.0001			1.31 (1.13 to 1.51); <0.0001		1.07 (0.91 to 1.26); 0.2740
20	Q2 vs. Q1 Q3 vs. Q1	1.90 (1.67 to 2.17); <0.0001			1.70 (1.48 to 1.96); <0.0001		1.24 (1.05 to 1.46); 0.0009
	Q4 vs. Q1	2.95 (2.58 to 3.36); <0.0001			2.47 (2.13 to 2.86); <0.0001		1.58 (1.33 to 1.88); <0.0001
21		2.95 (2.56 to 5.50), <0.0001			2.47 (2.15 to 2.80), <0.0001		1.56 (1.55 to 1.66), <0.0001
22	Maternal occupational status						
23	Occupation vs. no occupation	2.15 (1.92 to 2.40); <0.0001				1.72 (1.51 to 1.96); <0.0001	1.38 (1.19 to 1.61); <0.0001
24	Paternal occupational status						
25	Occupation vs. no occupation	2.24 (1.99 to 2.52); <0.0001				1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
26	Abbreviations: CI, confidence interval;	SES, socioeconomic stati	15.				
27	Model 1: Variables included were group	(childhood obesity coho	ort vs. comparison group)	migration background.	ADHD/ADD, anxietv/de	pression, and parental SH	ES
	Model 2: Variables included were group						
28			-	-			
29	Model 3: Variables included were group	o, migration background,	ADHD/ADD, anxiety/de	epression, maternal-, and	paternal income		
30	Model 4: Variables included were group	, migration background,	ADHD/ADD, anxiety/de	epression, maternal-, and	paternal occupational sta	atus.	
31	Model 5: Variables included were group	migration background	ADHD/ADD anxiety/de	epression maternal- and	paternal education inco	me and occupational stat	118
32		,,			p		
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43				14			
44				= ·			
45		For peer rev	/iew only - http://bmjop	en.bmj.com/site/about/	/guidelines.xhtml		
45		· [2	,	.		
47							

Of note, having a non-Nordic-, compared to a Nordic background, was associated with reduced odds to complete 12 or more years of schooling (Table 2). This was however not observed in boys in the childhood obesity cohort (p=0.68). Further, excluding individuals with ADHD/ADD or anxiety/depression in sensitivity analyses, did not alter the association between childhood obesity and attained level of education.

258 Degree of obesity and treatment response on completed

259 educational level in children with obesity

In the childhood obesity cohort, the mean age at start of treatment was 13.5 years (99% CI: 13.45 to 13.62) and the mean BMI SDS was +2.91 (99% CI: 2.89 to 2.92). The median treatment duration was 2.83 years (IQR: 1.86 to 4.42) and the mean treatment response, calculated using BMI SDS from the first to the last clinical visit, was -0.13 (99% CI: -0.15 to -0.10, n=2,709, 68.7%, dropouts excluded). At baseline, 50.7% had obesity and 49.3% had morbid obesity. At last measured weight and height, 33.4% had obesity and 47.2% had morbid obesity, while 19.4% of the children no longer had obesity (dropouts excluded).

A greater degree of obesity at start of treatment lowered the odds of completing ≥ 12 years of schooling, ${}^{a}OR$ [99% CI] = 0.51 [0.40 to 0.64], p<0.0001, per one unit increase in BMI SDS, while age at start of obesity treatment did not influence the outcome (Table 3). Treatment response was categorized as good response (n=847), no response (n=1 315), poor response (n=547), and dropouts (n=1,233). Of those with good treatment response, 67% completed \geq 12 years in school compared with 58%, 52%, and 50% in the groups with no or poor response, and dropouts, respectively (p<0.0001). Within all SES groups, except for high SES, greater treatment response resulted in higher odds of completing ≥ 12 years in school (Fig 3).

Dropouts were less likely to complete ≥ 12 years in school compared with non-responders (Table 3) but this was not observed in the high SES group (Fig 3). Duration of treatment differed between children with good and poor treatment response (3.5 vs. 4.0 years; p<0.0001). In the childhood obesity cohort, the association between parental SES and odds of completing ≥ 12 years of schooling was not modified by treatment response (p=0.603).

to beet teries only

Table 3. Crude and adjusted odds ratios of completing ≥12 years of schooling in the childhood obesity cohort

	Odds ratio (99% CI) perform	ed with ordinary logistic regress	sion; p value
	Crude estimates	Model 1, n=3 921	Model 2, n=3 575
Sex (girls vs. boys)	1.26 (1.06 to 1.48); 0.0004	1.30 (1.08 to 1.56); 0.0002	1.29 (1.06 to 1.56); 0.0008
Migration background (non-Nordic vs. Nordic)	0.78 (0.65 to 0.94); 0.0006	0.74 (0.60 to 0.91); 0.0002	0.69 (0.55 to 0.87); <0.000
ADHD/ADD (yes vs. no)	0.31 (0.25 to 0.40); <0.0001	0.35 (0.27 to 0.45); <0.0001	0.33 (0.26 to 0.44); <0.000
Anxiety/depression (yes vs. no)	0.43 (0.35 to 0.53); <0.0001	0.45 (0.36 to 0.57); <0.0001	0.43 (0.34 to 0.55); <0.000
BMI SDS at start of treatment	0.47 (0.38 to 0.58); <0.0001	0.51 (0.40 to 0.64); <0.0001	0.48 (0.38 to 0.62); <0.000
Age at start of treatment	0.96 (0.93 to 1.01); 0.0234	1.01 (0.96 to 1.06); 0.60	1.01 (0.96 to 1.06); 0.805
Treatment response			
Good response vs. no response	1.46 (1.15 to 1.85); <0.0001	1.34 (1.04 to 1.72); 0.0031	1.28 (0.98 to 1.67); 0.0182
Poor response vs. no response	0.78 (0.60 to 1.02); 0.0167	0.72 (0.54 to 0.96); 0.0028	0.71 (0.53 to 0.96); 0.003
Dropouts vs. no response	0.71 (0.58 to 0.87); <0.0001	0.69 (0.55 to 0.86); <0.0001	0.68 (0.54 to 0.87); <0.00
Parental SES			
Medium-low vs. low parental SES	1.63 (1.31 to 2.03); <0.0001	1.56 (1.24 to 1.98); <0.0001	
Medium-high vs. low parental SES	2.40 (1.90 to 3.05); <0.0001	2.19 (1.69 to 2.83); < 0.0001	
High vs. low parental SES	2.99 (2.11 to 4.22); <0.0001	2.83 (1.95 to 4.12); <0.0001	
Maternal education		, , , , , , , , , , , , , , , , , , , ,	
Upper secondary school vs. compulsory school	1.74 (1.44 to 2.09); <0.0001		1.57 (1.27 to 1.94); <0.000
University degree vs. compulsory school	2.47 (1.94 to 3.16); < 0.0001		2.23 (1.67 to 2.98); <0.000
Paternal education	2.47 (1.94 to 5.10), <0.0001		2.25 (1.07 to 2.96); <0.00
Upper secondary school vs. compulsory school	1.48 (1.23 to 1.79); <0.0001		1.26 (1.03 to 1.55); 0.004
Opper secondary senior vs. compulsory senior			
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev igration background, ADHE I parental SES.	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	<u>1.41 (1.01 to 1.95); 0.0076</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.0070 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	<u>1.41 (1.01 to 1.95); 0.007(</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	<u>1.41 (1.01 to 1.95); 0.007(</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	<u>1.41 (1.01 to 1.95); 0.0076</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.0070 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.0070 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	1.41 (1.01 to 1.95); 0.007 nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression, D/ADD, anxiety/depression, on.	<u>1.41 (1.01 to 1.95); 0.007(</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression,	<u>1.41 (1.01 to 1.95); 0.0076</u> nomic status. BMI SDS- and age at
University degree vs. compulsory school Abbreviations: CI, confidence interval; B Model 1: Variables included were sex, mi start of treatment, treatment response, and Model 2: Variables included were sex, mi start of treatment, treatment response, ma	1.92 (1.44 to 2.56); <0.0001 MI SDS, BMI standard dev Igration background, ADHE I parental SES. Igration background, ADHE	D/ADD, anxiety/depression, D/ADD, anxiety/depression, on.	1.41 (1.01 to 1.95); 0.0070 nomic status. BMI SDS- and age at BMI SDS- and age at

 Fig 3. Crude percentage of individuals with obesity in childhood (n=3,921) completing ≥12 school years by parental SES and treatment response (black bars=dropouts; white bars=poor response; striped bars=no response; dotted bars=good response). p=p for trend; n=refers to number of individuals in each category.

Discussion

In this prospective cohort study, we have compared level of education among individuals recorded in the Swedish Childhood Obesity Treatment Register, and a comparison group matched by sex, year of birth, and living area. Individuals in the childhood obesity cohort were half as likely to complete 12 or more years of schooling, independently of parental socioeconomic status (SES).

Among individuals from high SES families, those in the childhood obesity cohort were approximately one third as likely to complete ≥ 12 years of schooling as individuals from high SES families in the comparison group. Furthermore, our results indicate that parental SES was more important to complete ≥ 12 school years in the comparison group than in the childhood obesity cohort. An association between obesity and impaired academic achievements has been demonstrated before.⁸⁹ To which extent other psychosocial factors contribute to this finding has not been evaluated. It is well established that low parental SES,¹³⁻¹⁵ immigrant background,⁹ ¹⁴ ADHD/ADD,^{9 17} and depression,^{9 14 16} may negatively affect performance in school. These factors are also overrepresented in the paediatric population with obesity. In this study, we can confirm that low parental SES, neuropsychiatric disorders, and anxiety/depression are more common in children with obesity and contribute to the decreased odds of completing ≥ 12 school years. However, we found that obesity in childhood is a considerable risk factor for not 304 completing ≥ 12 years of schooling even after taking these and other important risk factors into 305 account.

306 Obesity treatment outcome and educational level

We identified a positive association between weight-loss during obesity treatment and completed educational level, which confirms our previously reported data unadjusted for SES ⁹. Children with good treatment response, compared with those with no response, were more likely to complete ≥ 12 school years in all SES groups. A decrease of 0.25 BMI SDS, that has previously been shown to improve metabolic health ²⁷, we can now also show may have a positive association on completing ≥ 12 years of schooling. However, the positive effects of successful obesity treatment did not compensate for the observed SES differences on attained level of education.

In Sweden, 12 years of schooling is not mandatory, but the long-term social effects are considerable for those who fail. It has been estimated that 50% of those who fail to complete ≥ 12 school years face a situation of being left outside the society with poor psychosocial health and large costs for the society ²⁹. Thus, it is possible that school failure will further worsen the health perspective of adolescents with obesity.

320 Potential mechanisms between obesity, weight loss, and school

321 performance

The mechanisms by which obesity influences school performance are unclear but are likely multifactorial and complex. Possible mechanisms may include psychosocial aspects such as stigma³⁰ and increased risk for anxiety and depression.⁷ Physiological mechanisms may be mediated by anatomical changes such as atrophy of the frontal lobe and reduced hippocampal volume have been demonstrated in individuals with obesity.³¹ Some of the reported cognitive

BMJ Open

dysfunctions in children and adolescents with obesity include slower response times when performing visuospatial attention tasks,³² diminished executive functions, such as working memory,³³ and slower cognitive performance speed³⁴. In addition, obesity-related comorbidities such as insulin resistance,³⁵ type 2 diabetes mellitus,³⁶ chronic low-grade inflammation,³⁷ and the metabolic syndrome³⁸ have also been associated with impaired executive function, memory performance, attention, and cognitive flexibility. A high fat diet in rodents demonstrated detrimental effects on memory and executive functions.³¹

At least some of these effects seem to be reversible, which may add to the positive associations we observed of weight loss on school outcome. Weight loss may have a direct positive effect on cognitive functions.³⁹ Extensive weight loss via bariatric surgery improves insulin sensitivity and decreases systematic inflammation,⁴⁰ and it has been suggested that these factors affect cognitive functions.⁴¹

However, children with obesity are often stigmatized,⁴² have a low self-esteem, and are exposed to bullying and social exclusion.⁴³ All these factors have most likely a negative impact on school performance. In contrast, a strong social network is most probably an important factor both for good treatment response and achievement in school. An inverse association has been observed between familial social support and child weight status⁴⁴ Thus, it is likely that both negative social effects of obesity and obesity-related morbidity, as well as genetic factors, contribute to the adverse association of childhood obesity on completed educational level.

346 Limitations

Using longitudinal data from several national registers provided an opportunity to assess the
impact of obesity on completed educational level, adjusted for several important confounders.
Data on both exposure and outcome were prospectively collected and defined according to
standardized international classifications.^{19 26}

However, some important limitations should be recognized. We did not have anthropometric data on children in the comparison group. There is no representative national data on children with obesity in Sweden. As our comparison group includes children with obesity, although likely less than 1% according to obesity diagnoses found in the National Patient Register, odds of lower level of education associated with obesity might be underestimated. It is also important to consider that children receiving obesity treatment may not be representative of all children with obesity. However, such bias is reduced as a large proportion of children are referred to treatment from school. It should be noted that parental SES was based on data from one specific year in the child's life and not over the child's entire adolescent lifetime, and that the SES indicators used may not reflect the whole SES spectrum. In addition, the impact of anxiety and depression on educational level may be underestimated since these conditions often are underdiagnosed. Lastly, factors such as free education, school lunches, and students' health care may have an impact on the generalizability of our data to other populations.

364 Conclusion

In this longitudinal, population-based study, individuals with obesity in childhood were less likely to complete 12 or more years of schooling, compared with a group from the general population. The odds associated with obesity remained significantly increased even after taking parental SES and other important risk factors, such as ADHD, into consideration. The underlying mechanisms are unclear but previous studies indicate that the effects of obesity both involve psychosocial effects and cognitive functions. The negative impact of childhood obesity on educational level could partly be reversed by successful obesity treatment in childhood. Results from this study underline the wide effects of childhood obesity on public health and the importance of continued efforts to reduce the prevalence of obesity in children. It is of clinical

1 2		
3 4	374	importance to increase awareness of the potential need for extra support at school of children
5 6 7	375	and adolescents with obesity.
7 8 9 10 11	376	Acknowledgements
12 13	377	The authors would like to thank all local health care professionals in Sweden working with
14 15 16	378	children and adolescents with obesity and their valuable work with BORIS, and the BORIS
17 18	379	steering committee for establishing and maintaining the register.
19 20 21 22	380	
23 24 25	381	Author contributions
26 27 28	382	Conceptualization: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude Marcus,
29 30	383	Emilia Hagman.
31 32 33	384	Data curation: Louise Lindberg.
34 35	385	Formal analysis: Louise Lindberg, Emilia Hagman.
36 37	386	Funding acquisition: Louise Lindberg, Claude Marcus, Emilia Hagman.
38 39 40	387	Methodology: Louise Lindberg, Emilia Hagman.
40 41 42	388	Project administration: Louise Lindberg, Emilia Hagman.
43 44	389	Supervision: Martina Persson, Emilia Hagman, Pernilla Danielsson, Claude Marcus.
45 46	390	Writing – original draft: Louise Lindberg.
47 48 49 50 51	391	Writing – review & editing: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude
	392	Marcus, Emilia Hagman.
52 53	393	
54	394	Funding statement
55 56	395	This study was supported by funds to LL by Crown Princess Lovisa's Foundation (2017-
57 58	396	00348), Samariten Foundation (2017-0305), the Stockholm FreeMason Foundation for
59 60	397	Children's Welfare, Sällskapet Barnavård, Anna-Lisa och Arne Gustafssons Foundation,

Solstickan Foundation and Sven Jerring Foundation. EH was supported by the Swedish Society
for Medical Research, Fredrik and Ingrid Thuring's Foundation (2017-00309) and Magnus
Bergvall Foundation (2017-02113), and CM by the Swedish Heart and Lung Foundation
(20150790).

402 Data Sharing statement

The data that support the findings of this study contains sensitive information. Restrictions therefore apply to the availability of these data, which were used under license for the current study, and so are not publicly available. According to Swedish law and the General Data Protection Regulation, the authors are not permitted to share the datasets used in this study with third parties. Given that an ethical approval is obtained, any individual may apply for data from Statistics Sweden via information@scb.se, the Swedish National Board of Health and Welfare via registerservice@socialstyrelsen.se, and the Swedish Childhood Obesity Treatment Register via http://www.e-boris.se/kontaktuppgifter/.

Competing interests

All authors completed ICMJE uniform disclosure have the form at www.icmje.org/coi disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted.

