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Reviewer #1 (Evidence, reproducibility and clarity (Required)): 

The authors generated and analyzed a great amount of single-cell RNA FISH data over time 
on circadian genes (Nr1d1, Cry1, Bmal1), and performed model selection/fitting to explain 
the observed mRNA distributions. They decomposed the mRNA variability into distinct 
sources, and showed that intrinsic noise (transcription burst) dominates the variance. 
Therefore, looking at transcript counts may not be feasible to estimate single-cell circadian 
phase. However, the study is quite descriptive and ends up being a bit dissatisfying, so if the 
authors could improve this aspect by perhaps analyzing a mechanism on cell-specific burst 
size (F5), gene-specific dependence on cell size (beta), or the positive/negative gene-pair 
correlations (rho), it would help quite a bit in this regard. The model selection/fitting itself was 
not really sufficient to compensate for this, as it stands .  

We thank the reviewer for appreciating the new smFISH data, the analyses performed, and 
the consequences regarding phase inference from single cell snapshots. 

The reviewer suggests “perhaps analyzing a mechanism on cell-specific burst size (F5), 
gene-specific dependence on cell size (beta), or the positive/negative gene-pair correlations 
(rho)”, and we have thus added a new Results paragraph (lines 281-316) and two new Supp 
Figures 13 and 14 to directly address this point. 

Specifically, we have added a dynamic, stochastic model of the circadian clock in order to 
add mechanistic insight into the parameters of the preferred model M4. Concerning \rho, in 
the initial manuscript we suggested that the correlations of cell-specific burst sizes 
(described by the parameter \rho) in the preferred model M4 could result from the underlying 
network topology. To substantiate this claim, we have now added an analysis of a stochastic 
model of the clock that includes gene-gene interaction amongst the core-clock genes. The 
core-clock network involves variables (such as protein levels), parameters (such as mRNA/ 
protein half-lives) and additional genes (such as Clock) that are not directly measurable in 
our experiments; and thus offering a detailed mechanistic mathematical model for our data is 
therefore not realistic. We therefore developed a simplified mathematical model for the three 
measured genes to explore the underlying mechanisms that could control the parameter 
\rho, as the referee suggests. As a starting point, we used the circadian clock gene network 
topology for Nr1d1, Cry1 and Bmal1 as modelled in Relógio et al. (Relógio et al., 2011) (see 
new Supplementary Material). To keep the model close to the inference framework, we used 
oscillatory functions for the burst frequency while the transcription rate (and hence the burst 
size) for each gene is affected by the protein levels of the other genes in the network. Using 
stochastic simulations we show that, for particular configurations of feedback where the 
negative repression of Nr1d1 by CRY1 is high, the network can generate positive mRNA 
correlation between Bmal1/Cry1 mRNA and negative correlation between Nr1d1/Cry1 
mRNA, as observed in our data (Figure 2C). Furthermore, using the same inference 
framework as for our data on the simulated mRNA distributions, the obtained \rho is positive 
for Bmal1/Cry1 and negative for Nr1d1/Cry1, which was also found for our data (Figure 3C). 
Even though the model is clearly a simplified representation of the clock, these simulations 
give credence to the scenario that the \rho parameter obtained from the data is a signature 
of the underlying network topology. 
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While the emphasis of the paper is certainly on parameter inference of the single-cell RNA 
FISH data, we believe the addition of this dynamic model provides more mechanistic insight 
into the results of the model fitting and hence significantly more depth to the article. 

**Specific comments:** 

1.It is hard to distinguish the RNA FISH signals (Figure 1A, 2B). It is probably technically
challenging as the mRNAs are of low abundance. I think it may help if they adjust the
contrast for the cytoplasm stain or just delineate the cell boundaries.

Thank you for pointing this out, and we agree that our rendering of the FISH images was not 
optimal and have now significantly improved it (see new Figure 1A and 2B). Considering the 
other reviewers’ comments related to the images, we have now 1) added the cell contours 
as requested; 2) use red/green for the smFISH signal in the pairs of genes; 3) we have 
improved the contrast to make it easier to distinguish the RNA FISH signals. 

2.In Figure 2C, the authors showed gene-pair correlations with cells of all sizes. Could the
authors do a size-dependent extrinsic-noise filtering (Padovan-Merhar, Dev. Cell, 2015;
Hansen et al., 2018, Cell Systems) to better dissect the correlations?

