SUPPLEMENTAL INFORMATION

FOR

eEF3 promotes late stages of tRNA translocation including E-tRNA release from the ribosome

Namit Ranjan^{1,#,*}, Agnieszka Pochopien^{2,3,#}, Colin Chih-Chien Wu^{4,#}, Bertrand Beckert³, Sandra Blanchet¹, Rachel Green^{4,5,*}, Marina V. Rodnina^{1,*}, Daniel N. Wilson^{2,3,*}

1 Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

² Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany

³ Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

4 Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, MD21205 Baltimore, United States.

5 Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, MD21205 Baltimore, United States.

These authors contributed equally

*Correspondence: daniel.wilson@chemie.uni-hamburg.de, rodnina@mpibpc.mpg.de, ragreen@jhmi.edu, namit.ranjan@mpibpc.mpg.de

Table of contents

Appendix Figure S1 – page 2 Appendix Figure S2 – page 3 Appendix Figure S3 – page 4-5 Appendix Figure S4 – page 6 Appendix Figure S5 – page 7-8 Appendix Figure S6 – page 9 Appendix Table S1 – page 10 Supplemental References – page 11

SUPPLEMENTAL FIGURES

Appendix Figure S1 Components of the reconstituted yeast translation system, related to Figure 1. (A) Quality control of the initiation and elongation factors and the ribosomes by PAGE. For each component, 50 to 100 pmol were loaded on a NuPAGE 4 to 12% gradient gel. "nat" denotes purification of native eIF2 and eIF3 from yeast. (**B**) Purification of the 80S IC by SEC on a Biosuite 450 using HPLC. The presence of 80S IC is identified as the overlap between the absorbance of the ribosomes at 260 nm (black) and the radioactivity from $[3H]$ Met-tRNA_i^{Met} (blue).

Appendix Figure S2. Analysis of eEF3-TAP tagged strains and purifications, related to Figure 4. (**A**) Overview and (**B**) Zoom of binding position of eEF3 on the 80S ribosome, highlighting in (**B**) the position of the C-terminal TAP-tag. (**C-E**) Growth of WT and eEF3-TAP tagged strain as a dilution series on agar plates incubated at (**C**) 20°C, (**D**) 30°C and (**E**) 37°C. (F) Coomassie stained SDS-PAGE of eluation fractions of tandem affinity purification using eEF3-TAP and WT strains in the absence and presence of ADPNP. M, molecular weight marker (kDa); AcTEV indicates position of TEV protease, eEF3*, position of eEF3 and RP, ribosomal proteins

Appendix Figure S3. 3D classification of the *S. cerevisiae* **eEF3-80S complex, related to Figure 4.** Following 2D classification, 211,727 particles were initially aligned against a vacant *S. cerevisiae* 80S ribosome and subjected to 3D classification, sorting the particles into eight classes. The particles in class 1 and 2 bearing a stable eEF3-80S complex were joined in group I and subjected to two focused sortings using two different masks: the first encompassing the eEF3

ligand and the second covering the tRNAs, the L1-stalk and the eEF3-CD. The first classification allowed the sorting for a high resolution eEF3 bound volume (class 3, 21%, 45,032 particles), which was 3D and CTF refined resulting in a 3.3 Å final reconstitution. The final map was further multi body refined and provided a resolution of 3.2 Å for the LSU-eEF3 (ABC1/2, CD) (MB-1), 3.3 Å for the SSU body (MB-2) and 3.5 Å for the SSU head-eEF3 (HEAT, 4HB) (MB-3). The second sorting procedure enabled the classification of four EF3-bound non-rotated ribosomal classes with distinct tRNA occupancies (Ia-Id) with final resolutions denoted in the scheme. Class 3 (group II) showed a ribosomal species bearing eEF2, P/P- and E/E-tRNA and was finally refined to 4.1 Å. Class 4 and 5 (joined to group III) showed a rotated ribosome with mixed tRNA occupancy and after low pass filtering a disordered eEF3 ligand. This class was sorted further into two volumes (IIIa, IIIb) whereas each of them was 3D and CTF refined resulting in 4.2 Å and 3.8 Å resolution for the A/A- and P/E-tRNA occupied 80S (IIIa) and the A/P and P/E-tRNA bound ribsome (IIIb), respecively. Classes 6, 7, 8 (group IV) contained low resolution particles, which also showed a partial density for eEF3.

Appendix Figure S4. Overview of the final refined cryo-EM reconstruction of the eEF3- 80S complex, related to Figure 4. (**A**) Fourier shell correlation (FSC) curve (blue curve) of the final refined cryo-EM map of the eEF3 ribosomal complex, indicating the average resolution of 3.3 Å, according to the gold-standard criterion (FSC=0.143). Overlay is the FSC curve calculated between the cryo-EM reconstruction and the final model (grey curve). (**B**) Cryo-EM map of the 3.3 Å EF3-80S complex filtered and colored according to local resolution and (**C**) its transverse section. (**D**) View of the isolated density for eEF3 from (**B**). (**E**) FSC curve of the three multibody (MB) refined cryo-EM map of the eEF3-80S complex, indicating the average resolution of 3.2 Å for MB-60S, 3.3 Å for MB-40S body and 3.5 Å for MB-40S head. (**F**) Cryo-EM map of the MB refined EF3-80S complex filtered and colored according to local resolution. The outlines are depicting the three masks, which were used for the MB refinement. (**G**) Transverse section of the volume shown in (**F**). (**H**) Isolated density for eEF3 from (**F**). The scale bar is valid for all showed resolution panels.