References

1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017 doi: 10.1016/S0140-6736(17)32129-3 2. Hagman E, Danielsson P, Brandt L, et al. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr Diabetes 2016;6(8):e227. doi: 10.1038/nutd.2016.34 [published Online First: 2016/08/23] 3. Hagman E, Danielsson P, Elimam A, et al. The effect of weight loss and weight gain on blood pressure in children and adolescents with obesity. Int J Obes (Lond) 2019;43(10):1988-94. doi: 10.1038/s41366-019-0384-2 [published Online First: 2019/06/04] 4. Lindberg L, Danielsson P, Persson M, et al. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS medicine 2020;17(3):e1003078. doi: 10.1371/journal.pmed.1003078 [published Online First: 2020/03/19] 5. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 2011;35(7):891-8. doi: 10.1038/ijo.2010.222 6. Viner RM, Cole TJ. Adult socioeconomic, educational, social, and psychological outcomes of childhood obesity: a national birth cohort study. BMJ 2005;330(7504):1354. doi: 10.1136/bmj.38453.422049.E0 [published Online First: 2005/05/20] 7. Lindberg L, Hagman E, Danielsson P, et al. Anxiety and depression in children and adolescents with obesity: a nationwide study in Sweden. BMC medicine 2020;18(1):30. doi: 10.1186/s12916-020-1498-z [published Online First: 2020/02/23] 8. Laitinen J, Power C, Ek E, et al. Unemployment and obesity among young adults in a northern Finland 1966 birth cohort. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2002;26(10):1329-38. doi: 10.1038/sj.ijo.0802134 9. Hagman E, Danielsson P, Brandt L, et al. Childhood Obesity, Obesity Treatment Outcome, and Achieved Education: A Prospective Cohort Study. The Journal of adolescent health : official publication of the Society for Adolescent Medicine 2017 doi: 10.1016/j.jadohealth.2017.04.009 [published Online First: 2017/07/12] 10. Karnehed N, Rasmussen F, Hemmingsson T, et al. Obesity and attained education: cohort study of more than 700,000 Swedish men. Obesity 2006;14(8):1421-28. 11. French SA, Wall M, Corbeil T, et al. Obesity in Adolescence Predicts Lower Educational Attainment and Income in Adulthood: The Project EAT Longitudinal Study. Obesity (Silver Spring) 2018;26(9):1467-73. doi: 10.1002/oby.22273 [published Online First: 2018/09/19] 12. Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990-2005. Obesity (Silver Spring) 2008;16(2):275-84. doi: 10.1038/oby.2007.35 [published Online First: 2008/02/02] 13. Koivusilta LK, West P, Saaristo VM, et al. From childhood socio-economic position to adult educational level - do health behaviours in adolescence matter? A longitudinal study. BMC public health 2013;13:711. doi: 10.1186/1471-2458-13-711 14. Kark M, Hjern A, Rasmussen F. Poor school performance is associated with a larger gain in body mass index during puberty. Acta Paediatr 2014;103(2):207-13. doi: 10.1111/apa.12471 15. DeGarmo DS, Forgatch MS, Martinez CR, Jr. Parenting of divorced mothers as a link between social status and boys' academic outcomes: unpacking the effects of socioeconomic status. Child development 1999;70(5):1231-45. [published Online First: 1999/11/05]

2		
3	465	16. Freeman A, Tyrovolas S, Koyanagi A, et al. The role of socio-economic status in depression: results
4	466	from the COURAGE (aging survey in Europe). <i>BMC public health</i> 2016;16(1):1098. doi:
5	467	10.1186/s12889-016-3638-0 [published Online First: 2016/10/21]
6	468	17. Scholtens S, Rydell AM, Yang-Wallentin F. ADHD symptoms, academic achievement, self-
7	469	perception of academic competence and future orientation: a longitudinal study.
8	409	Scandinavian journal of psychology 2013;54(3):205-12. doi: 10.1111/sjop.12042 [published
9		Online First: 2013/03/21]
10	471	
11 12	472	18. Quek YH, Tam WWS, Zhang MWB, et al. Exploring the association between childhood and
12	473	adolescent obesity and depression: a meta-analysis. Obesity reviews : an official journal of
14	474	the International Association for the Study of Obesity 2017;18(7):742-54. doi:
15	475	10.1111/obr.12535 [published Online First: 2017/04/13]
16	476	19. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness,
17	477	overweight and obesity. Pediatr Obes 2012;7(4):284-94. doi: 10.1111/j.2047-
18	478	6310.2012.00064.x
19	479	20. Hagman E, Danielsson P, Lindberg L, et al. Paediatric obesity treatment during 14 years in
20	480	Sweden: Lessons from the Swedish Childhood Obesity Treatment Register-BORIS. <i>Pediatr</i>
21	481	Obes 2020:e12626. doi: 10.1111/ijpo.12626 [published Online First: 2020/02/20]
22	482	21. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity number:
23	483	possibilities and pitfalls in healthcare and medical research. European journal of
24	484	epidemiology 2009;24(11):659-67. doi: 10.1007/s10654-009-9350-y
25 26	485	22. Ludvigsson JF, Almqvist C, Bonamy AK, et al. Registers of the Swedish total population and their
20 27	486	use in medical research. European journal of epidemiology 2016;31(2):125-36. doi:
28	487	10.1007/s10654-016-0117-y [published Online First: 2016/01/16]
29	488	23. Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish
30	489	national inpatient register. <i>BMC public health</i> 2011;11:450. doi: 10.1186/1471-2458-11-450
31	490	[published Online First: 2011/06/11]
32	491	24. Wallerstedt SM, Wettermark B, Hoffmann M. The First Decade with the Swedish Prescribed Drug
33	492	Register - A Systematic Review of the Output in the Scientific Literature. <i>Basic & clinical</i>
34	493	pharmacology & toxicology 2016;119(5):464-69. doi: 10.1111/bcpt.12613 [published Online
35	493 494	First: 2016/04/27]
36		
37	495	25. Brooke HL, Talback M, Hornblad J, et al. The Swedish cause of death register. <i>European journal of</i>
38	496	epidemiology 2017;32(9):765-73. doi: 10.1007/s10654-017-0316-1 [published Online First:
39 40	497	
40 41	498	26. UNESCO. International standard classification of education: Isced 1997. Re-edition. Paris: UNESCO
42	499	Institute for Statistics. 2011
43	500	27. Ford AL, Hunt LP, Cooper A, et al. What reduction in BMI SDS is required in obese adolescents to
44	501	improve body composition and cardiometabolic health? Archives of disease in childhood
45	502	2010;95(4):256-61. doi: 10.1136/adc.2009.165340 [published Online First: 2009/12/08]
46	503	28. Hagman E, Danielsson P, Elimam A, et al. The effect of weight loss and weight gain on blood
47	504	pressure in children and adolescents with obesity. Int J Obes (Lond) 2019 doi:
48	505	10.1038/s41366-019-0384-2
49	506	29. Nilsson I, Wadeskog A. Utanförskapets Ekonomiska Sociotoper: Socioekonomisk analys på
50	507	stadsdelsnivå inom ramen för Healthy Cities 2012
51	508	30. Finn KE, Seymour CM, Phillips AE. Weight bias and grading among middle and high school
52	509	teachers. Br J Educ Psychol 2019 doi: 10.1111/bjep.12322 [published Online First:
53 54	510	2019/10/28]
54 55	511	31. Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and
55 56	512	vascular changes. Frontiers in neuroscience 2014;8:375. doi: 10.3389/fnins.2014.00375
57	513	[published Online First: 2014/12/06]
58	514	32. Tsai C-L, Chen F-C, Pan C-Y, et al. The neurocognitive performance of visuospatial attention in
59	515	children with obesity. Frontiers in psychology 2016;7
60		· · · · · · · · · · · · · · · · · · ·

1		
2 3		
5 4	516	33. Laurent JS, Watts R, Adise S, et al. Associations Among Body Mass Index, Cortical Thickness, and
5	517	Executive Function in Children. JAMA Pediatr 2019 doi: 10.1001/jamapediatrics.2019.4708
6	518	[published Online First: 2019/12/10]
7	519	34. Sweat V, Yates KF, Migliaccio R, et al. Obese adolescents show reduced cognitive processing
8	520	speed compared with healthy weight peers. Childhood Obesity 2017
9	521	35. Cheke LG, Bonnici HM, Clayton NS, et al. Obesity and insulin resistance are associated with
10	522	reduced activity in core memory regions of the brain. <i>Neuropsychologia</i> 2017;96:137-49.
11	523	36. Bruehl H, Sweat V, Tirsi A, et al. Obese Adolescents with Type 2 Diabetes Mellitus Have
12	524	Hippocampal and Frontal Lobe Volume Reductions. <i>Neuroscience and medicine</i> 2011;2(1):34-
13 14	525	42. doi: 10.4236/nm.2011.21005
15	526	37. Spyridaki EC, Simos P, Avgoustinaki PD, et al. The association between obesity and fluid
16	527	intelligence impairment is mediated by chronic low-grade inflammation. British Journal of
17	528	Nutrition 2014;112(10):1724-34.
18	529	38. Mangone A, Yates KF, Sweat V, et al. Cognitive functions among predominantly minority urban
19	530	adolescents with metabolic syndrome. Applied Neuropsychology: Child 2017:1-7.
20	531	39. Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric
21	532	surgery. Obesity 2014;22(1):32-38.
22	533	40. Olbers T, Beamish AJ, Gronowitz E, et al. Laparoscopic Roux-en-Y gastric bypass in adolescents
23 24	534	with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. Lancet
25	535	Diabetes Endocrinol 2017;5(3):174-83. doi: 10.1016/S2213-8587(16)30424-7
26	536	41. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews
27	537	Neuroscience 2015;16(11):660.
28	538	42. Latner JD, Stunkard AJ. Getting worse: the stigmatization of obese children. Obesity research
29	539	2003;11(3):452-6. doi: 10.1038/oby.2003.61
30	540	43. Pierce JW, Wardle J. Cause and effect beliefs and self-esteem of overweight children. Journal of
31	541	child psychology and psychiatry, and allied disciplines 1997;38(6):645-50. [published Online
32 33	542	First: 1997/10/08]
33 34	543	44. Lindberg L, Ek A, Nyman J, et al. Low grandparental social support combined with low parental
35	544	socioeconomic status is closely associated with obesity in preschool-aged children: a pilot
36	545	study. <i>Pediatr Obes</i> 2015 doi: 10.1111/ijpo.12049
37	F 4 C	
38	546	
39		
40		
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58		
59		
60		

Supporting information

S1 Table. International Classification of Diseases (ICD 10th revision) codes and Anatomical Therapeutic Chemical (ATC) classification system codes used.

S2 Table. Proportion of children completing ≥ 12 years of schooling.

S3 Table. Proportion of individuals who have undergone obesity treatment in childhood .d ≥12 years .. =3,942). who completed ≥ 12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942).

BMJ Open

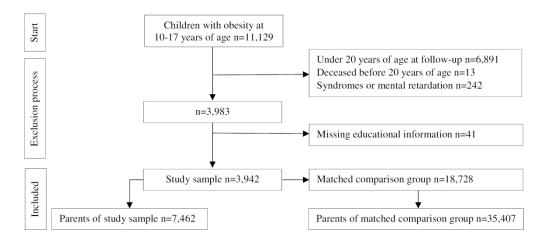
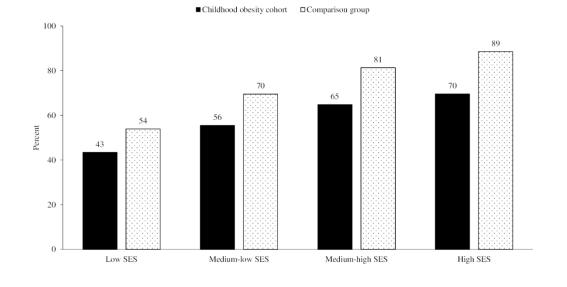
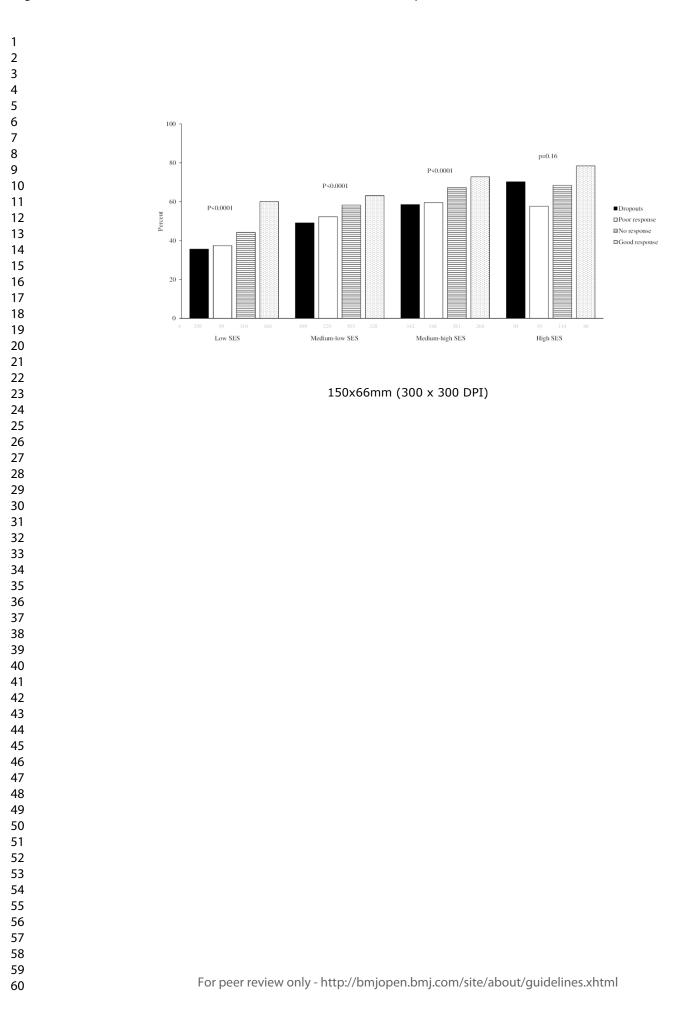



Figure 1


169x73mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

118x60mm (300 x 300 DPI)

S1 Table. International Classification of Diseases (ICD 10th revision) codes and Anatomical Therapeutic Chemical (ATC) classification system codes used.

Condition	ICD-10	ATC Code
Anxiety/sedatives	F40.0-F40.1, F41-F42, F51.4-F51.9, F93.0-F93.2	N05B
Depression/antidepressants	F32-F39, F92	N06A
ADHD/ADD	F90	N06B
Mental retardation	F70-F79	
Genetic syndromes		
Fragile X	Q99.2	
Klinefelter	Q98	
Laurence-Moon-Bardet-Biedl	Q87.8B	
Mb Down	Q90	
Noonan	Q87.1E	
Prader-Willi	Q87.1F	
Silver Russell	Q87.1G	
Turner	Q96	

Q96

1	
2	
3	
4	
5 6	
0	
/	
8 9	
9	
1	0
1	1
1 1	' ר
1.	2
1	3
	4
1	5
1	6
1	7
1	, 0
1	0
1	9
2 2	0
2	1
2	2
2	3
2	4
2	5
2	б
2	7
2	8
2	0
2	9 0
	0
3	1
3	2
3	3
	л
י ר	4
3	
3	б
3	7 8
3	8
3	
4	
4	1
4	
4	3
4	
4	
4	-
4	
4	
4	
5	0
5	
5	
5	∠ م
5	
5	
5	5
5	
5	
5	
5	

59 60

	Childh	Childhood obesity cohort		son group	
	n	%	n	%	p-value [¶]
Total	2,236	56.7	13,939	74.4	< 0.0001
Sex					
Girl	1,090	59.7	6,843	78.7	< 0.0001
Boy	1,146	54.1	7,096	70.8	< 0.0001
Migration background	,		,		
Nordic	1,695	58.4	10,974	78.1	< 0.0001
Non-Nordic	541	52.2	2,965	63.4	< 0.0001
ADHD/ADD			,		
Non-ADHD/ADD	2,032	61.1	13,528	76.5	< 0.0001
ADHD/ADD	204	33.1	411	39.4	0.01
Anxiety/depression					
No anxiety/depression	1,902	61.1	12,754	77.0	< 0.0001
Anxiety/depression	334	40.2	1,185	54.9	< 0.0001
Parental SES			-,		
Low	376	43.4	1,455	53.9	< 0.0001
Medium-low	855	55.5	4,187	69.5	< 0.0001
Medium-high	751	64.8	5,358	81.3	< 0.0001
High	247	69.6	2,848	88.5	< 0.0001
Maternal education		07.0	2,010	00.0	0.0001
Compulsory school	755	47.7	3,474	61.9	< 0.0001
Upper secondary school	945	61.3	5,582	77.9	< 0.0001
University degree	506	69.3	4,589	85.3	< 0.0001
Paternal education	500	07.5	1,009	00.0	-0.0001
Compulsory school	639	50.2	2,775	63.0	< 0.0001
Upper secondary school	1,132	59.9	7,085	77.9	< 0.0001
University degree	318	66.0	3,333	85.2	< 0.0001
Maternal income	510	00.0	5,555	05.2	<0.0001
Q1	614	52.3	3,327	68.1	< 0.0001
Q1 Q2	750	58.6	4,391	75.2	< 0.0001
Q2 Q3	542	58.2	3,534	77.1	< 0.0001
04	304	62.6	2,429	81.3	< 0.0001
Paternal income	504	02.0	2,429	61.5	<0.0001
Q1	556	49.3	2,453	62.6	< 0.0001
Q2	410	54.0	2,455	72.3	< 0.0001
Q2 Q3	549	61.8	3,404	72.3	< 0.0001
Q3 04	572	66.2	5,404	84.5	<0.0001
Maternal occupational status	572	00.2	5,030	84.3	<0.0001
	438	47.8	1,722	58.3	< 0.0001
No occupation			1,722		
Occupation Determal accumational status	1,777	60.0	12,005	77.9	< 0.0001
Paternal occupational status	262	45 4	1.542	59 7	<0.0001
No occupation	363	45.4	1,543	58.7	< 0.0001
Occupation	1,736	60.5	11,703	78.5	< 0.0001

Abbreviations: SES, socioeconomic status; Q, quartile. [¶]Performed with chi-square. 1 EUR \approx 9.83 SEK December 31st 2017. Q1: <18,652 EUR; Q2: 18,652 to 25,025 EUR; Q3: 25,026 to 32,309 EUR; Q4: >32,309 EUR.

S3 Table. Proportion of individuals who have undergone obesity treatment in childhood who completed ≥12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942).

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4.5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-9
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-9
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	9-10
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
D		(e) Describe any sensitivity analyses	
Results	1.2.*		12 -
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	fig
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Description 1-1	1 1 4	(c) Consider use of a flow diagram	11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
0 + 1 +	4	(c) Summarise follow-up time (eg, average and total amount)	12
Outcome data	15*	Report numbers of outcome events or summary measures over time	12

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	12- 17
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12 17
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20 21
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18 21
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other informati	on		•
Funding	22	Give the source of funding and the role of the funders for the present study and, if	22
		applicable, for the original study on which the present article is based	23

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Obesity in childhood, socioeconomic status, and completion of 12 or more school years: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040432.R1
Article Type:	Original research
Date Submitted by the Author:	03-Nov-2020
Complete List of Authors:	Lindberg, Louise; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Persson, Martina; Karolinska Institute, Department of Medicine, Clinical Epidemiology, Karolinska Institutet; Danielsson, Pernilla; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Hagman, Emilia; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Marcus, Claude; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Nutrition and metabolism, Public health
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, Paediatric endocrinology < PAEDIATRICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Obesity in childhood, socioeconomic status, and completion of 12 or
2	more school years: a prospective cohort study
3	
4	Louise Lindberg ¹ , Martina Persson ^{2,3,4} , Pernilla Danielsson ¹ , Emilia Hagman ^{1*} , Claude
5	Marcus ¹
6	
7 8	¹ Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
9 10	² Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden
11 12	³ Department of Diabetes and Endocrinology, Sachsska Children's Hospital Södersjukhuset, Stockholm, Sweden
13 14	⁴ Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
15	*Corresponding author e <u>-mail: emilia.hagman @ki.se</u> (EH)
16 17	Other contributing authors e-mail: <u>louise.lindberg@ki.se; martina.persson@ki.se;</u> pernilla.danielsson.liljeqvist@ki.se; claude.marcus@ki.se
18	Keywords: Pediatric obesity, schools, epidemiology, social class, cohort study
19	Word count: 3722
	1

Abstract

Objectives: Children with obesity achieve lower educational level compared with normalweight peers. Parental socioeconomic status (SES) impacts both a child's academic achievement and risk of obesity. The degree to which the association between obesity and education depend on parental SES is unclear. Therefore, the primary aim is to investigate if individuals with obesity in childhood are less likely to complete ≥ 12 years of schooling, independently of parental SES. The secondary aim is to study how weight loss, level of education, and parental SES are associated.

- **Design:** Nationwide prospective cohort study.
- Setting: Swedish national register data.

Participants: Children aged 10-17 years, recorded in the Swedish Childhood Obesity Treatment Register (BORIS), and aged 20 years or older at follow-up were included (n=3,942). A comparison group was matched by sex, year of birth, and living area (n=18,728). Parental SES was based on maternal and paternal level of education, income, and occupational status.

Primary outcome measure: Completion of ≥ 12 years of schooling was analysed with conditional logistic regression, and adjusted for group, migration background, ADHD/ADD, anxiety/depression, and parental SES.