We used negative binomial distributions to directly model the number of mRNA in the cells, 
which is a natural choice given that the raw smFISH are integer counts. The model 
incorporates cell size dependencies in a unified framework, which predicts the joint 
distribution of raw counts, which is why we showed raw counts in the main figure. That being 
said, as the referee suggests, it can be useful for exploratory purposes to see the 
relationship between the measured genes while regressing out the contribution of cell area, 
and we have now added this analysis as Supp Figure 9. On line 156-161 we write: 
“To also estimate the correlation between genes while accounting for cell area, we 
regressed out the area for each gene and recalculated the correlation coefficients [37,38]. 
Since all genes are positively correlated with area (Fig. 2A), this processing shifted the 
correlations for both pairs of genes. Specifically, the correlation coefficients for the area-
filtered mRNA counts decreased but remained positive for Bmal1/Cry1 and became more 
negative for Nr1d1/Cry1 (Supp Figure 9).” 

3.For fitting model M3, as the authors pointed out, there are many local minima. Is the fitting
score truly sufficient to eliminate the possibility for partial synchrony especially considering
that the authors didn't show how effective the Dex treatment was to synchronize the
circadian phase?

Thank you for this comment. In fact, we didn't mean to fully eliminate the possibility of 
imperfect synchronization, but have tried our best to address it both experimentally and with 
modeling.  

Experimentally, in addition to the Dex treatment, we also compared with a condition in which 
we entrained the cells using temperature cycles, which is a standard in the field to achieve 
the best synchronization. We obtained a fold change of 2.1, which was in the range of 
previous studies (Saini, et al, 2012) and was slightly higher than with Dex synchronisation 
(1.6). Given that the improvement was not high and that it was important for us to study the 



system under free-running conditions and not in an entrained state (i.e. phase locking, which 
distorts the free dynamics and noise characteristics of the oscillator), we used the Dex 
protocol.  

Model 3 was used as a computational approach to correct for the individual phases. In 
addition to the difficult optimisation landscape, the challenge with model M3 also resides in 
the difficulty of estimating an individual phase for each cell, as the two mRNA counts 
measured in each cell do not contain sufficient phase information. This could potentially be 
resolved by either measuring more genes simultaneously, but is, however, beyond the scope 
of the present manuscript. We have added discussion on this to the text on lines 244-248: 

“Thus, it was apparently difficult to use model M3 to correct the individual phase for each 
cell, likely due to the fact that the two mRNA counts measured in each cell do not contain 
sufficient phase information, and that the global optimisation problem contains many local 
minima. This could potentially be improved by measuring more genes simultaneously.” 

We have also added a new Results section (lines 305-316) and Supp Figure 14 to show that 
imperfect synchrony alone cannot explain the correlation structure observed in our data. 
Indeed, if two genes have a similarly phased oscillation, the expression of the two genes will 
be positively correlated (as shown in the new Supp Figure 14). Similarly, when the 
oscillations are in anti-phase, negative correlations will be found. Given that Nr1d1 and Cry1 
are closer in phase than Bmal1 and Cry1, one would expect that the correlation between 
Nr1d1 and Cry1 (once accounting for area) would be more positive than for Bmal1 and Cry1, 
which was not found in the data (area-corrected correlations shown in Supp Figure 9). It 
therefore seems unlikely that the observed correlations could be caused by imperfect 
synchrony alone. Together with our simulations of the gene network (described above), we 
therefore argue that gene-gene interactions are a more plausible mechanistic explanation of 
the correlations observed in our measured bivariate mRNA distributions. 

4.Regarding model M4, the authors added a cell-specific noise term without specifying the
contributing factors. Typically adding degrees of freedom should improve fitting and make it
easier for a model to fit, why not in this case? Can the authors provide some
explanations/mechanisms.

We believe there has been a misunderstanding regarding model M4. By adding parameters, 
model M4 is indeed easier to fit. There is even a problem of overfitting whereby the burst 
frequency becomes unrealistically high and the model effectively fits a Poisson distribution to 
each individual cell. To avoid this, we lock the burst frequency values to the posterior mean 
values from model M2. After describing model M4, we write (lines 260-265): 

“When all parameters are free, we noticed that the burst frequency can become 
unrealistically high due to a tendency to overfit to individual cells, and we therefore locked 
the burst frequency to the posterior mean values from model M2. The PSIS-LOO scores 
overall favoured model M4 (Fig. 3B), and the predicted joint probability density shows good 
similarity to the observed data (Fig. 3D) (all time points shown in Supp figure 11).” 