Appendix Figure S5. Model for *S. cerevisiae* **eEF3 with bound ATP/ADPNP molecules, related to Figure 4.** (**A**) Model of the 80S-bound eEF3 based on the multibody refined map (gray mesh) and colored by domain. HEAT (blue), 4HB (yellow), ABC1 (red), ABC2 (green) and CD (magenta). (**B**-**C**) Selected examples illustrating the quality of fit of the molecular model within (**B**) the HEAT repeat region and (**C**) the ABC2 domain to the unsegmented cryo-EM map (gray mesh). (**D**) eEF3-80S molecular model shown in (**A**), but in the orientation showing the

ATP-binding cassettes and (**E**) zoom of the two nucleotide-binding sites formed by ABC1 and ABC2. For the bound ATP/ADPNP molecules cryo-EM map densities of the multibody refined map (dark grey mesh) are illustrated. The residues, which show density are shown as sticks and labelled. (**F-K**) Isolated electron density (transparent grey) for nucleotide binding pocket of (**F-H**) ABC1 and (**I-K**) ABC2 modelled with (**F, I**) ATP in the eEF3 (green) structure, or rigid-body fitted with the crystal structures of (G,J) *E. coli* HlyB-NBD with ATP/Mg²⁺ (PDB ID: 1XEF) (Zaitseva, Jenewein, Jumpertz, Holland, & Schmitt, 2005) or (**H,K**) *M. jannaschii* MJ0796 ABC protein with ADP/Mg^{2+} (PDB ID: 1F3O) (Yuan et al., 2001).

Appendix Figure S6. The rotated 80S bound to disordered eEF3, related to Figure 6. (**A**) Rotated 80S molecular model corresponding to the POST-1 state (disordered density for eEF3 is not shown). The ribosomal residues ES39S, eS19 and uS13 responsible for eEF3-HEAT binding are depicted in pink. (**B**) Zoomed view of ES39S, eS19 and uS13 highlighted in (**A**) overlaid with corresponding residues from the non-rotated POST-3 state. The arrows are showing the magnitude of the movement of these residues from a non-rotated POST-3 to a rotated POST-1 state in (**A**). (**C**) Segmented density for the disordered eEF3 from the POST-1 cryo-EM map highlighting the lack of association of the eEF3-HEAT repeat region with the moved ES39S, eS19 and uS13 resulting from the subunit rotation. (**D**) 80S model in rotated PRE-3 state depicting ES39S, eS19 and uS13 in orange and the (**E**) corresponding zoom of the displacement of the mentioned residues in the rotated ribosome. (**F**) Isolated density for the potential disordered ligand from the PRE-3 volume showing barely any density for eEF3. (**G**) PRE-4 ribosomal model with ES39S, eS19 and uS13 colored in blue as well as (**H**) the corresponding enlargement of these residues compared to the residues in the POST-3 state. (**I**) Segmented density of the eEF3 ligand from the rotated PRE-4 state. The isolated densities in (**C**), (**F**) and (**I**) were low pass filtered to 8 Å.

Appendix Table S1 Cryo-EM data collection, refinement and validation statistics

Supplemental References

- Barthelme, D., Dinkelaker, S., Albers, S. V., Londei, P., Ermler, U., & Tampe, R. (2011). Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. *Proc Natl Acad Sci U S A, 108*(8), 3228-3233. doi:10.1073/pnas.1015953108
- Crowe-McAuliffe, C., Graf, M., Huter, P., Takada, H., Abdelshahid, M., Novacek, J., . . . Wilson, D. N. (2018). Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. *Proc Natl Acad Sci U S A, 115*(36), 8978-8983. doi:10.1073/pnas.1808535115
- Nurenberg-Goloub, E., Kratzat, H., Heinemann, H., Heuer, A., Kotter, P., Berninghausen, O., . . . Beckmann, R. (2020). Molecular analysis of the ribosome recycling factor ABCE1 bound to the 30S post-splitting complex. *EMBO J, 39*(9), e103788. doi:10.15252/embj.2019103788
- Webb, K. J., Al-Hadid, Q., Zurita-Lopez, C. I., Young, B. D., Lipson, R. S., & Clarke, S. G. (2011). The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase. *J Biol Chem, 286*(21), 18405-18413. doi:10.1074/jbc.M110.200410
- Yuan, Y. R., Blecker, S., Martsinkevich, O., Millen, L., Thomas, P. J., & Hunt, J. F. (2001). The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. *J Biol Chem, 276*(34), 32313-32321. doi:10.1074/jbc.M100758200
- Zaitseva, J., Jenewein, S., Jumpertz, T., Holland, I. B., & Schmitt, L. (2005). H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. *EMBO J, 24*(11), 1901-1910. doi:10.1038/sj.emboj.7600657