Results: Among those with obesity in childhood, 56.7% completed ≥ 12 school years compared with 74.4% in the comparison group (p<0.0001). High parental SES compared with low SES was strongly associated with attained level of education in both children with and without obesity, adjusted odds ratio (aOR) [99% confidence interval (CI)]=5.40 [4.45 to 6.55]. However, obesity in childhood remains a strong risk factor of not completing ≥ 12

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

1

school years, independently of parental SES, aOR=0.57 [0.51 to 0.63]. Successful obesity 43 treatment increased the odds of completing ≥ 12 years in school even when taking parental 44 SES into account, ^aOR=1.34 [1.04 to 1.72]. 45 **Conclusions**: Individuals with obesity in childhood have lower odds of completing ≥ 12 46 school years, independently of parental SES. Optimized obesity treatment may improve 47 48 school results in this group. 49 Strengths and limitation of this study 50 In this prospective cohort study, we have been able to investigate the level of 51 education among a large number of individuals who have obesity in childhood (n= 52 3,942) in comparison with a matched group (n=18,728). 53 54 The study design of using longitudinal data from several national registers provided • the opportunity to control for important confounding factors, such as neuropsychiatric 55 disorders, anxiety, depression, and family socioeconomic status. 56 Factors such as free education, school lunches, and students' health care may have an 57 • impact on the generalizability of our data to other populations. 58 59

60 Introduction

During the last 40 years, the prevalence of childhood obesity has increased exponentially in many parts of the world.¹ Childhood obesity is associated with increased risks of somatic morbidity and risk of premature death in adulthood.²⁻⁵ Psychosocial maladjustment, anxiety and depression are also prevalent⁶⁷ and may contribute to the obesity-related long-term morbidity and mortality.⁵ Most studies report that children with obesity more often have lower school grades and reach a lower level of education compared with normal-weight peers,⁸⁻¹⁰ but in a recent study, only girls with obesity were affected.¹¹ We have previously confirmed the association between obesity and lower attained level of education among both girls and boys.⁹ We also found that successful obesity treatment was positively correlated with completing ≥ 12 school years, although without taking socioeconomic status (SES) into account.9

Low parental SES is a well-established risk factor for both childhood obesity and poorer academic achievement.¹² In particular, parental education has been demonstrated to influence the child's performance at school.¹³⁻¹⁵ In addition, depression¹⁶ and neuropsychiatric disorders, including Attention Deficit Disorder with or without Hyperactivity (ADHD/ADD),¹⁷ may adversely affect school results. Depression and neuropsychiatric disorders are more common in children with obesity compared to the general population.⁹¹⁸ Investigating the impact of obesity alone on attained level of education requires that these and other confounders are considered. The primary aim of this study was to disentangle the association of childhood obesity and parental SES on completed level of education. The

secondary aim was to study if positive effects of weight loss on attained level of education isaffected by parental SES.

Methods

84 Study population

This prospective cohort study included children with obesity,¹⁹ aged 10-17 years at the start of obesity treatment (December 1994 to December 2015), and aged 20 years or older and living in Sweden at follow-up (December 31st 2017; n=3,942). Data on subjects receiving treatment for childhood obesity was collected from the Swedish Childhood Obesity Treatment Register (BORIS). BORIS has been thoroughly described elsewhere.²⁰ but in short: The main purpose of the register is quality assessment and long-term evaluation of childhood obesity treatment. Treatment is individualized and consists primarily of lifestyle modification (i.e. diet and physical activity).

A comparison group from the general population was randomly identified using the Swedish Total Population Register and matched by sex, year of birth, and living area at the year obesity treatment was initiated (n=18,728). Using density matching without replacement, five individuals were matched to each individual from the childhood obesity cohort. Siblings of children registered in the childhood obesity cohort were excluded from the comparison group. Children with a diagnosis of mental retardation or genetic syndromes were excluded from both the childhood obesity cohort and the comparison group (Fig 1 and S1 Table).

BMJ Open

Families were informed in written or verbal about data collection in the Swedish Childhood Obesity Treatment Register. Post an opt-out approval by parents/guardians, data of the children's weight and height were recorded by the local health care provider during treatment visits. There was no data of weight and height of individuals in the comparison group. However, less than 1% of the individuals in the comparison group were found in the National Patient Register with a diagnosis of obesity in childhood. In Sweden, health care is free of charge for children and adolescents until 18 years of age. The study was approved by the regional Ethics Committee in Stockholm, Sweden (No. 2016/922-31/1).

109 Data sources

Using the Swedish identity number, which is unique to each resident in Sweden, data from several national registers were linked.²¹ Data on education, income, and occupational status were obtained from the Longitudinal Integration Database for Health Insurance and Labour Market Studies. Information on migration background for children and their parents was obtained from the Swedish Total Population Register.²² Both these registers are held by Statistics Sweden, a governmental agency that collects and provide official statistics (www.scb.se/en).

Data on diagnoses of mental retardation, genetic syndromes, ADHD/ADD, anxiety, and depression were identified based on codes according the International Classification of Diseases (10th revision; S1 Table) and retrieved from the National Patient Register.²³ Information on prescriptions of psychostimulant drugs for ADHD/ADD as well as antidepressants and tranquilizers for anxiety and depression were identified using the Anatomical Therapeutic Chemical classification system (S1 Table) retrieved from the

Swedish Prescribed Drug Register.²⁴ Data on deaths were retrieved from the Cause of Death
Register.²⁵ These registers are held and were linked by the governmental agency the National
Board of Health and Welfare (www.socialstyrelsen.se/english).

Definition of outcome

The main outcome was defined as completion of ≥ 12 years of schooling, and based on the International Standard Classification of Education.²⁶ In Sweden, children start school at the age of 6 or 7 years and attend compulsory school for 9 years. Upper secondary school includes three additional years of schooling and provides the requirements to attend higher education. Usually students graduate from upper secondary school at 18 or 19 years of age. All education in Sweden is free of charge. Students in compulsory and upper secondary school are provided school lunches and health care at schools, also free of charge.

Definition of exposure variables

Degree of obesity in children from BORIS was assessed with Body Mass Index Standard Deviation Score (BMI SDS), which is standardized by sex and age and used to measure degree of obesity in growing children.¹⁹ Baseline measures (continuous) were used for the variable BMI SDS at start of treatment. Response to obesity treatment was based on the change of BMI SDS from the first to the last clinical visit and categorized into four groups:³ ²⁷ good response, a reduction of BMI SDS by 0.25 units or more; no response, a change of BMI SDS by +/- 0.24 units; poor response, an increase of BMI SDS by 0.25 units or more; and dropouts, children with less than one year between their first and last measure or without clinical follow-up after their first registered visit.

Page 9 of 35

BMJ Open

Parental SES was based on maternal and paternal level of education, income, and occupational status at the year the child turned 15 years, which is about the same time as the child starts upper secondary school. In case of the child was adopted, the SES of adoptive parents was used (childhood obesity cohort n=24 and comparison group n=164). The rationale of treating SES as a composite variable was to capture more of the social context and a potential inequality embedded there. Thus, by taking three variables into account instead of one, we get a more wide and robust measure of SES. Maternal and paternal educational level was categorized into compulsory school, upper secondary school, or university degree. Annual disposable income was used to reflect maternal and paternal economic capacity. The annual disposable income includes all taxable (direct labour income, capital gains from shares etc.) and tax-free income (housing and child benefits, student aid etc.), minus final tax and other negative transfers such as capital loss from shares and properties. Disposable income from different years was converted to 2017 prices using the Consumer Price Index for Sweden provided by Statistics Sweden (www.scb.se/en). Income was categorized into quartiles based on data from the parents in the comparison group. No occupation was defined as either unemployment 6 months or more, or income from long-term sick leave exceeding any income from the individual's gross salary. Individuals considered to have an occupation included those registered as employed or having an income from student grants/loan equivalent to full-time studies for at least one semester. Parental SES was weighted according to maternal and paternal education (0, 1, 2), income (0, 1, 2, 3), and occupational status (0, 1). The mean parental SES score (i.e. the sum of the mother's and father's all SES indicators divided by two) was applied to their child. The SES-variable was

166 categorized into four levels; low SES (0 to 1.5 points), medium-low SES (2 to 3 points),

167 medium-high SES (3.5 to 4.5 points), and high SES (5 to 6 points).

The prevalence of both ADHD/ADD⁹ and depression¹⁸ is higher in children with obesity and may negatively influence attained level of education.⁹ ¹⁶ ¹⁷ ADHD/ADD and anxiety/depression in children were identified based on diagnosis or dispensed prescribed medication (S1 Table).

Definition of covariates

The migration background of children in Sweden may impact school achievements and is therefore an important factor to control for in the analyses.⁹ ¹⁴ Migration background was categorized as Nordic or non-Nordic. Nordic was defined as born in a Nordic country (Sweden, Norway, Denmark, Finland, or Iceland) with one or two parents born in the Nordic. Children were classified as non-Nordic if born outside the Nordic or born in the Nordic with two parents born outside the Nordic. Other covariates included sex and age (continuous) at start of obesity treatment.

Patient and public involvement

181 No patient involved.

Statistical analysis

184 Descriptive statistics are presented as means and confidence intervals (CI), medians and 185 interquartile ranges (IQR), or frequencies and percentages. Conditional logistic regression Page 11 of 35

BMJ Open

was used to calculate odds ratios (OR's) with 99% CI for the main outcome, i.e. completing ≥12 school years. Conditional logistic regression was used above ordinary logistic regression as the childhood obesity cohort and the comparison group were matched by several variables. Independent variables included in the adjusted analyses were migration background, ADHD/ADD, anxiety/depression, parental SES, and group (childhood obesity cohort or comparison group) in analyses including both groups, otherwise stratified by group. Interaction between childhood obesity and parental SES was tested. The association of each SES indicator on the odds of completing ≥ 12 school years was also analysed separately for mothers and fathers. Sensitivity analyses excluding individuals with a non-Swedish background (defined as child born in Sweden with at least one parent also born in Sweden), or ADHD/ADD, or anxiety/depression were performed.

197 Secondary analyses were performed within the childhood obesity cohort to examine 198 associations between patient characteristics and completed educational level. In ordinary 199 logistic regressions, odds were adjusted for sex, migration background, parental SES, age 200 and BMI SDS at start of treatment, treatment response, ADHD/ADD, and 201 anxiety/depression. We tested for possible interaction between parental SES and treatment 202 response for the odds of completing \geq 12 years of schooling.

As missing data on parental SES was rare in both groups (Table 1), records with missing data
were excluded from the analyses, i.e. data were not imputed. P-values <0.01 were considered
statistically significant. All analyses were performed using SAS statistical software (version
9.4, Cary, NC, USA).

Table 1. Characteristics of the participants (n=22.670)

	Childhood obesity cohort (n=3,942)		Comparison group (n=18,728)	
	<u>n</u>	%	<u>n</u>	%
Female sex	1,825	46.3	8,701	46.5
Nordic	2,905	73.7	14,048	75.0
Age at end of follow-up (years)	23.4*	21.4-26.3*	23.4*	21.5-26.3
ADHD/ADD	617	15.7	1,044	5.6
Anxiety/Depression	831	21.1	2,158	11.5
Parental SES	001	21.1	2,150	11.0
Low	867	22.0	2,700	14.4
Medium-low	1,540	39.1	6,023	32.1
Medium-high	1,159	29.4	6,587	35.2
High	355	9.0	3,218	17.2
Missing	21	0.5	200	1.1
Maternal education	5			
Compulsory school	1,582	40.1	5,615	30.0
Upper secondary school	1,541	39.1	7,167	38.3
University degree	730	18.5	5,383	28.7
Missing	89	2.3	563	3.0
Paternal education		2.0	000	2.0
Compulsory school	1,273	32.3	4,402	23.5
Upper secondary school	1,890	48.0	9,095	48.6
University degree	482	12.2	3,912	20.9
Missing	297	7.5	1,319	7.0
Maternal income		1.0	1,017	7.0
Q1	1,173	29.8	4,887	26.1
Q2	1,281	32.5	5,843	31.2
Q3	931	23.6	4,585	24.5
Q4	486	12.3	2,988	15.9
Missing	71	1.8	425	2.3
Paternal income	/1	1.0	423	2.5
Q1	1,127	28.6	3,917	20.9
Q2	760	19.3	3,128	16.7
Q3	889	22.5	4,389	23.4
04	864	21.9	5,986	32.0
Missing	302	7.7	1,308	7.0
Maternal occupational status			í í	
Occupation	2,963	75.2	15,405	82.2
No occupation	916	23.2	2,956	15.8
Missing	63	1.6	367	2.0
Paternal occupational status				
Occupation	2,868	72.8	14,906	79.6
No occupation	800	20.3	2,627	14.0
T	274	6.9	1,195	6.4

Results

In total, 3,942 individuals in the childhood obesity cohort and 18,728 individuals in the comparison group were included in the study (Table 1). In both groups, 46% of the participants were girls and the median age at follow-up was 23.4 years. The proportions of individuals of Nordic origin were similar in both groups (73.7% vs. 75.0%; p=0.02). Despite the groups being matched for living area, a greater proportion of children with obesity grew up in households with low SES compared with the comparison group (22.0% vs. 14.4%; p<0.0001).

219 Parental SES, childhood obesity and the child's attained level of

220 education

In the childhood obesity cohort, 56.7% completed ≥12 years in school, compared with 74.4%
in the comparison group. Girls more frequently completed ≥12 years of schooling than boys
in both groups (S2 Table).

Higher parental SES was positively associated with completion of ≥ 12 years of schooling in both the childhood obesity cohort and in the comparison group (Fig 2). The odds were more than five times higher among children growing up in high SES households compared with those growing up in low SES households (Table 2). However, even when taking parental SES and other risk factors into account, individuals in the childhood obesity cohort were almost half as likely to complete ≥ 12 school years compared with those in the comparison group (Table 2). The adjusted odds ratio (^{a}OR) [99% CI] to complete ≥ 12 years of schooling stratified by parental SES, when comparing the childhood obesity cohort with the comparison

> group, showed a trend towards lower OR in the higher level of SES: low parental SES = 0.69[0.50 to 0.95], p=0.0026; medium-low parental SES = 0.59 [0.48 to 0.72], p<0.0001; medium-high parental SES = 0.46 [0.35 to 0.60], p<0.0001; high parental SES = 0.27 [0.14 to 0.54], p<0.0001. P-value for interaction test for childhood obesity and parental SES reaches a p of 0.0015.

The association of parental SES on school performance was more pronounced in the comparison group than in the childhood obesity cohort. For example, stratified analyses show that adjusted OR of completing ≥ 12 years in school in low SES compared with high SES in the comparison group was 0.17 (99% CI 0.14 to 0.21, p<0.0001) and in the childhood obesity cohort 0.31 (99% CI 0.22 to 0.45, p<0.0001). Regardless of how we divide the childhood obesity population (into age- or calendar year at start of obesity treatment, SES sub-scores), large differences between the two groups remain (Table 2 and S3 Table).

BMJ Open

Table 2. Crude and adjusted odds ratio (99% CI); p-value of subjects completing ≥12 years of schooling

	Table 2. Crude and aujusted odds rat	10 (>> /0 CI), p-value of	subjects completing -1				
2		Crude estimates	Model 1, n=22 449	Model 2, n=20 610	Model 3, n=20 691	Model 4, n=20 885	Model 5, n=20 420
3	Childhood obesity cohort vs. comparison group	0.44 (0.40 to 0.48); <0.0001	0.57 (0.51 to 0.63); <0.0001	0.55 (0.50 to 0.62); <0.0001	0.54 (0.48 to 0.61); <0.0001	0.53 (0.48 to 0.59); <0.0001	0.59 (0.52 to 0.66); <0.0001
4	Non-Nordic vs. Nordic	0.70 (0.63 to 0.78); <0.0001	0.85 (0.75 to 0.97); 0.001	0.77 (0.67 to 0.88); <0.0001	0.87 (0.76 to 0.99); 0.0068	0.81 (0.71 to 0.92); <0.0001	0.97 (0.84 to 1.12); 0.5687
	ADHD/ADD vs. non-ADHD/ADD	0.19 (0.17 to 0.23); <0.0001	0.28 (0.24 to 0.33); <0.0001	0.27 (0.22 to 0.33); <0.0001	0.27 (0.22 to 0.32); <0.0001	0.26 (0.22 to 0.31); <0.0001	0.28 (0.23 to 0.34); <0.0001
5	Anxiety/depression vs. no anxiety/depression	0.31 (0.27 to 0.35); <0.0001	0.39 (0.34 to 0.45); <0.0001	0.36 (0.31 to 0.41); <0.0001	0.38 (0.33 to 0.44); <0.0001	0.39 (0.33 to 0.44); <0.0001	0.36 (0.31 to 0.42); <0.0001
6	Parental SES						
7	Medium-low vs. low parental SES	1.74 (1.54 to 1.97); <0.0001	1.69 (1.48 to 1.93); <0.0001				
8	Medium-high vs. low parental SES	3.33 (2.92 to 3.81); <0.0001	2.99 (2.59 to 3.45); <0.0001				
9	High vs. low parental SES	6.21 (5.19 to 7.44); <0.0001	5.40 (4.45 to 6.55); <0.0001				
10	Maternal education						
	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.08); <0.0001		1.63 (1.45 to 1.83); <0.0001			1.51 (1.34 to 1.71); <0.0001
11	University degree vs. compulsory school	3.23 (2.86 to 3.66); <0.0001		2.45 (2.12 to 2.83); <0.0001			2.17 (1.87 to 2.53); <0.0001
12	Paternal education						
13	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.09); <0.0001		1.58 (1.40 to 1.77); <0.0001			1.42 (1.26 to 1.60); <0.0001
14	University degree vs. compulsory school	3.07 (2.66 to 3.55); <0.0001		2.09 (1.77 to 2.45); <0.0001			1.81 (1.53 to 2.15); <0.0001
15	Maternal income						
	Q2 vs. Q1	1.28 (1.15 to 1.43); <0.0001			1.25 (1.10 to 1.41); <0.0001		1.07 (0.93 to 1.23); 0.2065
16	Q3 vs. Q1	1.45 (1.28 to 1.63); <0.0001			1.35 (1.17 to 1.55); <0.0001		1.05 (0.90 to 1.23); 0.4224
17	Q4 vs. Q1	1.86 (1.60 to 2.15); <0.0001			1.52 (1.28 to 1.81); <0.0001		1.07 (0.88 to 1.28); 0.3831
18	Paternal income						
19	Q2 vs. Q1	1.36 (1.19 to 1.55); <0.0001			1.31 (1.13 to 1.51); <0.0001		1.07 (0.91 to 1.26); 0.2740
20	Q2 vs. Q1 Q3 vs. Q1	1.90 (1.67 to 2.17); <0.0001			1.70 (1.48 to 1.96); <0.0001		1.24 (1.05 to 1.46); 0.0009
	Q4 vs. Q1	2.95 (2.58 to 3.36); <0.0001			2.47 (2.13 to 2.86); <0.0001		1.58 (1.33 to 1.88); <0.0001
21		2.95 (2.56 to 5.50), <0.0001			2.47 (2.15 to 2.80), <0.0001		1.56 (1.55 to 1.66), <0.0001
22	Maternal occupational status						
23	Occupation vs. no occupation	2.15 (1.92 to 2.40); <0.0001				1.72 (1.51 to 1.96); <0.0001	1.38 (1.19 to 1.61); <0.0001
24	Paternal occupational status						
25	Occupation vs. no occupation	2.24 (1.99 to 2.52); <0.0001				1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
26	Abbreviations: CI, confidence interval;	SES, socioeconomic stati	15.				
27	Model 1: Variables included were group	(childhood obesity coho	ort vs. comparison group)	migration background.	ADHD/ADD, anxietv/de	pression, and parental SH	ES
	Model 2: Variables included were group						
28			-	-			
29	Model 3: Variables included were group	o, migration background,	ADHD/ADD, anxiety/de	epression, maternal-, and	paternal income		
30	Model 4: Variables included were group	, migration background,	ADHD/ADD, anxiety/de	epression, maternal-, and	paternal occupational sta	atus.	
31	Model 5: Variables included were group	migration background	ADHD/ADD anxiety/de	epression maternal- and	paternal education inco	me and occupational stat	118
32		,,			p		
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43				14			
44				= ·			
45		For peer rev	/iew only - http://bmjop	en.bmj.com/site/about/	/guidelines.xhtml		
45		· [2	,	.		
47							

> Of note, having a non-Nordic-, compared to a Nordic background, was associated with reduced odds to complete 12 or more years of schooling (Table 2). This was however not observed in boys in the childhood obesity cohort (p=0.68). Further, excluding individuals with a non-Swedish background, or ADHD/ADD, or anxiety/depression in sensitivity analyses, did not alter the association between childhood obesity and attained level of education. For example, when excluding individuals with a non-Swedish background, the ^aOR to complete ≥ 12 years in school for the obesity cohort vs. the comparison group was 0.55 [0.48 to 0.63], p < 0.0001.