Regarding the above comment in the reviewer’s summary on contributing factors of model 
M4 we added a simple dynamical model that attempts to explain at least one possible 
mechanism of generating correlations in cell-specific bursting parameters (see above). 

5.The authors should include the number (range) of cells analyzed in the figure legends.

We have now added the number of cells used at each time point to the legend of Figure 1D. 
To respond to Reviewer #2 we have also added details on the number of smFISH replicates 
used at each time point. The number of cells for each replicate is shown in Supp Figures 2-
5. 

Reviewer #1 (Significance (Required)): 

Overall, we felt conflicted about the manuscript. On one hand, the authors generated and 
analyzed a great amount of single-cell RNA FISH data over time on circadian genes. On the 
other hand, the manuscript was a bit dissatisfying/descriptive. If the authors could provide 
and analyze some sort of mechanisms on cell-specific burst size (F5), gene-specific 
dependence on cell size (beta), or the positive/negative gene-pair correlations (rho) it should 
help improve the manuscript. 

We thank the review for the suggestion to expand on the mechanistic interpretation, which 
we have followed. In addition, we would like to emphasise that a similar smFISH analysis of 
the core circadian oscillator has never been done, and we believe our data represents a 
significant contribution to the field. Moreover, our quite generic probabilistic inference 
framework for smFISH using mixture models to describe intrinsic (transcriptional bursting) 
and extrinsic fluctuations is also novel and the code provided (written using the Stan 
probabilistic programming language) might find a wide applicability. 

Concerning the mechanistic description, as described above, we added a stochastic, 
dynamic model of gene expression and propose that gene-gene interactions within the core-
clock network topology represent a plausible mechanism for generating correlated burst 
parameters between genes, which are a feature of the preferred model M4 found during 
inference. We additionally added an explanatory figure to argue that, given the phase 
relationship between genes, imperfect synchronisation alone cannot explain the observed 
correlations that we observe between the pairs of genes. Together, this analysis provides 
more mechanistic insight into the underlying factors controlling the gene-gene relationships 
in our measured bivariate mRNA distributions. 

**Referees cross-commenting** 

I agree with Reviewer #3 regarding expanding the discussion to include the Shah & Tyagi 
and Raj et al citations on buffering. However caution should be exercised regarding ref 26 as 
it is quite controversial and subsequent analyses came to different conclusions (PMID: 
30359620 and 30243562). The general consensus is that nuclear buffering of transcript 
noise (proposed in ref 26) is not a general phenomenon (ref 27 is specific to the calcium 
response pathway). In fact, the presence and evolution of specific pathways to buffer 
transcriptional noise, such as protein-protein mechanisms (Shah & Tyagi) or extended half-



life proteins (Raj et al. and others), argues that transcript fluctuations are not probably 
buffered in general. 

Following the suggestion of Reviewer #3, we have expanded the Discussion to include the 
references cited (Shah & Tyagi, Raj and others).  

Previous work from our lab is also nuancing the conclusions from references 26 and 27. 
Specifically, buffering effects are expected to be highly gene-specific (3’UTR), and in fact we 
have not seen those with our unstable construct during live-cell imaging (Suter et al., 2011; 
Zoller et al., 2015). We have also added text in order to explicitly state that subsequent 
papers have nuanced the general claims in references 26 and 27. In the text we write (lines 
335-342):

“One explanation for the low intrinsic fluctuation in these studies is that transcriptional 
fluctuations are filtered by nuclear retention, though other reports suggest that Fano factors 
(variance/mean, a measure of overdispersion compared to the Poisson distribution) can be 
even larger in the cytoplasm than in the nucleus [38]. In the cells used here, the strong 
signature of transcriptional bursting and high intrinsic noise is consistent with live imaging of 
a Bmal1 transcriptional reporter in the same cell line under similar growth conditions, where 
intrinsic noise was estimated to be 4-times larger than extrinsic noise [23].”. 

Reviewer #2 (Evidence, reproducibility and clarity (Required)): 

**Summary:**  
The authors study experimentally and computationally the dynamic transcription of circadian 
clock genes over time in individual cells with single molecule RNA-FISH with the aim to 
understand how different noise sources contribute to single cell transcription variability and 
basic functions of circadian clocks. The authors integrate experiments with computational 
modeling to understand biology.  