Degree of obesity and treatment response on completed

educational level in children with obesity

In the childhood obesity cohort, the mean age at start of treatment was 13.5 years (99% CI: 13.45 to 13.62) and the mean BMI SDS was +2.91 (99% CI: 2.89 to 2.92). The median treatment duration was 2.83 years (IQR: 1.86 to 4.42) and the mean treatment response, calculated using BMI SDS from the first to the last clinical visit, was -0.13 (99% CI: -0.15 to -0.10, n=2,709, 68.7%, dropouts excluded). At baseline, 50.7% had obesity and 49.3% had morbid obesity. At last measured weight and height, 33.4% had obesity and 47.2% had morbid obesity, while 19.4% of the children no longer had obesity (dropouts excluded).

A greater degree of obesity at start of treatment lowered the odds of completing ≥ 12 years of schooling, ^aOR [99% CI] = 0.51 [0.40 to 0.64], p<0.0001, per one unit increase in BMI SDS, while age at start of obesity treatment did not influence the outcome (Table 3). Treatment response was categorized as good response (n=847), no response (n=1 315), poor response (n=547), and dropouts (n=1,233). Of those with good treatment response, 67% completed

 \geq 12 years in school compared with 58%, 52%, and 50% in the groups with no or poor response, and dropouts, respectively (p<0.0001). Within all SES groups, except for high SES, greater treatment response resulted in higher odds of completing ≥ 12 years in school (Fig 3). Dropouts were less likely to complete ≥ 12 years in school compared with non-responders (Table 3) but this was not observed in the high SES group (Fig 3). Duration of treatment differed between children with good and poor treatment response (3.5 vs. 4.0 years; p<0.0001). In the childhood obesity cohort, the association between parental SES and odds of completing ≥ 12 years of schooling was not modified by treatment response (p=0.603).

Table 3. Crude and adjusted odds ratios of completing ≥12 years of schooling in the childhood obesity cohort

	Odds ratio (99% CI) performed with ordinary logistic regression; p value		
	Crude estimates	Model 1, n=3 921	Model 2, n=3 575
Sex (girls vs. boys)	1.26 (1.06 to 1.48); 0.0004	1.30 (1.08 to 1.56); 0.0002	1.29 (1.06 to 1.56); 0.0008
Migration background (non-Nordic vs. Nordic)	0.78 (0.65 to 0.94); 0.0006	0.74 (0.60 to 0.91); 0.0002	0.69 (0.55 to 0.87); <0.000
ADHD/ADD (yes vs. no)	0.31 (0.25 to 0.40); <0.0001	0.35 (0.27 to 0.45); <0.0001	0.33 (0.26 to 0.44); <0.000
Anxiety/depression (yes vs. no)	0.43 (0.35 to 0.53); <0.0001	0.45 (0.36 to 0.57); <0.0001	0.43 (0.34 to 0.55); <0.000
BMI SDS at start of treatment	0.47 (0.38 to 0.58); <0.0001	0.51 (0.40 to 0.64); <0.0001	0.48 (0.38 to 0.62); <0.000
Age at start of treatment	0.96 (0.93 to 1.01); 0.0234	1.01 (0.96 to 1.06); 0.60	1.01 (0.96 to 1.06); 0.805
Treatment response*			
Good response vs. no response	1.46 (1.15 to 1.85); <0.0001	1.34 (1.04 to 1.72); 0.0031	1.28 (0.98 to 1.67); 0.0182
Poor response vs. no response	0.78 (0.60 to 1.02); 0.0167	0.72 (0.54 to 0.96); 0.0028	0.71 (0.53 to 0.96); 0.003
Dropouts vs. no response	0.71 (0.58 to 0.87); <0.0001	0.69 (0.55 to 0.86); <0.0001	0.68 (0.54 to 0.87); <0.000
Parental SES			
Medium-low vs. low parental SES	1.63 (1.31 to 2.03); <0.0001	1.56 (1.24 to 1.98); <0.0001	
Medium-high vs. low parental SES	2.40 (1.90 to 3.05); <0.0001	2.19 (1.69 to 2.83); <0.0001	
High vs. low parental SES	2.99 (2.11 to 4.22); <0.0001	2.83 (1.95 to 4.12); <0.0001	
Maternal education			
Upper secondary school vs. compulsory school	1.74 (1.44 to 2.09); <0.0001		1.57 (1.27 to 1.94); <0.000
University degree vs. compulsory school	2.47 (1.94 to 3.16); <0.0001		2.23 (1.67 to 2.98); <0.000
Paternal education			
Upper secondary school vs. compulsory school	1.48 (1.23 to 1.79); <0.0001		1.26 (1.03 to 1.55); 0.004
University degree vs. compulsory school	1.92 (1.44 to 2.56); < 0.0001		1.41 (1.01 to 1.95); 0.0076
Model 1: Variables included were sex, r start of treatment, treatment response, ar Model 2: Variables included were sex, r	nd parental SES.		
start of treatment, treatment response, m	aternal, and paternal educat	ion.	

Discussion

In this prospective cohort study, we have compared level of education among individuals recorded in the Swedish Childhood Obesity Treatment Register, and a comparison group matched by sex, year of birth, and living area. Individuals in the childhood obesity cohort were half as likely to complete 12 or more years of schooling, independently of parental socioeconomic status (SES).

Among individuals from high SES families, those in the childhood obesity cohort were approximately one third as likely to complete ≥ 12 years of schooling as individuals from high SES families in the comparison group. Furthermore, our results indicate that parental SES was more important to complete ≥ 12 school years in the comparison group than in the childhood obesity cohort. An association between obesity and impaired academic achievements has been demonstrated before.⁸⁹ To which extent other psychosocial factors contribute to this finding has not been evaluated. It is well established that low parental SES,¹³⁻¹⁵ immigrant background,⁹ ¹⁴ ADHD/ADD,^{9 17} and depression,^{9 14 16} may negatively affect performance in school. These factors are also overrepresented in the paediatric population with obesity. In this study, we can confirm that low parental SES, neuropsychiatric disorders, and anxiety/depression are more common in children with obesity and contribute to the decreased odds of completing ≥ 12 school years. However, we found that obesity in childhood is a considerable risk factor for not completing ≥ 12 years of schooling even after taking these and other important risk factors into account.

Obesity treatment outcome and educational level

We identified a positive association between weight-loss during obesity treatment and completed educational level, which confirms our previously reported data unadjusted for SES.⁹ Children with good treatment response, compared with those with no response, were more likely to complete ≥ 12 school years in all SES groups. A decrease of 0.25 BMI SDS, that has previously been shown to improve metabolic health,²⁷ we can now also show may have a positive association on completing ≥ 12 years of schooling. However, the positive effects of successful obesity treatment did not compensate for the observed SES differences on attained level of education.

In Sweden, 12 years of schooling is not mandatory, but the long-term social effects are considerable for those who fail. It has been estimated that 50% of those who fail to complete ≥ 12 school years face a situation of being left outside the society with poor psychosocial health and large costs for the society.²⁸ Thus, it is possible that school failure will further worsen the health perspective of adolescents with obesity.

312 Potential mechanisms between obesity, weight loss, and school

313 performance

Several parameters may interplay when measuring school completion, e.g. resourcefulness, intelligence, or ability to conform. Nevertheless, the mechanisms by which obesity influences school performance are unclear but are likely multifactorial and complex. Possible mechanisms may include psychosocial aspects such as stigma²⁹ and increased risk for anxiety and depression.⁷ Physiological mechanisms may be mediated by anatomical changes such as atrophy of the frontal lobe and reduced hippocampal volume have been demonstrated in individuals with obesity.³⁰ Some of the reported cognitive dysfunctions in children and adolescents with obesity include slower response times when performing visuospatial attention tasks,³¹ diminished executive functions, such as working memory,³² and slower cognitive

BMJ Open

performance speed.³³ In addition, obesity-related comorbidities such as insulin resistance,³⁴
type 2 diabetes mellitus,³⁵ chronic low-grade inflammation,³⁶ and the metabolic syndrome³⁷
have also been associated with impaired executive function, memory performance, attention,
and cognitive flexibility. A high fat diet in rodents demonstrated detrimental effects on memory
and executive functions.³⁰

At least some of these effects seem to be reversible, which may add to the positive associations we observed of weight loss on school outcome. Weight loss may have a direct positive effect on cognitive functions.³⁸ Extensive weight loss via bariatric surgery improves insulin sensitivity and decreases systematic inflammation,³⁹ and it has been suggested that these factors affect cognitive functions.⁴⁰

However, children with obesity are often stigmatized,⁴¹ have a low self-esteem, and are exposed to bullying and social exclusion.⁴² All these factors have most likely a negative impact on school performance. In contrast, a strong social network is most probably an important factor both for good treatment response and achievement in school. An inverse association has been observed between familial social support and child weight status.⁴³ The relationship between BMI and school completion may also be biased from e.g. assortative mating and dynastic effects which have shown to reduce causal effects.⁴⁴ There is also a suggested interplay between genetic variants and environmental factors that may affect intelligence.⁴⁵ Thus, it is likely that both negative social effects of obesity and obesity-related morbidity, as well as genetic factors, contribute to the adverse association of childhood obesity on completed educational level.^{7 29 41}

344 Limitations

345 Using longitudinal data from several national registers provided an opportunity to assess the346 impact of obesity on completed educational level, adjusted for several important confounders.

Data on both exposure and outcome were prospectively collected and defined according to
 standardized international classifications.^{19 26}

However, some important limitations should be recognized. We did not have anthropometric data on children in the comparison group. There is no representative national data on children with obesity in Sweden. As our comparison group includes children with obesity, although likely less than 1% according to obesity diagnoses found in the National Patient Register, odds of lower level of education associated with obesity might be underestimated. It is also important to consider that children receiving obesity treatment may not be representative of all children with obesity. It should further be noted that parental SES was based on data from one specific year in the child's life and not over the child's entire adolescent lifetime, and that the SES indicators used may not reflect the whole SES spectrum. In addition, the impact of anxiety and depression on educational level may be underestimated since these conditions often are under-diagnosed. We urge the reader to bear in mind that despite several possible mechanisms have been proposed, causal relationships of obesity and the effect of treatment on the outcome remains to be established. Lastly, factors such as free education, school lunches, and students' health care may have an impact on the generalizability of our data to other populations.

363 Conclusion

In this longitudinal, population-based study, individuals with obesity in childhood were less likely to complete 12 or more years of schooling, compared with a group from the general population. The odds associated with obesity remained significantly increased even after taking parental SES and other important risk factors, such as ADHD, into consideration. The underlying mechanisms are unclear but previous studies indicate that the effects of obesity on school completion both involve psychosocial effects and cognitive functions.¹⁶ ¹⁷ ³² The negative impact of childhood obesity on educational level may partly be reversed by successful Page 23 of 35

1 2 **BMJ** Open

3
4
5
6
5 6 7 8
8
9
9 10
11
12
13
14
15
12 13 14 15 16 17 18
17
18
19
20
21
22
23
24
25
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
27
28
29
30
31 22
2∠ 22
27
34
35 36 37 38
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

obesity treatment in childhood. Results from this study underline effects of childhood obesity 371 on schooling. For the sake of an optimal educational environment, it is of great importance to 372 increase awareness both in schools and among decision makers to allocate resources for 373 potential extra support, e.g. reduce stigma and increase educational support. 374

Acknowledgements 375

The authors would like to thank all local health care professionals in Sweden working with 376 children and adolescents with obesity and their valuable work with BORIS, and the BORIS 377 steering committee for establishing and maintaining the register. 378

Author contributions 379

Conceptualization: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude Marcus, 380

Emilia Hagman. 381

382 Data curation: Louise Lindberg.

Formal analysis: Louise Lindberg, Emilia Hagman. 383

Funding acquisition: Louise Lindberg, Claude Marcus, Emilia Hagman. 384

Methodology: Louise Lindberg, Emilia Hagman. 385

Project administration: Louise Lindberg, Emilia Hagman. 386

387 Supervision: Martina Persson, Emilia Hagman, Pernilla Danielsson, Claude Marcus.

Writing – original draft: Louise Lindberg. 388

Writing – review & editing: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude 389

Marcus, Emilia Hagman. 390

391

Funding statement 392

This study was supported by funds to LL by Crown Princess Lovisa's Foundation (2017-393 00348), Samariten Foundation (2017-0305), the Stockholm FreeMason Foundation for 394 Children's Welfare, Sällskapet Barnavård, Anna-Lisa och Arne Gustafssons Foundation, 395 60

Solstickan Foundation and Sven Jerring Foundation. EH was supported by the Swedish Society for Medical Research, Fredrik and Ingrid Thuring's Foundation (2017-00309) and Magnus Bergvall Foundation (2017-02113), and CM by the Swedish Heart and Lung Foundation (20150790).

Data Sharing statement

The data that support the findings of this study contains sensitive information. Restrictions therefore apply to the availability of these data, which were used under license for the current study, and so are not publicly available. According to Swedish law and the General Data Protection Regulation, the authors are not permitted to share the datasets used in this study with third parties. Given that an ethical approval is obtained, any individual may apply for data from Statistics Sweden via information@scb.se, the Swedish National Board of Health and Welfare via registerservice@socialstyrelsen.se, and the Swedish Childhood Obesity Treatment Register via http://www.e-boris.se/kontaktuppgifter/.

Competing interests

All authors completed the **ICMJE** uniform disclosure form have at www.icmje.org/coi disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted.

References

1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017 doi: 10.1016/S0140-6736(17)32129-3 2. Hagman E, Danielsson P, Brandt L, et al. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr Diabetes 2016;6(8):e227. doi: 10.1038/nutd.2016.34 [published Online First: 2016/08/23] 3. Hagman E, Danielsson P, Elimam A, et al. The effect of weight loss and weight gain on blood pressure in children and adolescents with obesity. Int J Obes (Lond) 2019;43(10):1988-94. doi: 10.1038/s41366-019-0384-2 [published Online First: 2019/06/04] 4. Lindberg L, Danielsson P, Persson M, et al. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS medicine 2020;17(3):e1003078. doi: 10.1371/journal.pmed.1003078 [published Online First: 2020/03/19] 5. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 2011;35(7):891-8. doi: 10.1038/ijo.2010.222 6. Viner RM, Cole TJ. Adult socioeconomic, educational, social, and psychological outcomes of childhood obesity: a national birth cohort study. BMJ 2005;330(7504):1354. doi: 10.1136/bmj.38453.422049.E0 [published Online First: 2005/05/20] 7. Lindberg L, Hagman E, Danielsson P, et al. Anxiety and depression in children and adolescents with obesity: a nationwide study in Sweden. BMC medicine 2020;18(1):30. doi: 10.1186/s12916-020-1498-z [published Online First: 2020/02/23] 8. Laitinen J, Power C, Ek E, et al. Unemployment and obesity among young adults in a northern Finland 1966 birth cohort. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2002;26(10):1329-38. doi: 10.1038/sj.ijo.0802134 9. Hagman E, Danielsson P, Brandt L, et al. Childhood Obesity, Obesity Treatment Outcome, and Achieved Education: A Prospective Cohort Study. The Journal of adolescent health : official publication of the Society for Adolescent Medicine 2017 doi: 10.1016/j.jadohealth.2017.04.009 [published Online First: 2017/07/12] 10. Karnehed N, Rasmussen F, Hemmingsson T, et al. Obesity and attained education: cohort study of more than 700,000 Swedish men. Obesity 2006;14(8):1421-28. 11. French SA, Wall M, Corbeil T, et al. Obesity in Adolescence Predicts Lower Educational Attainment and Income in Adulthood: The Project EAT Longitudinal Study. Obesity (Silver Spring) 2018;26(9):1467-73. doi: 10.1002/oby.22273 [published Online First: 2018/09/19] 12. Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990-2005. Obesity (Silver Spring) 2008;16(2):275-84. doi: 10.1038/oby.2007.35 [published Online First: 2008/02/02] 13. Koivusilta LK, West P, Saaristo VM, et al. From childhood socio-economic position to adult educational level - do health behaviours in adolescence matter? A longitudinal study. BMC public health 2013;13:711. doi: 10.1186/1471-2458-13-711 14. Kark M, Hjern A, Rasmussen F. Poor school performance is associated with a larger gain in body mass index during puberty. Acta Paediatr 2014;103(2):207-13. doi: 10.1111/apa.12471 15. DeGarmo DS, Forgatch MS, Martinez CR, Jr. Parenting of divorced mothers as a link between social status and boys' academic outcomes: unpacking the effects of socioeconomic status. Child development 1999;70(5):1231-45. [published Online First: 1999/11/05]

2		
3	464	16. Freeman A, Tyrovolas S, Koyanagi A, et al. The role of socio-economic status in depression: results
4	465	from the COURAGE (aging survey in Europe). BMC public health 2016;16(1):1098. doi:
5	466	10.1186/s12889-016-3638-0 [published Online First: 2016/10/21]
6	467	17. Scholtens S, Rydell AM, Yang-Wallentin F. ADHD symptoms, academic achievement, self-
7	468	perception of academic competence and future orientation: a longitudinal study.
8		
9	469	Scandinavian journal of psychology 2013;54(3):205-12. doi: 10.1111/sjop.12042 [published
10	470	Online First: 2013/03/21]
11 12	471	18. Quek YH, Tam WWS, Zhang MWB, et al. Exploring the association between childhood and
12 13	472	adolescent obesity and depression: a meta-analysis. Obesity reviews : an official journal of
13 14	473	the International Association for the Study of Obesity 2017;18(7):742-54. doi:
15	474	10.1111/obr.12535 [published Online First: 2017/04/13]
16	475	19. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness,
17	476	overweight and obesity. <i>Pediatr Obes</i> 2012;7(4):284-94. doi: 10.1111/j.2047-
18	477	6310.2012.00064.x
19	478	20. Hagman E, Danielsson P, Lindberg L, et al. Paediatric obesity treatment during 14 years in
20	479	Sweden: Lessons from the Swedish Childhood Obesity Treatment Register-BORIS. Pediatr
21	480	<i>Obes</i> 2020;15(7):e12626. doi: 10.1111/ijpo.12626 [published Online First: 2020/02/20]
22	481	21. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity number:
23	482	possibilities and pitfalls in healthcare and medical research. European journal of
24	483	epidemiology 2009;24(11):659-67. doi: 10.1007/s10654-009-9350-y
25	484	22. Ludvigsson JF, Almqvist C, Bonamy AK, et al. Registers of the Swedish total population and their
26	485	use in medical research. European journal of epidemiology 2016;31(2):125-36. doi:
27 28	486	10.1007/s10654-016-0117-y [published Online First: 2016/01/16]
28 29	487	23. Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish
29 30	488	national inpatient register. BMC public health 2011;11:450. doi: 10.1186/1471-2458-11-450
31	488 489	
32		[published Online First: 2011/06/11]
33	490	24. Wallerstedt SM, Wettermark B, Hoffmann M. The First Decade with the Swedish Prescribed Drug
34	491	Register - A Systematic Review of the Output in the Scientific Literature. <i>Basic & clinical</i>
35	492	<i>pharmacology & toxicology</i> 2016;119(5):464-69. doi: 10.1111/bcpt.12613 [published Online
36	493	First: 2016/04/27]
37	494	25. Brooke HL, Talback M, Hornblad J, et al. The Swedish cause of death register. <i>European journal of</i>
38	495	epidemiology 2017;32(9):765-73. doi: 10.1007/s10654-017-0316-1 [published Online First:
39	496	2017/10/07]
40	497	26. UNESCO. International standard classification of education: Isced 1997. Re-edition. Paris: UNESCO
41	498	Institute for Statistics. 2011
42	499	27. Ford AL, Hunt LP, Cooper A, et al. What reduction in BMI SDS is required in obese adolescents to
43 44	500	improve body composition and cardiometabolic health? Archives of disease in childhood
44	501	2010;95(4):256-61. doi: 10.1136/adc.2009.165340 [published Online First: 2009/12/08]
46	502	28. Nilsson I, Wadeskog A. Utanförskapets Ekonomiska Sociotoper: Socioekonomisk analys på
47	503	stadsdelsnivå inom ramen för Healthy Cities 2012
48	504	29. Finn KE, Seymour CM, Phillips AE. Weight bias and grading among middle and high school
49	505	teachers. Br J Educ Psychol 2019 doi: 10.1111/bjep.12322 [published Online First:
50	506	2019/10/28]
51	507	30. Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and
52	508	vascular changes. <i>Frontiers in neuroscience</i> 2014;8:375. doi: 10.3389/fnins.2014.00375
53	509	[published Online First: 2014/12/06]
54	510	31. Tsai C-L, Chen F-C, Pan C-Y, et al. The neurocognitive performance of visuospatial attention in
55	510	children with obesity. Frontiers in psychology 2016;7
56		
57 58	512 512	32. Laurent JS, Watts R, Adise S, et al. Associations Among Body Mass Index, Cortical Thickness, and
58 59	513	Executive Function in Children. <i>JAMA Pediatr</i> 2019 doi: 10.1001/jamapediatrics.2019.4708
60	514	[published Online First: 2019/12/10]
00		

1		
2		
3	515	33. Sweat V, Yates KF, Migliaccio R, et al. Obese adolescents show reduced cognitive processing
4	516	speed compared with healthy weight peers. Childhood Obesity 2017
5 6	517	34. Cheke LG, Bonnici HM, Clayton NS, et al. Obesity and insulin resistance are associated with
7	518	reduced activity in core memory regions of the brain. <i>Neuropsychologia</i> 2017;96:137-49.
8	519	35. Bruehl H, Sweat V, Tirsi A, et al. Obese Adolescents with Type 2 Diabetes Mellitus Have
9	520	Hippocampal and Frontal Lobe Volume Reductions. Neuroscience and medicine 2011;2(1):34-
10	521	42. doi: 10.4236/nm.2011.21005
11	522	36. Spyridaki EC, Simos P, Avgoustinaki PD, et al. The association between obesity and fluid
12	523	intelligence impairment is mediated by chronic low-grade inflammation. British Journal of
13	524	Nutrition 2014;112(10):1724-34.
14	525	37. Mangone A, Yates KF, Sweat V, et al. Cognitive functions among predominantly minority urban
15	526	adolescents with metabolic syndrome. Applied Neuropsychology: Child 2017:1-7.
16	527	38. Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric
17 18	528	surgery. <i>Obesity</i> 2014;22(1):32-38.
18 19	529	39. Olbers T, Beamish AJ, Gronowitz E, et al. Laparoscopic Roux-en-Y gastric bypass in adolescents
20	530	with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. <i>Lancet</i>
21	531	Diabetes Endocrinol 2017;5(3):174-83. doi: 10.1016/S2213-8587(16)30424-7
22	532	40. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. <i>Nature Reviews</i>
23	533	Neuroscience 2015;16(11):660.
24	534	41. Latner JD, Stunkard AJ. Getting worse: the stigmatization of obese children. <i>Obesity research</i>
25	535	2003;11(3):452-6. doi: 10.1038/oby.2003.61
26	535 536	42. Pierce JW, Wardle J. Cause and effect beliefs and self-esteem of overweight children. <i>Journal of</i>
27		
28	537	child psychology and psychiatry, and allied disciplines 1997;38(6):645-50. [published Online
29 30	538	First: 1997/10/08]
30 31	539	43. Lindberg L, Ek A, Nyman J, et al. Low grandparental social support combined with low parental
32	540	socioeconomic status is closely associated with obesity in preschool-aged children: a pilot
33	541	study. <i>Pediatr Obes</i> 2015 doi: 10.1111/ijpo.12049
34	542	44. Brumpton B, Sanderson E, Heilbron K, et al. Avoiding dynastic, assortative mating, and population
35	543	stratification biases in Mendelian randomization through within-family analyses. Nature
36	544	<i>communications</i> 2020;11(1):3519. doi: 10.1038/s41467-020-17117-4 [published Online First:
37	545	2020/07/16]
38	546	45. Plomin R, von Stumm S. The new genetics of intelligence. <i>Nature reviews Genetics</i>
39	547	2018;19(3):148-59. doi: 10.1038/nrg.2017.104 [published Online First: 2018/01/18]
40	548	
41 42	540	
42		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58		
59		
60		

Supporting information S1 Table. International Classification of Diseases (ICD 10th revision) codes and Anatomical Therapeutic Chemical (ATC) classification system codes used. S2 Table. Proportion of children completing ≥ 12 years of schooling. S3 Table. Proportion of individuals who have undergone obesity treatment in childhood who completed ≥ 12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942). vchart. **Figure Legends** Fig 1. Participant flowchart. Fig 2. Percentage of individuals completing ≥ 12 years of schooling by SES level in the childhood obesity cohort (n=3,921,) and the comparison group (n=18,528). Fig 3. Crude percentage of individuals with obesity in childhood (n=3,921) completing ≥ 12 school years by parental SES and treatment response. p=p for trend; n=refers to number of individuals in each category.

BMJ Open

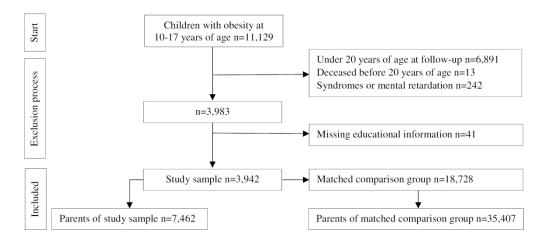


Figure 1

169x73mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

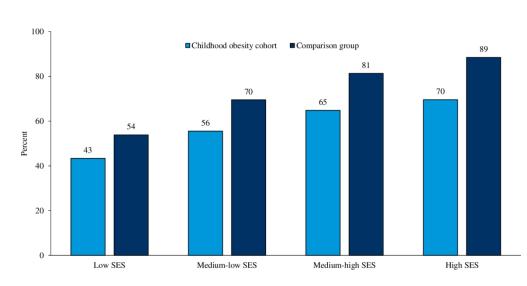
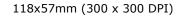
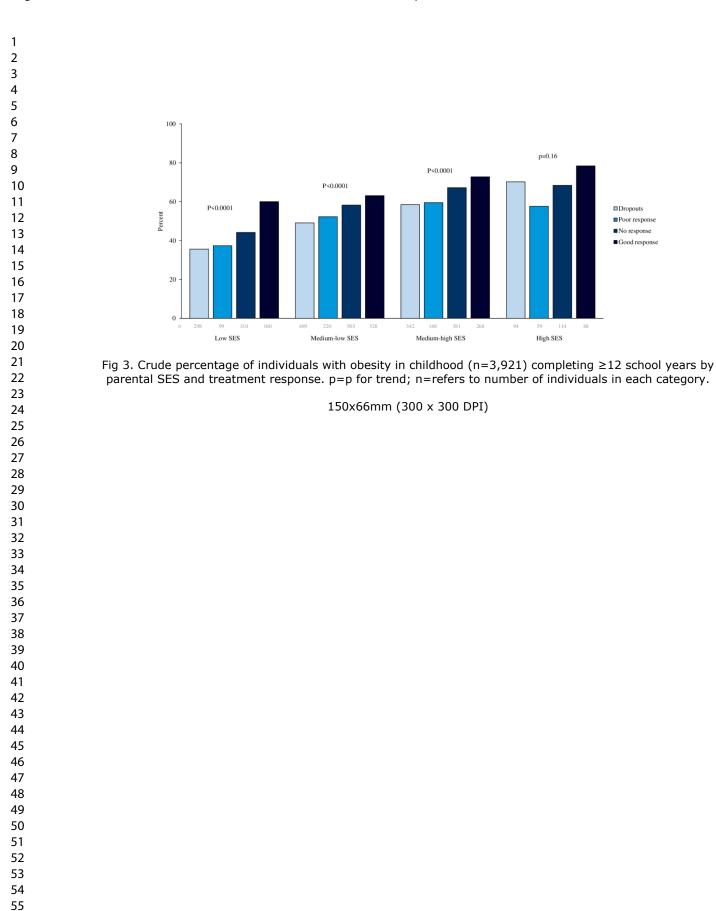




Fig 2. Percentage of individuals completing \geq 12 years of schooling by SES level in the childhood obesity cohort (n=3,921) and the comparison group (n=18,528).

S1 Table. International Classification of Diseases (ICD 10th revision) codes and Anatomical Therapeutic Chemical (ATC) classification system codes used.

Condition	ICD-10	ATC Code
Anxiety/sedatives	F40.0-F40.1, F41-F42, F51.4-F51.9, F93.0-F93.2	N05B
Depression/antidepressants	F32-F39, F92	N06A
ADHD/ADD	F90	N06B
Mental retardation	F70-F79	
Genetic syndromes		
Fragile X	Q99.2	
Klinefelter	Q98	
Laurence-Moon-Bardet-Biedl	Q87.8B	
Mb Down	Q90	
Noonan	Q87.1E	
Prader-Willi	Q87.1F	
Silver Russell	Q87.1G	
Turner	Q96	

Q96

1	
2	
3	
4	
5	
5 6	
7	
, Q	
9	
9 1	~
1	1
1	2
1	3
1	4
1	5
1	6
	6
1	/
1	8
1	9
2	0
2	1
2	2
2	3
	4
2	5
2	5 7
2	6
2	7
2	8
2	9
3	0
	1
3	
3	
3	
-	4
	5
3	6
3	7
3	8
	9
4	
4	1
4	
4	
4	
4	
4	
4	7
4	
4	
	0
2	ו ר
5	2
5	
	4
5	5
5	6
5	
	, 8
5	

59 60

S2 Table. Proportion of children com	pleting ≥ 12 years of schooling
--------------------------------------	--------------------------------------

	Childhood obesity cohort		Comparison group		
	n	%	n	%	p-value [¶]
Total	2,236	56.7	13,939	74.4	< 0.0001
Sex					
Girl	1,090	59.7	6,843	78.7	< 0.0001
Boy	1,146	54.1	7,096	70.8	< 0.0001
Migration background					
Nordic	1,695	58.4	10,974	78.1	< 0.0001
Non-Nordic	541	52.2	2,965	63.4	< 0.0001
ADHD/ADD					
Non-ADHD/ADD	2,032	61.1	13,528	76.5	< 0.0001
ADHD/ADD	204	33.1	411	39.4	0.01
Anxiety/depression					
No anxiety/depression	1,902	61.1	12,754	77.0	< 0.0001
Anxiety/depression	334	40.2	1,185	54.9	< 0.0001
Parental SES			·		
Low	376	43.4	1,455	53.9	< 0.0001
Medium-low	855	55.5	4,187	69.5	< 0.0001
Medium-high	751	64.8	5,358	81.3	< 0.0001
High	247	69.6	2,848	88.5	< 0.0001
Maternal education			,		
Compulsory school	755	47.7	3,474	61.9	< 0.0001
Upper secondary school	945	61.3	5,582	77.9	< 0.0001
University degree	506	69.3	4,589	85.3	< 0.0001
Paternal education	200	0712	1,005	0010	(010001
Compulsory school	639	50.2	2,775	63.0	< 0.0001
Upper secondary school	1,132	59.9	7,085	77.9	< 0.0001
University degree	318	66.0	3,333	85.2	< 0.0001
Maternal income	010	0010	0,000	0012	(010001
Q1	614	52.3	3,327	68.1	< 0.0001
Q2	750	58.6	4,391	75.2	< 0.0001
Q3	542	58.2	3,534	77.1	< 0.0001
Q4	304	62.6	2,429	81.3	< 0.0001
Paternal income	501	02.0	2,125	01.5	(0.0001
Q1	556	49.3	2,453	62.6	< 0.0001
Q2	410	54.0	2,260	72.3	< 0.0001
Q3	549	61.8	3,404	77.6	< 0.0001
Q3 04	572	66.2	5,056	84.5	< 0.0001
Maternal occupational status	512	00.2	5,050	01.0	\$0.0001
No occupation	438	47.8	1,722	58.3	< 0.0001
Occupation	1,777	60.0	12,005	77.9	< 0.0001
Paternal occupational status	1,///	00.0	12,005	11.2	<0.0001
No occupation	363	45.4	1,543	58.7	< 0.0001
Occupation	1,736	60.5	11,703	78.5	< 0.0001

Abbreviations: SES, socioeconomic status; Q, quartile. [¶]Performed with chi-square. 1 EUR \approx 9.83 SEK December 31st 2017. Q1: <18,652 EUR; Q2: 18,652 to 25,025 EUR; Q3: 25,026 to 32,309 EUR; Q4: >32,309 EUR.

S3 Table. Proportion of individuals who have undergone obesity treatment in childhood who completed ≥12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942).

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4.5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-9
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-9
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	9-10
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
D		(e) Describe any sensitivity analyses	
Results	1.2*		12 -
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	fig
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Description 1-1	1 1 4	(c) Consider use of a flow diagram	11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
0 + 1 +	4	(c) Summarise follow-up time (eg, average and total amount)	12
Outcome data	15*	Report numbers of outcome events or summary measures over time	12

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	12- 17
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12 17
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20 21
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18 21
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other informati	on		•
Funding	22	Give the source of funding and the role of the funders for the present study and, if	22
		applicable, for the original study on which the present article is based	23

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Obesity in childhood, socioeconomic status, and completion of 12 or more school years: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040432.R2
Article Type:	Original research
Date Submitted by the Author:	02-Dec-2020
Complete List of Authors:	Lindberg, Louise; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Persson, Martina; Karolinska Institute, Department of Medicine, Clinical Epidemiology, Karolinska Institutet; Danielsson, Pernilla; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Hagman, Emilia; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology Marcus, Claude; Karolinska Institutet, Dept. Clinical Science, Intervention and Technology
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Nutrition and metabolism, Public health
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, Paediatric endocrinology < PAEDIATRICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

tellez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Obesity in childhood, socioeconomic status, and completion of 12 or
2	more school years: a prospective cohort study
3	
4	Louise Lindberg ¹ , Martina Persson ^{2,3,4} , Pernilla Danielsson ¹ , Emilia Hagman ^{1*} , Claude
5	Marcus ¹
6	
7 8	¹ Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
9 10	² Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden
11 12	³ Department of Diabetes and Endocrinology, Sachsska Children's Hospital Södersjukhuset, Stockholm, Sweden
13 14	⁴ Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
15	*Corresponding author e-mail: emilia.hagman @ki.se (EH)
16 17	Other contributing authors e-mail: <u>louise.lindberg@ki.se;</u> martina.persson@ki.se; pernilla.danielsson.liljeqvist@ki.se; claude.marcus@ki.se
18	Keywords: Pediatric obesity, schools, epidemiology, social class, cohort study
19	Word count: 3963
	1

 Objectives: Children with obesity achieve lower educational level compared with normalweight peers. Parental socioeconomic status (SES) impacts both a child's academic achievement and risk of obesity. The degree to which the association between obesity and education depend on parental SES is unclear. Therefore, the primary aim is to investigate if individuals with obesity in childhood are less likely to complete ≥12 years of schooling, independently of parental SES. The secondary aim is to study how weight loss, level of education, and parental SES are associated.

- **Design:** Nationwide prospective cohort study.
- **Setting:** Swedish national register data.

Participants: Children aged 10-17 years, recorded in the Swedish Childhood Obesity
Treatment Register (BORIS), and aged 20 years or older at follow-up were included
(n=3,942). A comparison group was matched by sex, year of birth, and living area
(n=18,728). Parental SES was based on maternal and paternal level of education, income,
and occupational status.

Primary outcome measure: Completion of ≥12 years of schooling was analysed with
conditional logistic regression, and adjusted for group, migration background, ADHD/ADD,
anxiety/depression, and parental SES.