**Major comments:** 

This study has some major limitations that need to be addressed to test the model 
usefulness, to understand noise sources and to gain biological insights into circadian clocks. 

We thank this reviewer for the constructive feedback which enabled us to significantly 
strengthen the revised manuscript. 

The limitations are on the experiments, the computational implementation of the modeling 
and the integration of experiments with models. 

Although the experimental datasets contain several hundred cells per time point for multiple 
time points, only a single replica experiment is presented. From the presented data it is not 
clear how reproducible these temporal patterns are and if indeed differences between 
timepoints can be resolved if multiple biological replica experiments have been analyzed. To 



address this point at least three biological experiments needs to be presented and analyzed 
for each of the genes. Plotting the SEM on the means in figure 1B is misleading because 
several hundred cells have been measured which automatically makes the error small. The 
SEM just describes how well we can determine the mean from a distribution. Instead a mean 
and std from the biological replicas need to be plotted to show how experimental variability in 
experiments is resulting in the described expression pattern. This is similar to RNA-seq data 
or RT-PCR from multiple replica. 

We certainly agree that demonstrating reproducibility is important. Note that our smFISH 
data is from three independent cell culture dishes and microscopy slides, which included 
independent cell synchronization. This was described in the Methods but we agree that the 
data presentation was not showing the individual replicas, which we have now added. In 
Figure 1B, we now show the mean of each replicate for each time point. While the reviewer 
suggested displaying the mean and standard deviation across replicates, we show all data 
points at each time point to make it even more transparent. The mRNA distribution of each 
replicate is also shown in Supp Figures 2-5, together with individual quantification of mean, 
coefficient of variation and number of cells.  

In addition, to further demonstrate the reproducibility of the temporal patterns we have 
performed an additional independent experiment on four time points. This experiment shows 
that the oscillatory patterns for Nr1d1 and Cry1 are clearly significant and reproducible (new 
Supp Figure 7). The combination of the replicates shown for the main experiment (Supp 
Figures 2-5) and the new replicate experiment (Supp Figure 7) shows that the oscillatory 
temporal patterns for the mean mRNA levels are robust and reproducible, and in fact similar 
as those found in bulk analyses (Ukai-Tadenuma et al., 2011; Hughes et al., 2009), which is 
expected. 

It is also not clear how good the cell segmentation works and how does cell segmentation 
influence the analysis. In figure 1A show the segmentation of the cell boundary together with 
the membrane stain. 

Thanks to this and other reviewers’ comments, we have now significantly improved the 
presentation of the FISH images. We have now 1) added the cell contours as requested; 2) 
used red/green for the smFISH signal in the pairs of genes; 3) we have improved the 
contrast to make it easier to distinguish the RNA FISH signals. 

We have also added Supp Figure 1 to show that the cell segmentation we used is reliable. In 
fact, as we had described, we used the sum Z-stack projections of the red channel (Wu et 
al., 2018), which we found provides the most accurate cell segmentation. We now show in 
Supp Figure 1 that the obtained segmentation shows convincing agreement with the cell 
autofluorescence . 

The authors use the RNA mean and RNA-FISH distributions and combine this data to build 
and compare different models. How do you know that the given data fulfils the central limit 
so that a model describing the mean is an adequate approach? To test this point, the 
authors should show through subsampling from the data and the model that indeed their 
data sets have enough cells to fulfil the central limit theorem. 



This comment reflects a misunderstanding of our approach, which we now try to better 
explain. In our inference framework we use a negative binomial (NB) distribution (and 
mixtures of NBs) to model the full distribution of mRNA counts, and our approach is 
therefore not based exclusively on the mean of the distribution. The estimation of model 
parameters and comparison of models is performed using the PSIS-LOO optimisation 
procedure (see below). The mixture model of NB binomials makes a few assumptions which 
we had clearly stated. In fact it captures both bursty transcription (in the limit of short bursts 
as is biologically plausible, which yields the NB distribution), and cell-to-cell variability 
(extrinsic noise) captured by the mixture. The suitability of the NB to model bursty 
transcription is established (Raj et al., 2006), and it is parameterized by a mean and a 
dispersion coefficient, such that the CV of the distribution is the inverse of the burst 
frequency (Zoller et al., 2015). Therefore the mean is indeed an important parameter of the 
model, but we do not see the relationship with the CLT. The used probabilistic inference 
(PSIS-LOO: Pareto-Smoothed Importance Sampling Leave-One-Out, Vehtari et al. 2017, 
see below) is established and state-of-the-art for selecting models of the appropriate 
complexity and we are not aware of a similar previous quantitative model for smFISH 
analysis. 