Results: Among those with obesity in childhood, 56.7% completed ≥12 school years
compared with 74.4% in the comparison group (p<0.0001). High parental SES compared
with low SES was strongly associated with attained level of education in both children with
and without obesity, adjusted odds ratio (^aOR) [99% confidence interval (CI)]=5.40 [4.45 to
6.55]. However, obesity in childhood remains a strong risk factor of not completing ≥12

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

1

school years, independently of parental SES, aOR=0.57 [0.51 to 0.63]. Successful obesity 43 treatment increased the odds of completing ≥ 12 years in school even when taking parental 44 SES into account, ^aOR=1.34 [1.04 to 1.72]. 45 **Conclusions**: Individuals with obesity in childhood have lower odds of completing ≥ 12 46 school years, independently of parental SES. Optimized obesity treatment may improve 47 48 school results in this group. 49 Strengths and limitation of this study 50 In this prospective cohort study, we have been able to investigate the level of 51 education among a large number of individuals who have obesity in childhood (n= 52 3,942) in comparison with a matched group (n=18,728). 53 54 The study design of using longitudinal data from several national registers provided • the opportunity to control for important confounding factors, such as neuropsychiatric 55 disorders, anxiety, depression, and family socioeconomic status. 56 Factors such as free education, school lunches, and students' health care may have an 57 • impact on the generalizability of our data to other populations. 58 59

60 Introduction

During the last 40 years, the prevalence of childhood obesity has increased exponentially in many parts of the world.¹ Childhood obesity is associated with increased risks of somatic morbidity and risk of premature death in adulthood.²⁻⁵ Psychosocial maladjustment, anxiety and depression are also prevalent⁶⁷ and may contribute to the obesity-related long-term morbidity and mortality.⁵ Most studies report that children with obesity more often have lower school grades and reach a lower level of education compared with normal-weight peers,⁸⁻¹⁰ but in a recent study, only girls with obesity were affected.¹¹ We have previously confirmed the association between obesity and lower attained level of education among both girls and boys.⁹ We also found that successful obesity treatment was positively correlated with completing ≥ 12 school years, although without taking socioeconomic status (SES) into account.9

Low parental SES is a well-established risk factor for both childhood obesity and poorer academic achievement.¹² In particular, parental education has been demonstrated to influence the child's performance at school.¹³⁻¹⁵ In addition, depression¹⁶ and neuropsychiatric disorders, including Attention Deficit Disorder with or without Hyperactivity (ADHD/ADD),¹⁷ may adversely affect school results. Depression and neuropsychiatric disorders are more common in children with obesity compared to the general population.⁹¹⁸ Investigating the impact of obesity alone on attained level of education requires that these and other confounders are considered. The primary aim of this study was to disentangle the association of childhood obesity and parental SES on completed level of education. The

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

secondary aim was to study if positive effects of weight loss on attained level of education isaffected by parental SES.

Methods

84 Study population

This prospective cohort study included children with obesity,¹⁹ aged 10-17 years at the start of obesity treatment (December 1994 to December 2015), and aged 20 years or older and living in Sweden at follow-up (December 31st 2017; n=3,942). Data on subjects receiving treatment for childhood obesity was collected from the Swedish Childhood Obesity Treatment Register (BORIS). BORIS has been thoroughly described elsewhere.²⁰ but in short: The main purpose of the register is quality assessment and long-term evaluation of childhood obesity treatment. Treatment is individualized and consists primarily of lifestyle modification (i.e. diet and physical activity).

A comparison group from the general population was randomly identified using the Swedish Total Population Register and matched by sex, year of birth, and living area at the year obesity treatment was initiated (n=18,728). Using density matching without replacement, five individuals were matched to each individual from the childhood obesity cohort. Siblings of children registered in the childhood obesity cohort were excluded from the comparison group. Children with a diagnosis of mental retardation or genetic syndromes were excluded from both the childhood obesity cohort and the comparison group (Fig 1 and S1 Table).

BMJ Open

Families were informed in written or verbal about data collection in the Swedish Childhood Obesity Treatment Register. Post an opt-out approval by parents/guardians, data of the children's weight and height were recorded by the local health care provider during treatment visits. There was no data of weight and height of individuals in the comparison group. However, less than 1% of the individuals in the comparison group were found in the National Patient Register with a diagnosis of obesity in childhood. In Sweden, health care is free of charge for children and adolescents until 18 years of age. The study was approved by the regional Ethics Committee in Stockholm, Sweden (No. 2016/922-31/1).

109 Data sources

Using the Swedish identity number, which is unique to each resident in Sweden, data from several national registers were linked.²¹ Data on education, income, and occupational status were obtained from the Longitudinal Integration Database for Health Insurance and Labour Market Studies. Information on migration background for children and their parents was obtained from the Swedish Total Population Register.²² Both these registers are held by Statistics Sweden, a governmental agency that collects and provide official statistics (www.scb.se/en).

Data on diagnoses of mental retardation, genetic syndromes, ADHD/ADD, anxiety, and depression were identified based on codes according the International Classification of Diseases (10th revision; S1 Table) and retrieved from the National Patient Register.²³ Information on prescriptions of psychostimulant drugs for ADHD/ADD as well as antidepressants and tranquilizers for anxiety and depression were identified using the Anatomical Therapeutic Chemical classification system (S1 Table) retrieved from the

Swedish Prescribed Drug Register.²⁴ Data on deaths were retrieved from the Cause of Death
Register.²⁵ These registers are held and were linked by the governmental agency the National
Board of Health and Welfare (www.socialstyrelsen.se/english).

Definition of outcome

The main outcome was defined as completion of ≥ 12 years of schooling, and based on the International Standard Classification of Education.²⁶ In Sweden, children start school at the age of 6 or 7 years and attend compulsory school for 9 years. Upper secondary school includes three additional years of schooling and provides the requirements to attend higher education. Usually students graduate from upper secondary school at 18 or 19 years of age. All education in Sweden is free of charge. Students in compulsory and upper secondary school are provided school lunches and health care at schools, also free of charge.

Definition of exposure variables

Degree of obesity in children from BORIS was assessed with Body Mass Index Standard Deviation Score (BMI SDS), which is standardized by sex and age and used to measure degree of obesity in growing children.¹⁹ Baseline measures (continuous) were used for the variable BMI SDS at start of treatment. Response to obesity treatment was based on the change of BMI SDS from the first to the last clinical visit and categorized into four groups:³ ²⁷ good response, a reduction of BMI SDS by 0.25 units or more; no response, a change of BMI SDS by +/- 0.24 units; poor response, an increase of BMI SDS by 0.25 units or more; and dropouts, children with less than one year between their first and last measure or without clinical follow-up after their first registered visit.

Page 9 of 37

BMJ Open

Parental SES was based on maternal and paternal level of education, income, and occupational status at the year the child turned 15 years, which is about the same time as the child starts upper secondary school. In case of the child was adopted, the SES of adoptive parents was used (childhood obesity cohort n=24 and comparison group n=164). The rationale of treating SES as a composite variable was to capture more of the social context and a potential inequality embedded there. Thus, by taking three variables into account instead of one, we get a more wide and robust measure of SES. Maternal and paternal educational level was categorized into compulsory school, upper secondary school, or university degree. Annual disposable income was used to reflect maternal and paternal economic capacity. The annual disposable income includes all taxable (direct labour income, capital gains from shares etc.) and tax-free income (housing and child benefits, student aid etc.), minus final tax and other negative transfers such as capital loss from shares and properties. Disposable income from different years was converted to 2017 prices using the Consumer Price Index for Sweden provided by Statistics Sweden (www.scb.se/en). Income was categorized into quartiles based on data from the parents in the comparison group. No occupation was defined as either unemployment 6 months or more, or income from long-term sick leave exceeding any income from the individual's gross salary. Individuals considered to have an occupation included those registered as employed or having an income from student grants/loan equivalent to full-time studies for at least one semester. Parental SES was weighted according to maternal and paternal education (0, 1, 2), income (0, 1, 2, 3), and occupational status (0, 1). The mean parental SES score (i.e. the sum of the mother's and father's all SES indicators divided by two) was applied to their child. The SES-variable was

166 categorized into four levels; low SES (0 to 1.5 points), medium-low SES (2 to 3 points),

167 medium-high SES (3.5 to 4.5 points), and high SES (5 to 6 points).

The prevalence of both ADHD/ADD⁹ and depression¹⁸ is higher in children with obesity and may negatively influence attained level of education.⁹ ¹⁶ ¹⁷ ADHD/ADD and anxiety/depression in children were identified based on diagnosis or dispensed prescribed medication (S1 Table).

Definition of covariates

The migration background of children in Sweden may impact school achievements and is therefore an important factor to control for in the analyses.⁹ ¹⁴ Migration background was categorized as Nordic or non-Nordic. Nordic was defined as born in a Nordic country (Sweden, Norway, Denmark, Finland, or Iceland) with one or two parents born in the Nordic. Children were classified as non-Nordic if born outside the Nordic or born in the Nordic with two parents born outside the Nordic. Other covariates included sex and age (continuous) at start of obesity treatment.

Patient and public involvement

181 No patient involved.

Statistical analysis

184 Descriptive statistics are presented as means and confidence intervals (CI), medians and 185 interquartile ranges (IQR), or frequencies and percentages. Conditional logistic regression Page 11 of 37

BMJ Open

was used to calculate odds ratios (OR's) with 99% CI for the main outcome, i.e. completing ≥12 school years. Conditional logistic regression was used above ordinary logistic regression as the childhood obesity cohort and the comparison group were matched by several variables. Independent variables included in the adjusted analyses were migration background, ADHD/ADD, anxiety/depression, parental SES, and group (childhood obesity cohort or comparison group) in analyses including both groups, otherwise stratified by group. Interaction between childhood obesity and parental SES was tested. The association of each SES indicator on the odds of completing ≥ 12 school years was also analysed separately for mothers and fathers. Sensitivity analyses excluding individuals with a non-Swedish background (defined as child born in Sweden with at least one parent also born in Sweden), or ADHD/ADD, or anxiety/depression were performed.

197 Secondary analyses were performed within the childhood obesity cohort to examine 198 associations between patient characteristics and completed educational level. In ordinary 199 logistic regressions, odds were adjusted for sex, migration background, parental SES, age 200 and BMI SDS at start of treatment, treatment response, ADHD/ADD, and 201 anxiety/depression. We tested for possible interaction between parental SES and treatment 202 response for the odds of completing \geq 12 years of schooling.

As missing data on parental SES was rare in both groups (Table 1), records with missing data
were excluded from the analyses, i.e. data were not imputed. P-values <0.01 were considered
statistically significant. All analyses were performed using SAS statistical software (version
9.4, Cary, NC, USA).

Table 1. Characteristics of the participants (n=22,670)

Female sex Nordic Age at end of follow-up (years) ADHD/ADD Anxiety/Depression Parental SES Low	<u>(n=3,94</u> <u>n</u> 1,825 2,905 23.4* 617 831	% 46.3 73.7	<u>(n=18,7</u> <u>n</u> 8,701	<u>28)</u> <u>%</u> 46.5
Nordic Age at end of follow-up (years) ADHD/ADD Anxiety/Depression Parental SES	1,825 2,905 23.4* 617	46.3 73.7	8,701	
Nordic Age at end of follow-up (years) ADHD/ADD Anxiety/Depression Parental SES	2,905 23.4* 617	73.7	,	
Age at end of follow-up (years) ADHD/ADD Anxiety/Depression Parental SES	23.4* 617		14 040	46.5 75.0
ADHD/ADD Anxiety/Depression Parental SES	617		14,048	
Anxiety/Depression Parental SES		21.4-26.3*	23.4*	21.5-26.3
Parental SES		15.7	1,044	5.6
	831	21.1	2,158	11.5
LOW	867	22.0	2 700	14.4
Madium law			2,700	14.4
Medium-low	1,540	39.1	6,023	32.1
Medium-high	1,159	29.4	6,587	35.2
High	355	9.0	3,218	17.2
Missing	21	0.5	200	1.1
Maternal education	1 500	40.4		20.0
Compulsory school	1,582	40.1	5,615	30.0
Upper secondary school	1,541	39.1	7,167	38.3
University degree	730	18.5	5,383	28.7
Missing	89	2.3	563	3.0
Paternal education				
Compulsory school	1,273	32.3	4,402	23.5
Upper secondary school	1,890	48.0	9,095	48.6
University degree	482	12.2	3,912	20.9
Missing	297	7.5	1,319	7.0
Maternal income				
Q1	1,173	29.8	4,887	26.1
Q2	1,281	32.5	5,843	31.2
Q3	931	23.6	4,585	24.5
Q4	486	12.3	2,988	15.9
Missing	71	1.8	425	2.3
Paternal income				
Q1	1,127	28.6	3,917	20.9
Q2	760	19.3	3,128	16.7
Q3	889	22.5	4,389	23.4
Q4	864	21.9	5,986	32.0
Missing	302	7.7	1,308	7.0
Maternal occupational status				
Occupation	2,963	75.2	15,405	82.2
No occupation	916	23.2	2,956	15.8
Missing	63	1.6	367	2.0
Paternal occupational status				
Occupation	2,868	72.8	14,906	79.6
No occupation	800	20.3	2,627	14.0
Missing	274	6.9	1,195	6.4

Results

In total, 3,942 individuals in the childhood obesity cohort and 18,728 individuals in the comparison group were included in the study (Table 1). In both groups, 46% of the participants were girls and the median age at follow-up was 23.4 years. The proportions of individuals of Nordic origin were similar in both groups (73.7% vs. 75.0%; p=0.02). Despite the groups being matched for living area, a greater proportion of children with obesity grew up in households with low SES compared with the comparison group (22.0% vs. 14.4%; p<0.0001).

219 Parental SES, childhood obesity and the child's attained level of

220 education

In the childhood obesity cohort, 56.7% completed ≥12 years in school, compared with 74.4%
in the comparison group. Girls more frequently completed ≥12 years of schooling than boys
in both groups (S2 Table).

Higher parental SES was positively associated with completion of ≥ 12 years of schooling in both the childhood obesity cohort and in the comparison group (Fig 2). The odds were more than five times higher among children growing up in high SES households compared with those growing up in low SES households (Table 2). However, even when taking parental SES and other risk factors into account, individuals in the childhood obesity cohort were almost half as likely to complete ≥ 12 school years compared with those in the comparison group (Table 2). The adjusted odds ratio (^{a}OR) [99% CI] to complete ≥ 12 years of schooling stratified by parental SES, when comparing the childhood obesity cohort with the comparison

> group, showed a trend towards lower OR in the higher level of SES: low parental SES = 0.69[0.50 to 0.95], p=0.0026; medium-low parental SES = 0.59 [0.48 to 0.72], p<0.0001; medium-high parental SES = 0.46 [0.35 to 0.60], p<0.0001; high parental SES = 0.27 [0.14 to 0.54], p<0.0001. P-value for interaction test for childhood obesity and parental SES reaches a p of 0.0015.

The association of parental SES on school performance was more pronounced in the comparison group than in the childhood obesity cohort (S3 Table). For example, stratified analyses show that adjusted OR of completing \geq 12 years in school in low SES compared with high SES in the comparison group was 0.17 (99% CI 0.14 to 0.21, p<0.0001) and in the childhood obesity cohort 0.31 (99% CI 0.22 to 0.45, p<0.0001). Regardless of how we divide the childhood obesity population (into age- or calendar year at start of obesity treatment, SES sub-scores), large differences between the two groups remain (Table 2 and S4 Table).

iez onz

47

BMJ Open

Table 2. Crude and adjusted odds ratio (99% CI); p-value of subjects completing ≥12 years of schooling

	Table 2. Cluue allu aujusteu ouus lati	10 ()) /0 CI), p-value of	subjects completing <1	2 years of schooling			
2		Crude estimates	Model 1, n=22 449	Model 2, n=20 610	Model 3, n=20 691	Model 4, n=20 885	Model 5, n=20 420
3	Childhood obesity cohort vs. comparison group	0.44 (0.40 to 0.48); <0.0001	0.57 (0.51 to 0.63); <0.0001	0.55 (0.50 to 0.62); <0.0001	0.54 (0.48 to 0.61); <0.0001	0.53 (0.48 to 0.59); <0.0001	0.59 (0.52 to 0.66); <0.0001
4	Non-Nordic vs. Nordic	0.70 (0.63 to 0.78); <0.0001	0.85 (0.75 to 0.97); 0.001	0.77 (0.67 to 0.88); <0.0001	0.87 (0.76 to 0.99); 0.0068	0.81 (0.71 to 0.92); <0.0001	0.97 (0.84 to 1.12); 0.5687
_	ADHD/ADD vs. non-ADHD/ADD	0.19 (0.17 to 0.23); <0.0001	0.28 (0.24 to 0.33); <0.0001	0.27 (0.22 to 0.33); <0.0001	0.27 (0.22 to 0.32); <0.0001	0.26 (0.22 to 0.31); <0.0001	0.28 (0.23 to 0.34); <0.0001
5	Anxiety/depression vs. no anxiety/depression	0.31 (0.27 to 0.35); <0.0001	0.39 (0.34 to 0.45); <0.0001	0.36 (0.31 to 0.41); <0.0001	0.38 (0.33 to 0.44); <0.0001	0.39 (0.33 to 0.44); <0.0001	0.36 (0.31 to 0.42); <0.0001
6	Parental SES						
7	Medium-low vs. low parental SES	1.74 (1.54 to 1.97); <0.0001	1.69 (1.48 to 1.93); <0.0001				
8	Medium-high vs. low parental SES	3.33 (2.92 to 3.81); <0.0001	2.99 (2.59 to 3.45); <0.0001				
9	High vs. low parental SES	6.21 (5.19 to 7.44); <0.0001	5.40 (4.45 to 6.55); <0.0001				
10	Maternal education						
	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.08); <0.0001		1.63 (1.45 to 1.83); <0.0001			1.51 (1.34 to 1.71); <0.0001
11	University degree vs. compulsory school	3.23 (2.86 to 3.66); <0.0001		2.45 (2.12 to 2.83); <0.0001			2.17 (1.87 to 2.53); <0.0001
12	Paternal education						
13	Upper secondary school vs. compulsory school	1.88 (1.69 to 2.09); <0.0001		1.58 (1.40 to 1.77); <0.0001			1.42 (1.26 to 1.60); <0.0001
14	University degree vs. compulsory school	3.07 (2.66 to 3.55); <0.0001		2.09 (1.77 to 2.45); <0.0001			1.81 (1.53 to 2.15); <0.0001
15	Maternal income						
16	Q2 vs. Q1	1.28 (1.15 to 1.43); <0.0001			1.25 (1.10 to 1.41); <0.0001		1.07 (0.93 to 1.23); 0.2065
	Q3 vs. Q1	1.45 (1.28 to 1.63); <0.0001			1.35 (1.17 to 1.55); <0.0001		1.05 (0.90 to 1.23); 0.4224
17	Q4 vs. Q1	1.86 (1.60 to 2.15); <0.0001			1.52 (1.28 to 1.81); <0.0001		1.07 (0.88 to 1.28); 0.3831
18	Paternal income						
19	Q2 vs. Q1	1.36 (1.19 to 1.55); <0.0001			1.31 (1.13 to 1.51); <0.0001		1.07 (0.91 to 1.26); 0.2740
20	Q3 vs. Q1	1.90 (1.67 to 2.17); <0.0001			1.70 (1.48 to 1.96); <0.0001		1.24 (1.05 to 1.46); 0.0009
21	Q4 vs. Q1	2.95 (2.58 to 3.36); <0.0001			2.47 (2.13 to 2.86); <0.0001		1.58 (1.33 to 1.88); <0.0001
22	Maternal occupational status						
22	-	2.15 (1.02 (1.72 (1.51 to 1.96); <0.0001	1.38 (1.19 to 1.61); <0.0001
22	Occupation vs. no occupation						
23	Occupation vs. no occupation Paternal occupational status	2.15 (1.92 to 2.40); <0.0001				1.72 (1.51 to 1.90), <0.0001	
24	Paternal occupational status						
24 25	Paternal occupational status Occupation vs. no occupation	2.24 (1.99 to 2.52); <0.0001		0		1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
24	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu		104		1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
24 25	Paternal occupational status Occupation vs. no occupation	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu		, migration background,	ADHD/ADD, anxiety/de	1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
24 25 26 27	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic state (childhood obesity coho	ort vs. comparison group)			1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
24 25 26 27 28	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic state (childhood obesity cohe , migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de	pression, maternal-, and	paternal education	1.79 (1.57 to 2.04); <0.0001	1.41 (1.20 to 1.65); <0.0001
24 25 26 27 28 29	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu (childhood obesity coho), migration background, , migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and	paternal education paternal income	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	1.41 (1.20 to 1.65); <0.0001
24 25 26 27 28 29 30	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta paternal education, incor	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta paternal education, incor	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>
24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Paternal occupational status Occupation vs. no occupation Abbreviations: CI, confidence interval; S Model 1: Variables included were group Model 2: Variables included were group Model 3: Variables included were group Model 4: Variables included were group	2.24 (1.99 to 2.52); <0.0001 SES, socioeconomic statu o (childhood obesity coho o, migration background, o, migration background, o, migration background, o, migration background,	ort vs. comparison group) ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de ADHD/ADD, anxiety/de	pression, maternal-, and pression, maternal-, and pression, maternal-, and pression, maternal-, and	paternal education paternal income paternal occupational sta paternal education, incor	1.79 (1.57 to 2.04); <0.0001 pression, and parental SI	<u>1.41 (1.20 to 1.65); <0.0001</u>

> Of note, having a non-Nordic-, compared to a Nordic background, was associated with reduced odds to complete 12 or more years of schooling (Table 2). This was however not observed in boys in the childhood obesity cohort (p=0.68). Further, excluding individuals with a non-Swedish background, or ADHD/ADD, or anxiety/depression in sensitivity analyses, did not alter the association between childhood obesity and attained level of education. For example, when excluding individuals with a non-Swedish background, the ^aOR to complete ≥ 12 years in school for the obesity cohort vs. the comparison group was 0.55 [0.48 to 0.63], p < 0.0001.

Degree of obesity and treatment response on completed

educational level in children with obesity

In the childhood obesity cohort, the mean age at start of treatment was 13.5 years (99% CI: 13.45 to 13.62) and the mean BMI SDS was +2.91 (99% CI: 2.89 to 2.92). The median treatment duration was 2.83 years (IQR: 1.86 to 4.42) and the mean treatment response, calculated using BMI SDS from the first to the last clinical visit, was -0.13 (99% CI: -0.15 to -0.10, n=2,709, 68.7%, dropouts excluded). At baseline, 50.7% had obesity and 49.3% had morbid obesity. At last measured weight and height, 33.4% had obesity and 47.2% had morbid obesity, while 19.4% of the children no longer had obesity (dropouts excluded).

A greater degree of obesity at start of treatment lowered the odds of completing ≥ 12 years of schooling, ^aOR [99% CI] = 0.51 [0.40 to 0.64], p<0.0001, per one unit increase in BMI SDS, while age at start of obesity treatment did not influence the outcome (Table 3). Treatment response was categorized as good response (n=847), no response (n=1 315), poor response (n=547), and dropouts (n=1,233). Of those with good treatment response, 67% completed

BMJ Open

 \geq 12 years in school compared with 58%, 52%, and 50% in the groups with no or poor response, and dropouts, respectively (p<0.0001). Within all SES groups, except for high SES, greater treatment response resulted in higher odds of completing ≥ 12 years in school (Fig 3). Dropouts were less likely to complete ≥ 12 years in school compared with non-responders (Table 3) but this was not observed in the high SES group (Fig 3). Duration of treatment differed between children with good and poor treatment response (3.5 vs. 4.0 years; p<0.0001). In the childhood obesity cohort, the association between parental SES and odds of completing ≥ 12 years of schooling was not modified by treatment response (p=0.603).

Table 3. Crude and adjusted odds ratios of completing ≥12 years of schooling in the childhood obesity cohort

Sex (girls vs. boys) Migration background (non-Nordic vs. Nordic) ADHD/ADD (yes vs. no) Anxiety/depression (yes vs. no) BMI SDS at start of treatment Age at start of treatment Treatment response*	Crude estimates 1.26 (1.06 to 1.48); 0.0004 0.78 (0.65 to 0.94); 0.0006 0.31 (0.25 to 0.40); <0.0001 0.43 (0.35 to 0.53); <0.0001	Model 1, n=3 921 1.30 (1.08 to 1.56); 0.0002 0.74 (0.60 to 0.91); 0.0002	Model 2, n=3 575
Migration background (non-Nordic vs. Nordic) ADHD/ADD (yes vs. no) Anxiety/depression (yes vs. no) BMI SDS at start of treatment Age at start of treatment	0.78 (0.65 to 0.94); 0.0006 0.31 (0.25 to 0.40); <0.0001 0.43 (0.35 to 0.53); <0.0001		
ADHD/ADD (yes vs. no) Anxiety/depression (yes vs. no) BMI SDS at start of treatment Age at start of treatment	0.31 (0.25 to 0.40); <0.0001 0.43 (0.35 to 0.53); <0.0001	0.74 (0.60 to 0.91); 0.0002	1.29 (1.06 to 1.56); 0.0008
Anxiety/depression (yes vs. no) BMI SDS at start of treatment Age at start of treatment	0.43 (0.35 to 0.53); <0.0001		0.69 (0.55 to 0.87); <0.000
BMI SDS at start of treatment Age at start of treatment		0.35 (0.27 to 0.45); <0.0001	0.33 (0.26 to 0.44); <0.000
Age at start of treatment		0.45 (0.36 to 0.57); <0.0001	0.43 (0.34 to 0.55); <0.000
6	0.47 (0.38 to 0.58); <0.0001	0.51 (0.40 to 0.64); <0.0001	0.48 (0.38 to 0.62); <0.000
Treatment response*	0.96 (0.93 to 1.01); 0.0234	1.01 (0.96 to 1.06); 0.60	1.01 (0.96 to 1.06); 0.805
···· · ··· ··· ··· ··· ··· ··· ··· ···			
Good response vs. no response	1.46 (1.15 to 1.85); <0.0001	1.34 (1.04 to 1.72); 0.0031	1.28 (0.98 to 1.67); 0.0182
Poor response vs. no response	0.78 (0.60 to 1.02); 0.0167	0.72 (0.54 to 0.96); 0.0028	0.71 (0.53 to 0.96); 0.003
Dropouts vs. no response	0.71 (0.58 to 0.87); < 0.0001	0.69 (0.55 to 0.86); <0.0001	0.68 (0.54 to 0.87); <0.000
Parental SES			
Medium-low vs. low parental SES	1.63 (1.31 to 2.03); <0.0001	1.56 (1.24 to 1.98); <0.0001	
Medium-high vs. low parental SES	2.40 (1.90 to 3.05); <0.0001	2.19 (1.69 to 2.83); <0.0001	
High vs. low parental SES	2.99 (2.11 to 4.22); <0.0001	2.83 (1.95 to 4.12); <0.0001	
Maternal education			
Upper secondary school vs. compulsory school	1.74 (1.44 to 2.09); <0.0001		1.57 (1.27 to 1.94); <0.000
University degree vs. compulsory school	2.47 (1.94 to 3.16); <0.0001		2.23 (1.67 to 2.98); <0.000
Paternal education			
Upper secondary school vs. compulsory school	1.48 (1.23 to 1.79); <0.0001		1.26 (1.03 to 1.55); 0.004
University degree vs. compulsory school	1.92 (1.44 to 2.56); <0.0001		1.41 (1.01 to 1.95); 0.0076
Model 1: Variables included were sex, m start of treatment, treatment response, an Model 2: Variables included were sex, m	d parental SES. iigration background, ADHE	D/ADD, anxiety/depression,	
start of treatment, treatment response, ma	aternal-, and paternal educati	ion.	
		17	

Discussion

In this prospective cohort study, we have compared level of education among individuals recorded in the Swedish Childhood Obesity Treatment Register, and a comparison group matched by sex, year of birth, and living area. Individuals in the childhood obesity cohort were half as likely to complete 12 or more years of schooling, independently of parental socioeconomic status (SES).

Among individuals from high SES families, those in the childhood obesity cohort were approximately one third as likely to complete ≥ 12 years of schooling as individuals from high SES families in the comparison group. Furthermore, our results indicate that parental SES was more important to complete ≥ 12 school years in the comparison group than in the childhood obesity cohort. An association between obesity and impaired academic achievements has been demonstrated before.⁸⁹ To which extent other psychosocial factors contribute to this finding has not been evaluated. It is well established that low parental SES,¹³⁻¹⁵ immigrant background,⁹ ¹⁴ ADHD/ADD,^{9 17} and depression,^{9 14 16} may negatively affect performance in school. These factors are also overrepresented in the paediatric population with obesity. In this study, we can confirm that low parental SES, neuropsychiatric disorders, and anxiety/depression are more common in children with obesity and contribute to the decreased odds of completing ≥ 12 school years. However, we found that obesity in childhood is a considerable risk factor for not completing ≥ 12 years of schooling even after taking these and other important risk factors into account.

Obesity treatment outcome and educational level

We identified a positive association between weight-loss during obesity treatment and completed educational level, which confirms our previously reported data unadjusted for SES.⁹ Children with good treatment response, compared with those with no response, were more likely to complete ≥ 12 school years in all SES groups. A decrease of 0.25 BMI SDS, that has previously been shown to improve metabolic health,²⁷ we can now also show may have a positive association on completing ≥ 12 years of schooling. However, the positive effects of successful obesity treatment did not compensate for the observed SES differences on attained level of education.

In Sweden, 12 years of schooling is not mandatory, but the long-term social effects are considerable for those who fail. It has been estimated that 50% of those who fail to complete ≥ 12 school years face a situation of being left outside the society with poor psychosocial health and large costs for the society.²⁸ Thus, it is possible that school failure will further worsen the health perspective of adolescents with obesity.

312 Potential mechanisms between obesity, weight loss, and school

313 performance

Several parameters may interplay when measuring school completion, e.g. resourcefulness, intelligence, or ability to conform. Nevertheless, the mechanisms by which obesity influences school performance are unclear but are likely multifactorial and complex. Possible mechanisms may include psychosocial aspects such as stigma²⁹ and increased risk for anxiety and depression.⁷ Physiological mechanisms may be mediated by anatomical changes such as atrophy of the frontal lobe and reduced hippocampal volume have been demonstrated in individuals with obesity.³⁰ Some of the reported cognitive dysfunctions in children and adolescents with obesity include slower response times when performing visuospatial attention tasks,³¹ diminished executive functions, such as working memory,³² and slower cognitive

BMJ Open

performance speed.³³ In addition, obesity-related comorbidities such as insulin resistance,³⁴
type 2 diabetes mellitus,³⁵ chronic low-grade inflammation,³⁶ and the metabolic syndrome³⁷
have also been associated with impaired executive function, memory performance, attention,
and cognitive flexibility. A high fat diet in rodents demonstrated detrimental effects on memory
and executive functions.³⁰

At least some of these effects seem to be reversible, which may add to the positive associations we observed of weight loss on school outcome. Weight loss may have a direct positive effect on cognitive functions.³⁸ Extensive weight loss via bariatric surgery improves insulin sensitivity and decreases systematic inflammation,³⁹ and it has been suggested that these factors affect cognitive functions.⁴⁰

However, children with obesity are often stigmatized,⁴¹ have a low self-esteem, and are exposed to bullying and social exclusion.⁴² All these factors have most likely a negative impact on school performance. In contrast, a strong social network is most probably an important factor both for good treatment response and achievement in school. An inverse association has been observed between familial social support and child weight status.⁴³ The relationship between BMI and school completion may also be biased from e.g. assortative mating and dynastic effects which have shown to reduce causal effects.⁴⁴ There is also a suggested interplay between genetic variants and environmental factors that may affect intelligence.⁴⁵ Thus, it is likely that both negative social effects of obesity and obesity-related morbidity, as well as genetic factors, contribute to the adverse association of childhood obesity on completed educational level.^{7 29 41}

344 Limitations

345 Using longitudinal data from several national registers provided an opportunity to assess the346 impact of obesity on completed educational level, adjusted for several important confounders.

Data on both exposure and outcome were prospectively collected and defined according to

However, some important limitations should be recognized. We did not have anthropometric

data on children in the comparison group. There is no representative national data on children

with obesity in Sweden. As our comparison group includes children with obesity, although

likely less than 1% according to obesity diagnoses found in the National Patient Register, odds

of lower level of education associated with obesity might be underestimated. It is also important

to consider that children receiving obesity treatment may not be representative of all children

with obesity. It should further be noted that parental SES was based on data from one specific

year in the child's life and not over the child's entire adolescent lifetime, and that the SES

indicators used may not reflect the whole SES spectrum. After providing specific ORs for each

SES indicator (Table 2) we can hypothesize that additive, or perhaps synergistic effects, of

different SES indicators may affect the outcome. Nevertheless, the OR for the childhood obesity

cohort vs. comparison group remained within a narrow interval. This may indicate that there is

an overlap between the measured SES domains and/or that the effect of obesity is a robust

variable, independently of SES. In addition, the impact of anxiety and depression on educational

level may be underestimated since these conditions often are under-diagnosed. It is furthermore

plausible that controlling for anxiety and depression may lead to an underestimation of the

association found between obesity in childhood and completion of 12 or more school years,

since the variable may act as a modifier/mediator.⁷ We urge the reader to bear in mind that

despite several possible mechanisms have been proposed, causal relationships of obesity and

the effect of treatment on the outcome remains to be established. Lastly, factors such as free

education, school lunches, and students' health care may have an impact on the generalizability

standardized international classifications.¹⁹²⁶

371 Conclusion

of our data to other populations.

BMJ Open

In this longitudinal, population-based study, individuals with obesity in childhood were less likely to complete 12 or more years of schooling, compared with a group from the general population. The odds associated with obesity remained significantly increased even after taking parental SES and other important risk factors, such as ADHD, into consideration. The underlying mechanisms are unclear but previous studies indicate that the effects of obesity on school completion both involve psychosocial effects and cognitive functions.^{16 17 32} The negative impact of childhood obesity on educational level may partly be reversed by successful obesity treatment in childhood. Results from this study underline effects of childhood obesity on schooling. For the sake of an optimal educational environment, it is of great importance to increase awareness both in schools and among decision makers to allocate resources for potential extra support, e.g. reduce stigma and increase educational support.

383 Acknowledgements

The authors would like to thank all local health care professionals in Sweden working with children and adolescents with obesity and their valuable work with BORIS, and the BORIS steering committee for establishing and maintaining the register.

- 387 Author contributions
- 388 Conceptualization: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude Marcus,

389 Emilia Hagman.

- 5 390 Data curation: Louise Lindberg.
- ³ 391 Formal analysis: Louise Lindberg, Emilia Hagman.
- ⁶ 392 Funding acquisition: Louise Lindberg, Claude Marcus, Emilia Hagman.
- 3 393 Methodology: Louise Lindberg, Emilia Hagman.
- ⁵ 394 Project administration: Louise Lindberg, Emilia Hagman.
- ['] 395 Supervision: Martina Persson, Emilia Hagman, Pernilla Danielsson, Claude Marcus.
- 60 396 Writing original draft: Louise Lindberg.

Writing – review & editing: Louise Lindberg, Pernilla Danielsson, Martina Persson, Claude
Marcus, Emilia Hagman.

400 Funding statement

This study was supported by funds to LL by Crown Princess Lovisa's Foundation (2017-00348), Samariten Foundation (2017-0305), the Stockholm FreeMason Foundation for Children's Welfare, Sällskapet Barnavård, Anna-Lisa och Arne Gustafssons Foundation, Solstickan Foundation and Sven Jerring Foundation. EH was supported by the Swedish Society for Medical Research, Fredrik and Ingrid Thuring's Foundation (2017-00309) and Magnus Bergvall Foundation (2017-02113), and CM by the Swedish Heart and Lung Foundation (20150790).

Data Sharing statement

The data that support the findings of this study contains sensitive information. Restrictions therefore apply to the availability of these data, which were used under license for the current study, and so are not publicly available. According to Swedish law and the General Data Protection Regulation, the authors are not permitted to share the datasets used in this study with third parties. Given that an ethical approval is obtained, any individual may apply for data from Statistics Sweden via information@scb.se, the Swedish National Board of Health and Welfare via registerservice@socialstyrelsen.se, and the Swedish Childhood Obesity Treatment Register via http://www.e-boris.se/kontaktuppgifter/.