We have now added significantly more explanations both on the general approach as well as 
the methodological details in a fully-revised Methods section to avoid further 
misunderstanding. 

A strength of the manuscript is that several competing and biologically meaningful models 
have been generated. However, the manuscript lacks rigor in terms of how fitting and model 
selection is performed. It is not clear how good the models fit the data. To address this point, 
the authors should visually compare the model fits to the data and plot their fit errors as a 
function of model complexity. 

We fully agree that comparing different models using a model selection approach is a 
powerful methodology, in fact it is arguably the most systematic way to approach modeling 
problems in quantitative biology. Model selection is an active research area and there have 
been significant developments recently. Here, we used a state-of-the-art and established 
Bayesian approach (PSIS-LOO: Pareto-Smoothed Importance Sampling Leave-One-Out, 
Vehtari et al. 2017), which is certainly rigorous and more objective than visual comparison. 
The PSIS-LOO is conceptually similar to other approaches of model performance such as 
AIC or WAIC, and the entire field of model selection aims at establishing rigorous methods to 
assess the tradeoff between fit errors and model complexity. In PSIS-LOO, this is done by 
using pareto-smoothed importance sampling to estimate the expected log pointwise 
predictive density for a new dataset using leave-one-out cross-validation. The PSIS-LOO is 
the currently recommended metric for measuring model performance in Bayesian analysis 
(Vehtari et al., 2017) and is considered superior to other approaches such as computations 
of Bayes factors since it is less sensitive to model priors (Gelman et al. 2013). The 
performance of the models as measured with PSIS-LOO is shown in Figure 3B. As already 
mentioned, we have added further details as to how the fitting and model selection is 
performed in a revised Methods section. We agree that visual comparison is useful to gain 
intuition and this is why we showed the bivariate distributions in Figure 3D and in Supp 
Figure 11.  



Regarding the comment on “fit error”, note also that we probabilistically model the full mRNA 
distribution for each gene. In each cell, there is a likelihood score that measures the 
likelihood of observing the measured mRNA count given the modelled probability 
distribution. As our approach is based on this likelihood, the notion of “fitting error” needs to 
be replaced by the log likelihood (‘fitting error’ is mathematically equivalent to a log-likelihood 
when the noise model is Gaussian, which is not the case here).  

Another limitation is that the models have not been validated for example by using them to 
make predictions. One type of prediction could be to fit the model to one biological replica 
and then predict the other replica (cross validation). Another prediction would be to take the 
distribution fitted to the experimental data and then compare the model mean to the 
experimental mean. 

Thank you for this comment. As explained above, we used the state-of-the-art PSIS-LOO to 
measure the predictive performance of the models, which approximates the result of leave-
one-out cross-validation using the full data set. To further assess the predictive capabilities 
of the model, we have now also added a “leave-replicate-out” cross-validation, as the 
reviewer suggests (new Supp Figure 12). The aim of our “leave-replicate-out” cross-
validation was to test how well the predictions of each model generalise to independent cells 
that are not in the training set. To do this, we trained each model while omitting the data from 
one gene on a test slide. We then calculated the likelihood score of the test slide using the 
parameters from the training set, and repeated this for all slides. Similarly to the PSIS-LOO, 
the results of the leave-replicate-out cross-validation convincingly show that model M4 has 
the highest predictive performance. This is now described in the updated text on lines 265-
271. 

The results from fitting and prediction should be plotted as a function of model complexity. 
This kind of analysis will illustrate how model complexity is supported by the data. 

As already mentioned, we used state-of-the-art algorithms to analyze prediction vs. 
complexity. With the above addition, we now have two methods of calculating the predictive 
performance of each model: the approximate leave-one-out score as measured with PSIS-
LOO and the leave-replicate-out cross-validation. For each model, the PSIS-LOO score is 
plotted in Figure 3B and the leave-replicate-out cross-validation score is shown in Supp 
Figure 12.  

In the method section on models, a biological motivation must be presented to justify the 
different model assumption.  

Thank you for pointing out that the biological justification of the models needed to be 
expanded. In addition to the improved justifications already provided in the Results section, 
we have now updated the Methods section such that a biological motivation is included for 
each model. 

How do the models that fit the distributions describe the mean? 

As explained above, the inference is performed on the entire distributions, using a family of 
distributions (mixtures of NBs) which are parameterized in a biologically relevant manner 



(transcriptional bursting + extrinsic noise). The mean and variance of the distribution are now 
described on lines 585-586 in addition to Figure 3A. 

It is necessary to list model parameters for each of the models, their description, their 
parameter values, their parameter uncertainty and units of each parameter.  

Thank you, this has now been added as Supplementary Tables 2-5. 

It is not clear to me how the joint probability in figures 2,4, S2 and S4 have been used to fit 
the model. 

Again, the joint distributions are modeled using mixtures of NBs and the inference is 
performed on the entire dataset at once using a log-likelihood approach. This uses all the 
data at once, and it is embedded in a Bayesian model selection method. The way that the 
joint probability is used is now clarified in the revised Methods section and in the Results 
section (lines 208-214): 

“For both models M1 and M2, the likelihood of observing the data given the parameters of 
the model is evaluated using the model-specific NB distribution and the mRNA counts for 
both genes in each cell. This is performed for both Bmal1/Cry1 and Nr1d1/Cry1 pairs across 
all time points, and this likelihood is combined with model priors to define the posterior 
parameter distribution for each model (Methods). We applied Hamiltonian Monte Carlo 
sampling within the STAN probabilistic programming language to sample the posterior 
distribution and infer model parameters [40] (parameter estimates for each model shown in 
Supp Tables 2-5).” 

How do the models make sense in the context of the fact that human genes exist as a 
diploids?  

This is a good point, although note though that the 3T3 cells are from mice and not humans. 
3T3 cells are tetraploid, and it turns out that under the justified assumption that the bursts 
are short (Zoller et al., 2015; Suter et al., 2011), the number of alleles rescales the burst 
frequency, i.e. the effective (observed) burst frequency equals the number of alleles times 
the burst frequency per allele, but it does not change the shape of the distributions.  On line 
580-582 we have now written: “Since 3T3 cells are tetraploid, and, again assuming that the
bursts are short, the inferred burst frequency for tetraploid cells will be approximately four
times that of a single allele.”

The variance decomposition is shortly described but no results are presented to show how 
this is done. This should be better explained.  

The variance decomposition we used is not a new result; in fact, we used the analytical 
results of Bowsher, C. G. & Swain, P. S. “Identifying sources of variation and the flow of 
information in biochemical networks” (PNAS, 2012). The mathematical proofs of the formula 
we use are contained within that reference; however, we have re-written this section to make 
it clearer to the reader (lines 688-718). 

**Minor comments:** 



In figure 3A, it is not clear to me what these different plots relate to the models. It is also not 
clear what are equations that describe each model. 

The Methods section has now been improved to show the full data-generating mechanism 
for each model, and each model has its own section title to make it easier to find. We have 
also improved the legend for Figure 3 to make the relationship to each model clearer. 

The legends in figure 3 are not very informative. More details need to be presented to 
understand this figure.  

Thank you for pointing this out, and we have now re-written the figure legend for Figure 3 to 
make the figure clearer. 

Reviewer #2 (Significance (Required)): 

This is an interesting and important topic with the potential to have general implication of 
how to model periodic single cell gene expression data and eventually better understand 
circadian clocks. This study will expand on other modeling studies of circadian clocks and 
has the potential to advance the field (PMCID: PMC7229691). I personally have done similar 
analysis and experiments in another system and biological context which has demonstrated 
the power of this approach if implemented rigorously. I am not an expert in circadian clocks 
in human cells. 

We thank the reviewer for appreciating the implications for the circadian and single cell gene 
expression community. Note that to our knowledge, modeling smFISH counts using mixtures 
of negative binomials combined with Bayesian model selection has not been done. It is both 
highly relevant biologically (combines intrinsic and extrinsic fluctuations in a rigorous way), 
general and its applicability extends far beyond the circadian oscillator. Therefore, this 
approach for quantitative smFISH data analysis also fills an important methodological gap. 

**Referees Cross commenting** 

Reviewer #1:  
I agree with the assessment that model fitting and model selection was not sufficient. But I 
disagreed that the data is enough. Although many cells and time points are analyzed, there 
is no evidence of how reproducible each mRNA distribution can be measured at each time 
point. I think reproducibility is key and will also help with the model fitting and identification.  

Regarding the point on reproducibility, we have made the following four changes: 

1. We have added an independent 4 time-point experiment to show that the oscillatory
patterns of the distributions are reproducible (Supp Figure 7).

2. In Figure 1 we now also show the mean of each replicate for the main experiment
(Figure 1B).

3. We also show the mRNA distributions of each replicate in Supp Figures 2-5.



4. We have added the “leave-replicate-out” cross-validation to show that that the model
performance of the preferred model generalises to independent slides that were not
included in training (Supp Figure 12).

In responding to Reviewer #1 regarding the modeling, we have now also added a simplified 
dynamical model of circadian clock expression to add mechanistic insight into our proposed 
models. Overall, we have significantly expanded the description of the model selection 
approaches to help readers who are less familiar with Bayesian model selection methods.  

Reviewer #3:  
Regarding the red background, my understanding is that this comes from the probe 
hybridization. This is maybe because the probe concentration has not been optimized or the 
number of probes per gene is low and the signal to noise is not so good.Or it could be auto 
fluorescent background. In this case a different fluorophore needs to be used to avoid this 
problem. 

Thank you for those comments, and we agree with all reviewers that the presentation of the 
images needed to be improved. It turned out that in Figure 1, we had shown the cell mask in 
red so it is clearly not related to probe concentration or autofluorescence. We have now 
removed the cell mask channel from the main images which allows highlighting better the 
smFISH signals. All smFISH images for Figures 1 and 2 have been much improved, and 
we’ve added a new Supp Figure 1 to show the performance of our cell segmentation. 

Reviewer #3 (Evidence, reproducibility and clarity (Required)): 

In this paper Nicholas et al image mRNAs encoding the key controllers of circadian rhythms, 
Rev-erba, Cry and Bmal1 in single cells over time. It was shown earlier that single cells 
exhibit circadian rhythms using reporter genes. A large number of studies have shown that 
transcription is an inherently stochastic process, which raises a question as to how single 
cells are able to achieve their rhythms on the face of this noise. Their results show that the 
number of mRNAs for the three genes exhibit the expected periodicity, but this periodicity is 
associated with significant cell-to-cell variation. They also explore to what extent this 
variability derives from stochastic transcription vs other sources of variation that are extrinsic 
to the genes. The results are interesting and experimental and modeling results are 
important (however this reviewer is not able to judge the veracity of mathematics that 
underlay the models).  

We thank this reviewer for appreciating the importance of our work. 

**Some of the concerns that arose are listed below:**  

1.The images show an annoying red background. If the red is HCS cell mask, it should be
removed, and RNA presented on grey scale. This will make a better presentation. The red
hue also appears in fig 2 b but here it is one of the RNA. I suggest in Fig 2 one RNA can be
presented in green and the other in red, while the nuclei in blue.



Thank you for this comment. We had indeed shown the cell mask in the red channel and 
now removed it. Together with the other suggestions and comments from the reviewers, we 
implemented the following changes: 1) added the cell contours as requested; 2) use 
red/green for the smFISH signal in the pairs of genes; 3) we have improved the contrast to 
make it easier to distinguish the RNA FISH signals. The presentation of the images is now 
much improved.  

2.This paper and a few others talk about the cell size contributing to the cell-to-cell variability
in mRNA numbers. Where does it come from physically? One can imagine based on the cell
cycle stage there could be more than two copies of then gene in a cell, which will yield more
RNAs, but they say that their cells don't have much cell cycle variability. Perhaps a clearer
discussion is called for rather than just being polite to other investigators.

The referee is right that several studies observed empirically that larger cells show more 
mRNA molecules in smFISH experiments (Padovan et al., 2015; Kempe et al., 2015). In 
Padovan et al. (2015), the authors found that transcriptional burst size changes with cell 
volume and burst frequency with cell cycle. The main theory for transcription scaling with cell 
volume is to maintain transcript concentration. Using cell fusion experiments, they showed 
that cellular size can directly and globally affect gene expression by modulating transcription. 
Furthermore, they proposed that the mechanism underlying the global regulation integrates 
both DNA content and cellular volume to produce the appropriate amount of RNA for a cell 
of a given size, which is consistent with a model whereby a factor limiting for transcription is 
sequestered to the DNA. We used these results to propose a model whereby burst size 
scales with area, and we found an increase in predictive performance (compare M2 with M1 
in Figure 3B). While our model selection supported the inclusion of cell area, the variance 
decomposition showed that the fraction of variance due to cell area ranged from 4.2% for 
Nr1d1 to 17.6% for Bmal1. We have now expanded the introduction to discuss this in more 
depth (lines 73-80) as requested.  

3.References 26 and 27 are cited for 10-80% of variance due to gene extrinsic sources.
These references actually deny that there is a significant transcriptional noise in most genes.
Again, stronger discussion is called for.

As mentioned in the reply to Reviewer 1, previous work from our lab is also nuancing the 
conclusions from references 26 and 27. Specifically, buffering effects are expected to be 
highly gene-specific (3’UTR), and in fact we have not seen those with our unstable construct 
during live-cell imaging (Suter et al., 2011; Zoller et al., 2015). We have also added text in 
order to explicitly state that subsequent papers have nuanced the general claims in 
references 26 and 27. In the text we write (lines 335-342): 

“One explanation for the low intrinsic fluctuation in these studies is that transcriptional 
fluctuations are filtered by nuclear retention, though other reports suggest that Fano factors 
(variance/mean, a measure of overdispersion compared to the Poisson distribution) can be 
even larger in the cytoplasm than in the nucleus [38]. In the cells used here, the strong 
signature of transcriptional bursting and high intrinsic noise is consistent with live imaging of 
a Bmal1 transcriptional reporter in the same cell line under similar growth conditions, where 
intrinsic noise was estimated to be 4-times larger than extrinsic noise [23].”. 



4.The results raise a very important question, whether and to what extent the transcriptional
noise propagates to the next step of gene regulation and are there buffering mechanisms in
the cell. For example, Raj et al, Variability in gene expression underlies incomplete
penetrance, Nature 2010, show that alternative pathways serve to buffer the impact of gene
expression noise. Similarly, Shah and Tyagi, Barriers to transmission of transcriptional noise
in a c-fos c-jun pathway, Mol Syst Biol, 2013, show that variability in mRNA is buffered at
protein level and the level of protein-protein complexes. Furthermore, they show that to the
extent those vary, the chromatin intrinsically buffers against the fluctuations in numbers of
transcription factors. Mention of these and other studies will enrich the paper.

We have modified the Discussion section and now discuss these papers (and a few more). 
We thank the reviewer for the suggestions, which will help the reader to have a broader 
overview of noise buffering in gene expression and indeed enrich the paper. 

Reviewer #3 (Significance (Required)): 

Significance is high. Quality is high.  

**Referees Cross-Commenting**  

I agree with the comments made by other reviewers particularly about references 26 and 27. 
The major conclusions of reference 26 were questioned by Hansen et al 2018. At the bottom 
of page 7 the authors are qualifying their results in the light of references 26 and 27. 
Perhaps now there is less of a need to do so.  

As mentioned above, we have added the following sentence citing the Hansen paper to 
make it clear to the reader that key conclusions of the references 26 and 27 are disputed 
(lines 335-342):  

“One explanation for the low intrinsic fluctuation in these studies is that transcriptional 
fluctuations are filtered by nuclear retention, though other reports suggest that Fano factors 
(variance/mean, a measure of overdispersion compared to the Poisson distribution) can be 
even larger in the cytoplasm than in the nucleus [38]. 
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21st Dec 20201st Editorial Decision

Thank you for submit t ing your work to Molecular Systems Biology along with the referee reports 
from Review Commons. We have now heard back from reviewer #2 who agreed to evaluate your 
revised study. As you will see below, reviewer #2 is sat isfied with the performed revisions and is 
support ive of publicat ion in Molecular Systems Biology. 

Before we can formally accept the study for publicat ion, we would ask you to address the 
following editorial issues.

EFEEE EPS

 ---------------------------------------------------------------------------- 

Reviewer #2: 

The authors have answered my crit icism fully and sat isfactorily. The manuscript can be accepted 
for publicat ion.

5th Jan 20211st Authors' Response to Reviewers

The authors have addressed the remaining editorial issues.. 

19th Jan 2021Accepted

Thank you for performing the requested edits. We are now sat isfied with the modificat ions made 
and I am pleased to inform you that your paper has been accepted for publicat ion. 
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