Competing interests

All authors have completed the ICMJE uniform disclosure form at
www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the
submitted work; no financial relationships with any organisations that might have an interest in

2 3 4	421	the submitted work in the previous three years; no other relationships or activities that could
5 6	422	appear to have influenced the submitted.
6 7 8 9 10 11 12 13 14 15 16 7 8 9 21 22 32 4 25 26 27 28 9 0 31 23 34 35 37 38 9 40 41 23 44 5 46 7 8 9 0 12 23 45 26 27 28 9 0 31 23 34 35 37 38 9 40 41 45 46 7 8 9 0 12 23 45 26 27 28 9 0 31 23 34 35 37 38 9 40 41 45 46 7 89 0 12 23 45 26 27 28 9 0 31 23 34 35 37 38 9 40 41 45 46 7 89 0 12 23 45 26 27 28 9 0 31 23 34 35 36 7 89 40 41 42 34 45 67 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 23 45 56 77 89 0 12 53 45 56 77 89 0 12 53 45 56 77 89 0 12 53 45 56 77 89 0 12 53 45 56 77 89 00 12 53 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	423	

References

1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017 doi: 10.1016/S0140-6736(17)32129-3 2. Hagman E, Danielsson P, Brandt L, et al. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr Diabetes 2016;6(8):e227. doi: 10.1038/nutd.2016.34 [published Online First: 2016/08/23] 3. Hagman E, Danielsson P, Elimam A, et al. The effect of weight loss and weight gain on blood pressure in children and adolescents with obesity. Int J Obes (Lond) 2019;43(10):1988-94. doi: 10.1038/s41366-019-0384-2 [published Online First: 2019/06/04] 4. Lindberg L, Danielsson P, Persson M, et al. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS medicine 2020;17(3):e1003078. doi: 10.1371/journal.pmed.1003078 [published Online First: 2020/03/19] 5. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 2011;35(7):891-8. doi: 10.1038/ijo.2010.222 6. Viner RM, Cole TJ. Adult socioeconomic, educational, social, and psychological outcomes of childhood obesity: a national birth cohort study. BMJ 2005;330(7504):1354. doi: 10.1136/bmj.38453.422049.E0 [published Online First: 2005/05/20] 7. Lindberg L, Hagman E, Danielsson P, et al. Anxiety and depression in children and adolescents with obesity: a nationwide study in Sweden. BMC medicine 2020;18(1):30. doi: 10.1186/s12916-020-1498-z [published Online First: 2020/02/23] 8. Laitinen J, Power C, Ek E, et al. Unemployment and obesity among young adults in a northern Finland 1966 birth cohort. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2002;26(10):1329-38. doi: 10.1038/sj.ijo.0802134 9. Hagman E, Danielsson P, Brandt L, et al. Childhood Obesity, Obesity Treatment Outcome, and Achieved Education: A Prospective Cohort Study. The Journal of adolescent health : official publication of the Society for Adolescent Medicine 2017 doi: 10.1016/j.jadohealth.2017.04.009 [published Online First: 2017/07/12] 10. Karnehed N, Rasmussen F, Hemmingsson T, et al. Obesity and attained education: cohort study of more than 700,000 Swedish men. Obesity 2006;14(8):1421-28. 11. French SA, Wall M, Corbeil T, et al. Obesity in Adolescence Predicts Lower Educational Attainment and Income in Adulthood: The Project EAT Longitudinal Study. Obesity (Silver Spring) 2018;26(9):1467-73. doi: 10.1002/oby.22273 [published Online First: 2018/09/19] 12. Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990-2005. Obesity (Silver Spring) 2008;16(2):275-84. doi: 10.1038/oby.2007.35 [published Online First: 2008/02/02] 13. Koivusilta LK, West P, Saaristo VM, et al. From childhood socio-economic position to adult educational level - do health behaviours in adolescence matter? A longitudinal study. BMC public health 2013;13:711. doi: 10.1186/1471-2458-13-711 14. Kark M, Hjern A, Rasmussen F. Poor school performance is associated with a larger gain in body mass index during puberty. Acta Paediatr 2014;103(2):207-13. doi: 10.1111/apa.12471 15. DeGarmo DS, Forgatch MS, Martinez CR, Jr. Parenting of divorced mothers as a link between social status and boys' academic outcomes: unpacking the effects of socioeconomic status. Child development 1999;70(5):1231-45. [published Online First: 1999/11/05]

1		
2		
3	472	16. Freeman A, Tyrovolas S, Koyanagi A, et al. The role of socio-economic status in depression: results
4 5	473	from the COURAGE (aging survey in Europe). <i>BMC public health</i> 2016;16(1):1098. doi:
6	474	10.1186/s12889-016-3638-0 [published Online First: 2016/10/21]
7	475	17. Scholtens S, Rydell AM, Yang-Wallentin F. ADHD symptoms, academic achievement, self-
8	476	perception of academic competence and future orientation: a longitudinal study.
9	477	Scandinavian journal of psychology 2013;54(3):205-12. doi: 10.1111/sjop.12042 [published
10	478	Online First: 2013/03/21]
11 12	479	18. Quek YH, Tam WWS, Zhang MWB, et al. Exploring the association between childhood and
12	480	adolescent obesity and depression: a meta-analysis. <i>Obesity reviews : an official journal of</i>
14	481 482	the International Association for the Study of Obesity 2017;18(7):742-54. doi:
15	482 483	10.1111/obr.12535 [published Online First: 2017/04/13] 19. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness,
16	483 484	overweight and obesity. <i>Pediatr Obes</i> 2012;7(4):284-94. doi: 10.1111/j.2047-
17	484 485	6310.2012.00064.x
18 19	485 486	20. Hagman E, Danielsson P, Lindberg L, et al. Paediatric obesity treatment during 14 years in
20	487	Sweden: Lessons from the Swedish Childhood Obesity Treatment Register-BORIS. <i>Pediatr</i>
21	488	Obes 2020;15(7):e12626. doi: 10.1111/ijpo.12626 [published Online First: 2020/02/20]
22	489	21. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity number:
23	490	possibilities and pitfalls in healthcare and medical research. European journal of
24	491	epidemiology 2009;24(11):659-67. doi: 10.1007/s10654-009-9350-y
25	492	22. Ludvigsson JF, Almqvist C, Bonamy AK, et al. Registers of the Swedish total population and their
26 27	493	use in medical research. <i>European journal of epidemiology</i> 2016;31(2):125-36. doi:
27	494	10.1007/s10654-016-0117-y [published Online First: 2016/01/16]
29	495	23. Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish
30	496	national inpatient register. BMC public health 2011;11:450. doi: 10.1186/1471-2458-11-450
31	497	[published Online First: 2011/06/11]
32	498	24. Wallerstedt SM, Wettermark B, Hoffmann M. The First Decade with the Swedish Prescribed Drug
33 34	499	Register - A Systematic Review of the Output in the Scientific Literature. Basic & clinical
35	500	pharmacology & toxicology 2016;119(5):464-6 <mark>9. doi</mark> : 10.1111/bcpt.12613 [published Online
36	501	First: 2016/04/27]
37	502	25. Brooke HL, Talback M, Hornblad J, et al. The Swedish cause of death register. <i>European journal of</i>
38	503	epidemiology 2017;32(9):765-73. doi: 10.1007/s10654-017-0316-1 [published Online First:
39	504	2017/10/07]
40 41	505	26. UNESCO. International standard classification of education: Isced 1997. Re-edition. Paris: UNESCO
41	506	Institute for Statistics. 2011
43	507	27. Ford AL, Hunt LP, Cooper A, et al. What reduction in BMI SDS is required in obese adolescents to
44	508	improve body composition and cardiometabolic health? Archives of disease in childhood
45	509	2010;95(4):256-61. doi: 10.1136/adc.2009.165340 [published Online First: 2009/12/08]
46	510	28. Nilsson I, Wadeskog A. Utanförskapets Ekonomiska Sociotoper: Socioekonomisk analys på
47	511 512	stadsdelsnivå inom ramen för Healthy Cities 2012 29. Finn KE, Seymour CM, Phillips AE. Weight bias and grading among middle and high school
48 49	512	teachers. <i>Br J Educ Psychol</i> 2019 doi: 10.1111/bjep.12322 [published Online First:
50	515 514	2019/10/28]
51	515	30. Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and
52	515	vascular changes. Frontiers in neuroscience 2014;8:375. doi: 10.3389/fnins.2014.00375
53	517	[published Online First: 2014/12/06]
54	518	31. Tsai C-L, Chen F-C, Pan C-Y, et al. The neurocognitive performance of visuospatial attention in
55 56	519	children with obesity. Frontiers in psychology 2016;7
56 57	520	32. Laurent JS, Watts R, Adise S, et al. Associations Among Body Mass Index, Cortical Thickness, and
58	520	Executive Function in Children. JAMA Pediatr 2019 doi: 10.1001/jamapediatrics.2019.4708
59	522	[published Online First: 2019/12/10]
60		

2		
3	523	33. Sweat V, Yates KF, Migliaccio R, et al. Obese adolescents show reduced cognitive processing
4	524	speed compared with healthy weight peers. Childhood Obesity 2017
5	525	34. Cheke LG, Bonnici HM, Clayton NS, et al. Obesity and insulin resistance are associated with
6	526	reduced activity in core memory regions of the brain. <i>Neuropsychologia</i> 2017;96:137-49.
7	527	35. Bruehl H, Sweat V, Tirsi A, et al. Obese Adolescents with Type 2 Diabetes Mellitus Have
8	528	Hippocampal and Frontal Lobe Volume Reductions. <i>Neuroscience and medicine</i> 2011;2(1):34-
9	529	
10		42. doi: 10.4236/nm.2011.21005
11 12	530	36. Spyridaki EC, Simos P, Avgoustinaki PD, et al. The association between obesity and fluid
12	531	intelligence impairment is mediated by chronic low-grade inflammation. British Journal of
14	532	Nutrition 2014;112(10):1724-34.
15	533	37. Mangone A, Yates KF, Sweat V, et al. Cognitive functions among predominantly minority urban
16	534	adolescents with metabolic syndrome. Applied Neuropsychology: Child 2017:1-7.
17	535	38. Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric
18	536	surgery. Obesity 2014;22(1):32-38.
19	537	39. Olbers T, Beamish AJ, Gronowitz E, et al. Laparoscopic Roux-en-Y gastric bypass in adolescents
20	538	with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. Lancet
21	539	Diabetes Endocrinol 2017;5(3):174-83. doi: 10.1016/S2213-8587(16)30424-7
22	540	40. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. <i>Nature Reviews</i>
23	541	<i>Neuroscience</i> 2015;16(11):660.
24	542	41. Latner JD, Stunkard AJ. Getting worse: the stigmatization of obese children. <i>Obesity research</i>
25	543	2003;11(3):452-6. doi: 10.1038/oby.2003.61
26	544	42. Pierce JW, Wardle J. Cause and effect beliefs and self-esteem of overweight children. <i>Journal of</i>
27		<i>child psychology and psychiatry, and allied disciplines</i> 1997;38(6):645-50. [published Online
28	545	
29	546	First: 1997/10/08]
30 21	547	43. Lindberg L, Ek A, Nyman J, et al. Low grandparental social support combined with low parental
31 32	548	socioeconomic status is closely associated with obesity in preschool-aged children: a pilot
33	549	study. Pediatr Obes 2015 doi: 10.1111/ijpo.12049
34	550	44. Brumpton B, Sanderson E, Heilbron K, et al. Avoiding dynastic, assortative mating, and population
35	551	stratification biases in Mendelian randomization through within-family analyses. Nature
36	552	<i>communications</i> 2020;11(1):3519. doi: 10.1038/s41467-020-17117-4 [published Online First:
37	553	2020/07/16]
38	554	45. Plomin R, von Stumm S. The new genetics of intelligence. Nature reviews Genetics
39	555	2018;19(3):148-59. doi: 10.1038/nrg.2017.104 [published Online First: 2018/01/18]
40		
41	556	
42		
43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

2 3	
4	557
5	
6	
7	558
8	550
9	559
10	555
11 12	
13	560
14	
15	
16	561
17	
18	562
19	
20	563
21	505
22 23	564
23 24	504
25	FCF
26	565
27	
28	566
29	
30	
31	
32 33	567
33 34	
35	
36	568
37	
38	
39	569
40	
41	570
42 43	570
43 44	571
45	5/1
46	
47	F 7 2
48	572
49	
50	
51	573
52 53	
55 54	574
55	
56	575
57	
58	
59	576
60	

Supporting information 57

S1 Table. International Classification of Diseases (ICD 10th revision) codes and 58 Anatomical Therapeutic Chemical (ATC) classification system codes used. 59

S2 Table. Proportion of children completing ≥ 12 years of schooling. 60

S3 Table. Adjusted odds ratio (99% CI); p-value of subjects completing ≥12 years of 61 schooling stratified by group. 62

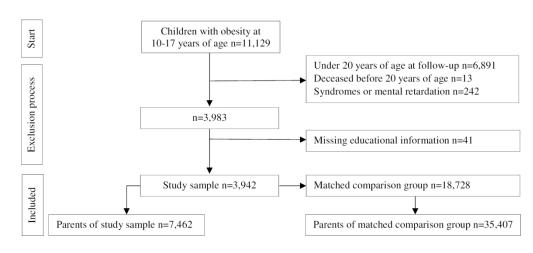
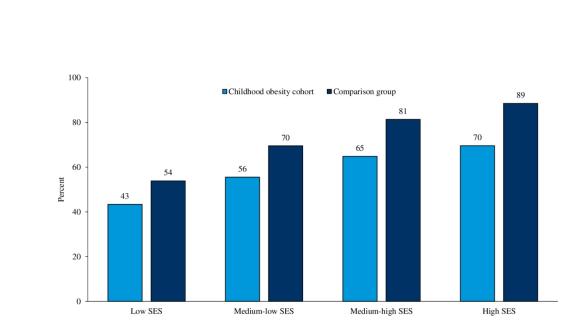
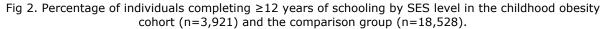
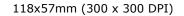
S4 Table. Proportion of individuals who have undergone obesity treatment in childhood 63 64 who completed ≥ 12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942). 65

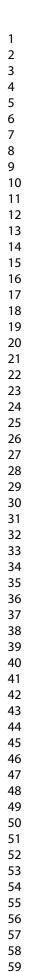
Figure Legends 67

Fig 1. Participant flowchart. 68

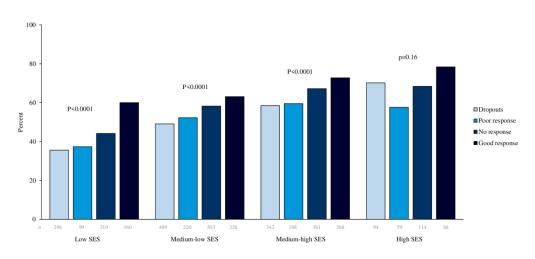
Fig 2. Percentage of individuals completing ≥ 12 years of schooling by SES level in the 70 childhood obesity cohort (n=3,921,) and the comparison group (n=18,528). 71

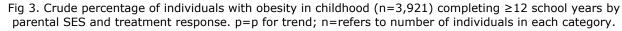
Fig 3. Crude percentage of individuals with obesity in childhood (n=3,921) completing ≥ 12 73 school years by parental SES and treatment response. p=p for trend; n=refers to number 74 of individuals in each category. 75


Figure 1

169x73mm (300 x 300 DPI)





60

150x66mm (300 x 300 DPI)

 S1 Table. International Classification of Diseases (ICD 10th revision) codes and Anatomical Therapeutic Chemical (ATC) classification system codes used.

Condition	ICD-10	ATC Code	
Anxiety/sedatives	F40.0-F40.1, F41-F42, F51.4-F51.9, F93.0-F93.2	N05B	
Depression/antidepressants	F32-F39, F92	N06A	
ADHD/ADD	F90	N06B	
Mental retardation	F70-F79		
Genetic syndromes			
Fragile X	Q99.2		
Klinefelter	Q98		
Laurence-Moon-Bardet-Biedl	Q87.8B		
Mb Down	Q90		
Noonan	Q87.1E		
Prader-Willi	Q87.1F		
Silver Russell	Q87.1G		
Turner	Q96		

Q96

	Childh	ood obesity cohort	Compari	Comparison group	
	n	%	n	%	p-value [¶]
Total	2,236	56.7	13,939	74.4	< 0.0001
Sex					
Girl	1,090	59.7	6,843	78.7	< 0.0001
Boy	1,146	54.1	7,096	70.8	< 0.0001
Migration background	, -		.,		
Nordic	1,695	58.4	10,974	78.1	< 0.0001
Non-Nordic	541	52.2	2,965	63.4	< 0.0001
ADHD/ADD			*		
Non-ADHD/ADD	2,032	61.1	13,528	76.5	< 0.0001
ADHD/ADD	204	33.1	411	39.4	0.01
Anxiety/depression					
No anxiety/depression	1,902	61.1	12,754	77.0	< 0.0001
Anxiety/depression	334	40.2	1,185	54.9	< 0.0001
Parental SES			,		
Low	376	43.4	1,455	53.9	< 0.0001
Medium-low	855	55.5	4,187	69.5	< 0.0001
Medium-high	751	64.8	5,358	81.3	< 0.0001
High	247	69.6	2,848	88.5	< 0.0001
Maternal education					
Compulsory school	755	47.7	3,474	61.9	< 0.0001
Upper secondary school	945	61.3	5,582	77.9	< 0.0001
University degree	506	69.3	4,589	85.3	< 0.0001
Paternal education			,		
Compulsory school	639	50.2	2,775	63.0	< 0.0001
Upper secondary school	1,132	59.9	7,085	77.9	< 0.0001
University degree	318	66.0	3,333	85.2	< 0.0001
Maternal income					
Q1	614	52.3	3,327	68.1	< 0.0001
Q2	750	58.6	4,391	75.2	< 0.0001
Q3	542	58.2	3,534	77.1	< 0.0001
04	304	62.6	2,429	81.3	< 0.0001
Paternal income			, -		
Q1	556	49.3	2,453	62.6	< 0.0001
Q2	410	54.0	2,260	72.3	< 0.0001
Q3	549	61.8	3,404	77.6	< 0.0001
04	572	66.2	5,056	84.5	< 0.0001
Maternal occupational status			·		
No occupation	438	47.8	1,722	58.3	< 0.0001
Occupation	1,777	60.0	12,005	77.9	< 0.0001
Paternal occupational status					
No occupation	363	45.4	1,543	58.7	< 0.0001
Occupation	1,736	60.5	11,703	78.5	< 0.0001

Abbreviations: SES, socioeconomic status; Q, quartile. [¶]Performed with chi-square.

1 EUR \approx 9.83 SEK December 31st 2017. Q1: <18,652 EUR; Q2: 18,652 to 25,025 EUR; Q3: 25,026 to 32,309 EUR; Q4: >32,309 EUR.

	Childhood obesity cohort	Comparison group
Parental SES (ref=low) ^a		
Medium-low	1.64 (1.30 to 2.07); <0.0001	1.81 (1.59 to 2.07); <0.000
Medium-high	2.43 (1.88 to 3.12); <0.0001	3.25 (2.82 to 3.75); <0.000
High	3.22 (2.24 to 4.64); <0.0001	5.80 (4.81 to 6.99); <0.000
Maternal education (ref=compulsory school) ^b		
Upper secondary school	1.64 (1.33 to 2.01); <0.0001	1.75 (1.56 to 1.96); <0.000
University degree	2.33 (1.76 to 3.09); <0.0001	2.54 (2.20 to 2.93); <0.000
Paternal education (ref=compulsory school) ^b		
Upper secondary school	1.29 (1.05 to 1.58); 0.0012	1.59 (1.42 to 1.79); <0.000
University degree	1.46 (1.06 to 2.01); 0.0025	2.28 (1.94 to 2.67); <0.000
Maternal income (ref=Q1) ^c		
Q2	1.28 (1.01 to 1.61); 0.0064	1.26 (1.11 to 1.42); <0.000
Q3	1.26 (0.98 to 1.62); 0.019	1.30 (1.13 to 1.49); <0.000
Q4	1.42 (1.04 to 1.95); 0.004	1.47 (1.25 to 1.73); <0.00
Paternal income (ref=Q1) ^c		
Q2	1.19 (0.92 to 1.54); 0.075	1.44 (1.25 to 1.66); <0.000
Q3	1.57 (1.22 to 2.02); <0.0001	1.79 (1.56 to 2.05); <0.00
Q4	1.96 (1.51 to 2.55); <0.0001	2.63 (2.29 to 3.03); <0.000
Maternal occupational status (ref=no occupation) ^d		
Occupation	1.42 (1.14 to 1.77); <0.0001	1.83 (1.61 to 2.08); <0.00
Paternal occupational status (ref=no occupation) ^d		
Occupation	1.63 (1.30 to 2.04); <0.0001	1.90 (1.67 to 2.16); <0.00
^a Adjusted for migration background, ADHD/ADD,	anxiety/depression, parental SES	
^b Adjusted for migration background, ADHD/ADD,		paternal education
^c Adjusted for migration background, ADHD/ADD,		•
^d Adjusted for migration background, ADHD/ADD,		1
Abbreviations: SES, socioeconomic status; Q, quart Q1: <18,652 EUR; Q2: 18,652 to 25,025 EUR; Q3: December 31 st 2017.	ile.	

S4 Table. Proportion of individuals who have undergone obesity treatment in childhood who completed ≥12 years of schooling by calendar year and by age at start of obesity treatment (n=3,942).

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1-2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2-3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4.5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-9
-		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-9
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	9-10
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9-10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	12 -
		eligible, examined for eligibility, confirmed eligible, included in the study,	fig
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	11
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	12

Main results 16		(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12 17
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20 21
Interpretation	20	· · · ·	
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other informati	on		•
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	22 23

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml