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I. GOVERNING EQUATIONS

A. Governing equations and boundary conditions

The dimensional governing equations inside the cell layer are

∂Ã

∂t̃
= ∇̃ ·

(
D̃c∇̃Ã

)
+ ρf̃A(Ã, Ĩ, R̃, C̃)− κ̃Ã, ∂Ĩ

∂t̃
= f̃I(Ĩ , C̃),

∂R̃

∂t̃
= f̃R(Ã, R̃, C̃),

∂C̃

∂t̃
= f̃C(Ã, R̃, C̃), (S1)

where Ã, Ĩ, R̃, and C̃ are the concentrations of autoinducer, LuxI, LuxR, and autoinducer-LuxR complex, respectively,
within the cell layer. Here, D̃c is the diffusivity of autoinducer within the cell layer, ρ is the volume fraction of cells-to-
total-volume, κ̃ is the decay rate of autoinducer, and the reaction terms f̃i (for i ∈ {A, I,R,C}) inside each bacterium
are defined as the following:

f̃A(Ã, Ĩ, R̃, C̃) = q̃ + λ̃Ĩ − k̃+ÃR̃+ k̃−C̃, (S2a)

f̃I(Ĩ , C̃) = µ̃C̃ − α̃Ĩ, (S2b)

f̃R(Ã, R̃, C̃) = r̃ − k̃+ÃR̃+ k̃−C̃ − β̃R̃, (S2c)

f̃C(Ã, R̃, C̃) = k̃+ÃR̃− k̃−C̃ − γ̃C̃, (S2d)

where we have linearized the term corresponding to the activation of LuxI by the autoinducer-LuxR complex (see
Fig. S2).

The dimensional governing equations in the media outside the cell layer are

∂Ã
∂t̃

= ∇̃ ·
(
D̃e∇̃Ã − ũÃ

)
− κ̃Ã, (S3)

where Ã is the concentration of autoinducer outside the cell layer, D̃e is the diffusivity of autoinducer outside the cell
layer, and ũ is the fluid velocity outside the cell layer, which satisfies the Navier-Stokes equations (see main text).
For generality, we keep the diffusivities distinct inside and outside the cell layer.

At the interface between the cell layer and the exterior medium, we have continuity of autoinducer concentration
and concentration flux. Mathematically, this corresponds to

Ã = Ã, n · D̃c∇̃Ã = n ·
(
D̃e∇̃Ã − ũÃ

)
= n · D̃e∇̃Ã, (S4)

where the last equality follows from no flux of fluid into the cell layer (ũ · n = 0 on the interface).
At the boundary between the cell layer and the substrate upon which it sits, we have no flux of autoinducer,

corresponding to

n · D̃c∇̃Ã = 0. (S5)

Typical orders of magnitude of the dimensional parameters in this problem are estimated in Table S1.

B. Non-dimensionalisation

We scale

(Ã, Ĩ, R̃, C̃, Ã) = Ã0(A, I,R,C,A), ũ = H̃γ̇u, x̃ = H̃x, t̃ = (H̃2/D̃c)t, (S6)
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where Ã0 is the typical concentration of autoinducer, H̃ is the typical height of the cell layer and γ̇ is the typical
shear rate of the fluid, so that we rescale time with the scale of vertical diffusion.

Inside the cell layer, (S1) becomes

∂A

∂t
= ∇2A+ ρ (q + λI − k+AR+ k−C)− κA, (S7a)

∂I

∂t
= µC − αI, (S7b)

∂R

∂t
= r − k+AR+ k−C − βR, (S7c)

∂C

∂t
= k+AR− k−C − γC, (S7d)

and outside the cell layer (S3) becomes

∂A
∂t

= ∇ · (D∇A− PeuA)− κA, (S8)

where we have introduced the dimensionless parameters

(q, r, λ, µ, k+, k−, α, β, γ, κ) =
H̃2

D̃c

(q̃/Ã0, r̃/Ã0, λ̃, µ̃, k̃+Ã0, k̃−, α̃, β̃, γ̃, κ̃), D = D̃e/D̃c, Pe = γ̇H̃2/D̃c. (S9)

On the interface between the interior and exterior, the interfacial conditions (S4) become

A = A, n · ∇A = n ·D∇A. (S10)

and at the interface between cell layer and substrate, (S5) becomes

n · ∇A = 0. (S11)

II. REDUCTION TO ONE-DIMENSIONAL PROBLEM INSIDE THE CELL POPULATION

For a thin cell layer, the flow near near the cell layer can be well approximated by a shear flow within the mass
transfer boundary layer, assuming that the flow is laminar and the Schmidt number is large (for autoinducers in water

Sc = ν/D̃e > 1000, where ν is the kinematic viscosity). Choosing axes with the positive x-axis in the same direction
as the flow, and the positive z-axis pointing towards the exterior media from the substrate, the cell layer interface
is located at z = 1 at leading-order. We choose the y-axis to be perpendicular to both such that (x, y, z) forms a
right-handed Cartesian coordinate system. The fluid velocity is then

u = (z − 1) ex, (S12)

at leading-order, noting that Pe will define the strength of the flow through its dependence on the shear rate in (S9).
As the cell layer is thin, the diffusive spatial derivatives in x and y will be small. We work with the leading-order

versions of (S7a) and (S8), which become

∂A

∂t
=
∂2A

∂z2
+ ρ (q + λI − k+AR+ k−C)− κA for 0 < z < 1, (S13)

∂A
∂t

= D
∂2A
∂z2

− Pe(z − 1)
∂A
∂x
− κA for z > 1. (S14)

The interfacial conditions (S10) and the cells-to-substrate condition (S5) become

A = A, ∂A

∂z
= D

∂A
∂z

on z = 1, (S15a)

∂A

∂z
= 0 on z = 0. (S15b)

We are interested in deriving a quasi-steady-state reduction of the governing equation outside the cell layer (S14)
to an effective boundary condition at the interface of the cell layer. From steady-state numerical simulations, we find
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that A/x1/3 ≈ a and ∂A/∂z ≈ b along the interface at z = 1, where a and b are approximately constant for a given set
of parameter values. We also note that the timescale of autoinducer decay is much longer than the diffusive timescale
(i.e. κ� 1). As such, we look for a similarity solution of the form

A = x1/3g(η), where η =
(z − 1)Pe1/3

(Dx)
1/3

, (S16)

to balance advection and diffusion in (S14). Substituting (S16) into the steady version of (S14) and neglecting κ
results in the following ODE for g

g′′ +
η2

3
g′ − η

3
g = 0, g(0) = a, g′(0) = b

(
D

Pe

)1/3

, g(∞) = 0, (S17)

where a and b are the same unknown constants mentioned above. Our goal is to derive a relationship between a and
b. This will provide a relationship between A and ∂A/∂z on the interface z = 1, and hence (S15a) will provide an
effective boundary condition for A within the cell layer, closing the interior problem.

The solution to (S17) is

g =
aη

35/3
Γ

(
−1

3
,
η3

9

)
, (S18)

where Γ is the incomplete Gamma function. Therefore, we may deduce that

b

(
D

Pe

)1/3

= g′(0) =
Γ(−1/3)

35/3
a = −Γ(2/3)

32/3
a, (S19)

and hence, using (S15a), that

∂A

∂z
+ PeeffA = 0 on z = 1, (S20a)

where the effective Péclet number Peeff is defined as

Peeff :=
Γ(2/3)

32/3

Pe1/3D2/3

x1/3
≈ 0.65

Pe1/3D2/3

x1/3
. (S20b)

The effective boundary condition (S20) represents a consistent, closed boundary condition for A at the interface.

III. REQUIRED CONDITIONS FOR QUORUM SENSING ACTIVATION IN STEADY FLOW

The coupled PDE-ODE system, systematically reduced to 1D, is given by the governing equations (S7b)–(S7d),
(S13) inside the cell layer, and the boundary conditions (S15b) at the substrate interface and (S20) at the media
interface.

At steady state, the three ODEs (S7b)–(S7d) result in the algebraic relationships

I =
µr

αγ

A

K +A
, R =

r

β

K

K +A
, C =

r

γ

A

K +A
, (S21)

and the PDE (S13) yields the following steady-state ODE for A:

0 =
d2A

dz2
+ ρ

(
q +

r (Λ− 1)A

K +A

)
− κA, (S22)

where

K =
β(k− + γ)

k+γ
, Λ =

λµ

αγ
. (S23)

We assume that K � 1 and Λ � 1, which in the context of the genetic network corresponds to a strong effect
of positive feedback on the system. Under these conditions, there is a critical curve in (ρ,Peeff)-parameter space
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across which positive feedback increases drastically; we define this curve as the conditions required for the onset of
quorum sensing (QS) activation. To calculate this curve, we solve the system asymptotically in the region where
positive feedback is small, and determine where the implicit asymptotic assumptions break down. This breakdown
corresponds to the drastic increase of positive feedback. When positive feedback is small, A � K, and the system
(S21)–(S22) is well-approximated (in the sense of matched asymptotic expansions) by

I =
µr

αγK
A, R =

r

β
, C =

r

γK
A, 0 =

d2A

dz2
+ ρq + ω2A, where ω2 =

ρrΛ

K
− κ ∈ (−∞,∞). (S24)

The ODE in (S24) is solved by

A =
ρq

ω2

(
Peeff cosωz

Peeff cosω − ω sinω
− 1

)
, (S25)

and therefore

max
z∈(0,1)

A = A|z=0 =
ρq

ω2

(
Peeff (1− cosω) + ω sinω

Peeff cosω − ω sinω

)
. (S26)

When the denominator of the fraction in the brackets vanishes, the analytic equation (S26) blows up. We note that
the equation (S26) does not blow up when ω → 0, since the numerator of the fraction in the brackets also vanishes
at this point. This apparent blow up is a contradiction of the small-A asymptotic assumption used to derive the
equation and it marks a significant increase in positive feedback in the system. As such, we may deduce the following
critical curve for ρ and Peeff, which we define as the onset of QS activation:

Peeff = ω tanω =

√
ρrΛ− κK

K
tan

√
ρrΛ− κK

K
. (S27)

It is also helpful to note that if A� K, once we are well into the large positive feedback regime, then

max
z∈(0,1)

A = A|z=0 ∼
ρrΛ

κ

√
κ sinh

√
κ+ Peeff (cosh

√
κ− 1)

Peeff cosh
√
κ+
√
κ sinh

√
κ

, (S28)

again in the sense of matched asymptotic expansions. This marks an increase of a factor of O(Λ2/K) in maxA across
the onset of QS activation.

IV. REQUIRED CONDITIONS FOR QUORUM SENSING ACTIVATION IN UNSTEADY FLOW

We now consider the dynamic onset of quorum sensing (QS) activation for the coupled PDE-ODE system, in the
scenario where the flow is able to vary in time. The system consists of the governing equations (S7b)–(S7d), (S13)
inside the cell layer, and the boundary conditions (S15b) at the substrate interface and (S20) at the media interface.

We consider the scenario where the flow varies over a timescale t = T/ε, with ε� 1 and T = O(1). Physically, this
corresponds to a timescale of flow variation that is slower than the timescale of vertical diffusion. In our system, the
effect of flow manifests through the effective Péclet number Peeff, and QS activation is marked by decreasing through
a critical effective Péclet number defined by (S27).

A. Away from the critical point

Over the new slower timescale T = εt, the dynamical system becomes

ε
∂A

∂T
=
∂2A

∂z2
+ ρ (q + λI − k+AR+ k−C)− κA, (S29a)

ε
∂I

∂T
= µC − αI, (S29b)

ε
∂R

∂T
= r − k+AR+ k−C − βR, (S29c)

ε
∂C

∂T
= k+AR− k−C − γC, (S29d)
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with boundary conditions

∂A

∂z
= 0 on z = 0,

∂A

∂z
+ Peeff(T )A = 0 on z = 1. (S30)

From the form of (S29)–(S30), we see that as Peeff changes in T , the dynamic system is quasi-steady. Hence, before the
drastic increase in positive feedback, the asymptotic solution to (S29)–(S30) in the limit ε→ 0 is given by (S24)–(S25).

B. Near to the critical point

However, this solution breaks down near the QS activation curve, which occurs at T = Tc, where Peeff(Tc) = Pec,
where Pec is the critical effective Péclet number, defined by (S27). Near this breakdown, the dynamics become more
important to the system. To explore these dynamics, we introduce a new timescale

T = Tc +
T̂

K1/2
, (S31)

where the scaling choice of 1/K1/2 � 1 can be justified a posteriori. This means that the effective Péclet number can
be written asymptotically as

Peeff ∼ Pec −
v

K1/2
T̂ , (S32)

where v := −dPeeff/ dT |T=Tc
> 0 for an effective Péclet number decreasing through a critical value to trigger the

increase in positive feedback. This effective linearisation of Peeff reflects the small change in Peeff across the critical
point.

Additionally, we introduce

A ∼ K1/2

(
B(T̂ ) cosωz +

A1

K1/2

)
, I ∼ µr

αγK1/2

(
B(T̂ ) cosωz +

I1
K1/2

)
,

R ∼ r

β

(
1 +

R1

K1/2

)
, C ∼ r

γK1/2

(
B(T̂ ) cosωz +

C1

K1/2

)
, (S33)

where the asymptotic scalings of K1/2 can be justified a posteriori and are consistent with the time scaling (S53) and
the breakdown of the small-A solution (S26).

With the above scalings, the leading-order version of the system (S29) is automatically satisfied, with the scaled

amplitude B(T̂ ) undetermined for now. The remaining goal of this analysis is to determine and analyse the equation
that B satisfies, which will inform the dynamic delay in the onset of QS activation. This is achieved by deriving the
appropriate governing system for the first-correction terms in the asymptotic expansions of (S33) and deriving an
appropriate solvability condition for B.

C. Solvability condition

At the next asymptotic order, (S29) yields the following system for the first-correction terms

εK
dB

dT̂
cosωz =

∂2A1

∂z2
+ ρ

(
q +

rΛ

K
I1 − rB cosωz

)
− κA1, (S34a)

εK
dB

dT̂
cosωz = α (C1 − I1) , (S34b)

0 = −R1 −B cosωz, (S34c)

εK
dB

dT̂
cosωz = (k− + γ) (A1 +R1B cosωz − C1) , (S34d)

with the following boundary conditions from (S30)

∂A1

∂z
= 0 on z = 0,

∂A1

∂z
+ PecA1 = vT̂B cosω on z = 1. (S35)
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The system (S34) can be rearranged to obtain the following single ODE for A1:

∂2A1

∂z2
+ ω2A1 = F

(
z, T̂ ;B,

dB

dT̂

)
, (S36a)

where

F

(
z, T̂ ;B,

dB

dT̂

)
:= εK cosωz

[
1 +

rρΛ

K

(
1

α
+

1

γ + k−

)]
dB

dT̂
− ρq + ρrB cosωz +

rρΛ

K
B2 cos2 ωz. (S36b)

Invoking the Fredholm Alternative Theorem (FAT), the system (S35)–(S36) only admits solutions for particular

functions F . This is the appropriate solvability condition required to determine B(T̂ ) in terms of a first-order ODE.
We apply FAT in the standard manner: by multiplying the ODE (S36) by cosωz, the solution to the homogeneous
adjoint problem, and using integration by parts to shift the linear operator onto the adjoint solution. This procedure
yields the following solvability condition ∫ 1

0

F cosωz dz = vT̂B cos2 ω, (S37)

where the right-hand side arises due to the boundary condition (S35) at z = 1.
To obtain the appropriate ODE for B, we re-write (S37) as

εKI2

[
1 +

rρΛ

K

(
1

α
+

1

γ + k−

)]
dB

dT̂
= ρqI1 +

(
vT̂ cos2 ω − ρrI2

)
B − ρrΛI3

K
B2, (S38)

where we have defined

In =

∫ 1

0

cosn ωz dz, (S39a)

so that

I1 =
sinω

ω
, I2 =

1

2
+

sin 2ω

4ω
, I3 =

sinω

ω
− sin3 ω

3ω
. (S39b)

The appropriate ‘initial condition’ for the ODE (S38) arises through asymptotic matching1 with the quasi-steady
solution (S26) as the critical point is approached. This results in the following matching condition

B ∼ − ρqI1

vT̂ cos2 ω
, as T̂ → −∞. (S40)

The ODE (S38) encodes all of the important information about travelling through the bifurcation. In particular,
it contains the information about any delay caused by the dynamic effect of crossing the critical point. To transform
the ODE into a form more amenable to systematic interrogation, we introduce a rescaled amplitude B(σ) and time
σ through the following scalings:

B =

√
qI1K

rΛI3
B, T̂ =

ρrI2
v cos2 ω

+
ν1

v
√

2ν2
σ, (S41)

where

ν1 :=

√
2I2

cos2 ω

[
1 +

rρΛ

K

(
1

α
+

1

γ + k−

)]
, ν2 :=

I2K
2 cos2 ω

ρ2qrI1I3Λ

[
1 +

rρΛ

K

(
1

α
+

1

γ + k−

)]
, (S42)

are defined for later convenience. These scalings transform the ODE (S38) and the initial condition (S40) into

εvν2
dB

dσ
= 1 + σB −B2

, B ∼ − 1

σ
, as σ → −∞, (S43)

the behaviour of which, importantly, is only controlled by the single parameter grouping Ω := εvν2. As such, we can
immediately note that if Ω� 1 then the system is quasi-steady as we pass through the critical point, and hence there
is no discernible lag time in the system. In this case, the form of the right-hand side of the ODE in (S43) reveals
that this critical point is an imperfect transcritical bifurcation, where the additional solution branch is negative and
therefore unphysical. The imperfect nature of this arises from the base production of autoinducer - if this were zero the
bifurcation would be a perfect one. However, in practice Ω is large and investigating this limit through an asymptotic
analysis allows us to understand the delay in the system.
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D. Quantifying the system lag

When Ω := εvν2 � 1, the system (S43) evolves over several different timescales, most importantly: σ = O(
√

Ω)

where B = O(1/
√

Ω), and σ −
√

2Ω log Ω = O(
√

Ω/ log Ω) where B = O(
√

Ω log Ω). In the first timescale, setting

σ =
√

Ωs and B = Y/
√

Ω in (S43), and taking the limit Ω→∞, we obtain the leading-order equation

dY

ds
= 1 + sY, Y ∼ −1

s
, as s→ −∞, (S44)

where we have neglected a small quadratic term in Y of O(1/Ω). The system (S44) is solved by

Y ∼
√
π

2
exp(s2/2)

(
erf

s√
2

+ 1

)
, (S45)

where erf is the standard error function. The asymptotic solution (S45) is no longer valid once Y = O(Ωs) for large
s, at which point the error term is no longer small compared to the terms retained in (S44). This occurs when

s =
√

2 log Ω. At this point, there is an (interior) boundary layer in time, over which B jumps to being of O(
√

Ω)
and after this interior layer the leading-order asymptotic system is governed by

Ω
dB

dσ
= σB −B2

, (S46)

at leading order, noting that σ = O(
√

Ω). While (S46) can be solved exactly by matching with the interior boundary
layer, the important information from this analysis has already been determined. That is, the sudden increase in
B (and Y ) occurs when σ =

√
2Ω log Ω (1 + o(1)). As such, we are able to calculate the delay in the system as we

quickly pass through this critical point. Therefore, we find that for large Ω the dynamic system will exhibit a jump
at time σ =

√
2Ω log Ω. Reversing all our scalings into the original slow time T , we find that this delay time is

Tdelay =
ρrI2

v
√
K cos2 ω

+ ν1

√
ε log εvν2

v
, for Ω� 1. (S47)

Since the first term on the right-hand side is much smaller than the second in practice, we only retain the second
term when we re-write the delay time in terms of the original time t = T/ε, to obtain:

tdelay = ν1

√
log εvν2

εv
, (S48)

noting that

εv := − dPeeff

dt

∣∣∣∣
t=tc

> 0. (S49)

V. DELAY TIME FOR A GROWING POPULATION

A. Away from the critical point

For a growing population, the analysis is similar to that of decreasing flow. To account for a cell growth, we can
consider a density ρ(δt) that varies in time over a timescale τ = δt = O(1). Given that the timescale of cell growth
is hours compared to the timescale of seconds for vertical diffusion, δ � 1. As an instructive example, we note that
for exponential cell growth the density would have the form

ρ = ρ0 exp(δt), (S50)

with doubling time log 2/δ.
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In this system, the governing equations are slightly adapted versions of (S29)–(S30), accounting for a varying density
rather than a varying flow. As such, the relevant governing equations are

δ
∂A

∂τ
=
∂2A

∂z2
+ ρ(τ) (q + λI − k+AR+ k−C)− κA, (S51a)

δ
∂I

∂τ
= µC − αI, (S51b)

δ
∂R

∂τ
= r − k+AR+ k−C − βR, (S51c)

δ
∂C

∂τ
= k+AR− k−C − γC, (S51d)

with boundary conditions

∂A

∂z
= 0 on z = 0,

∂A

∂z
+ PeeffA = 0 on z = 1. (S52)

In the same manner as for varying flow, the form of (S51)–(S52) shows that as ρ changes in τ , the dynamic system
is quasi-steady. Therefore, before the onset of positive feedback the asymptotic solution to (S51)–(S52) in the limit
δ → 0 is given by (S24)–(S25).

B. Near to the critical point

As with the varying flow problem, this solution breaks down near the onset of positive feedback, which we say
occurs at τ = τc, where ρ(τc) = ρc, as defined implicitly by (S27). Near this breakdown, the dynamics are critically
slowed and become more important to the system. To explore these dynamics, we introduce a new timescale

τ = τc +
τ̂

K1/2
, (S53)

so the density can be written asymptotically as

ρ ∼ ρc +
u

K1/2
τ̂ , (S54)

where u := dρ/ dτ |τ=τc
> 0 for growing cells.

We introduce the asymptotic expansions

A ∼ K1/2

(
M(τ̂) cosωz +

A1

K1/2

)
, I ∼ µr

αγK1/2

(
M(τ̂) cosωz +

I1
K1/2

)
,

R ∼ r

β

(
1 +

R1

K1/2

)
, C ∼ r

γK1/2

(
M(τ̂) cosωz +

C1

K1/2

)
, (S55)

where the scaled amplitude M(τ̂) is undetermined for now. Proceeding in the same manner as for the varying flow
problem, and substituting (S55) into (S51) we obtain the following system for the first-correction terms

δK
dM

dτ̂
cosωz =

∂2A1

∂z2
+ ρc

(
q +

rΛ

K
I1 − rM cosωz

)
+
urΛ

K
τ̂M cosωz − κA1, (S56a)

δK
dM

dτ̂
cosωz = α (C1 − I1) , (S56b)

0 = −R1 −M cosωz, (S56c)

δK
dM

dτ̂
cosωz = (k− + γ) (A1 +R1B cosωz − C1) , (S56d)

with boundary conditions

∂A1

∂z
= 0 on z = 0,

∂A1

∂z
+ PeeffA1 = 0 on z = 1. (S57)
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The system (S56)–(S57) yields the solvability condition

δKI2

[
1 +

rρcΛ

K

(
1

α
+

1

γ + k−

)]
dM

dτ̂
= ρcqI1 + rI2

(
uΛ

K
τ̂ − ρc

)
M − ρcrΛI3

K
M2, (S58)

where In are defined in (S39).
The appropriate ‘initial condition’ for the ODE (S58) arises through asymptotic matching1 with the quasi-steady

solution (S26) as the critical point is approached. This results in the following matching condition

M ∼ −ρcqI1K
rI2uΛτ̂

, as τ̂ → −∞. (S59)

Importantly, we note that the scalings

M =

√
qI1K

rΛI3
B, τ̂ =

ρcK

uΛ
+

ρc
uI2

√
qI1I3K

rΛ
σ, (S60)

transform the ODE (S58) into

δuν3
dB

dσ
= 1 + σB −B2

, (S61)

where

ν3 :=
I2
2K

ρ2
cqI1I3

[
1 +

rρcΛ

K

(
1

α
+

1

γ + k−

)]
, (S62)

and

δu :=
dρ

dt

∣∣∣∣
t=tc

> 0. (S63)

The ODE (S61) is equivalent to the corresponding rescaled ODE for varying flow, given in (S43), except for a different
definition of the constant premultiplying the derivative on the left-hand side. As such, the resulting analysis is
equivalent, with an appropriate substitution of constant. Using parameters from Table S1, we show that the typical
delay time due to growth is of the same timescale as growth in Fig. S9.

VI. SIMULATION PARAMETER SETS

We determined an approximate order of magnitude for each dimensional parameter by taking measured or estimated
values in LuxIR-type systems from the literature (see Table S1). In each simulation, all parameters in Table S1 were
fixed except cell density ρ and Pe, which were varied in time-dependent simulations as indicated in the main text.
In reality, the values of the kinetic parameters will vary widely owing to error in measurements or estimates, and to
differences between species and synthetic systems. Therefore, to illustrate that the general predictions in the main
text are valid for a wide range of possible parameter values, we also performed the following simulations for Fig. S4:

1. Production terms r̃ and q̃ were all reduced or increased by an order of magnitude, while fixing all other parameters
to be their values in Table S1 (with H̃ = 5 µm, γ̇ = 1000 /s, 5000 /s and 10000 /s, and L = 10 µm).

2. Decay terms α̃, β̃, γ̃ and κ̃ were all reduced or increased by an order of magnitude, while fixing all other
parameters to be their values in Table S1 (with H̃ = 5 µm, γ̇ = 1000 /s, 5000 /s and 10000 /s, and L = 10 µm).

3. Binding terms k̃− and k̃+ were all reduced or increased by an order of magnitude, while fixing all other parameters

to be their values in Table S1 (with H̃ = 5 µm, γ̇ = 1000 /s, 5000 /s and 10000 /s, and L = 10 µm).

4. Feedback terms λ̃ and µ̃ were all reduced or increased by an order of magnitude, while fixing all other parameters
to be their values in Table S1 (with H̃ = 5 µm, γ̇ = 1000 /s, 5000 /s and 10000 /s, and L = 10 µm).

5. Diffusion term inside the cell population D̃c was reduced by one or two orders of magnitude, while fixing all
other parameters to be their values in Table S1 (with H̃ = 5 µm, γ̇ = 1000 /s, 5000 /s and 10000 /s, and
L = 10 µm).
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Symbol Definition Order of magnitude
and units

Reference

H̃ Height of cell population Variable (2-10 µm) Typical height of early biofilm or cell colony2

γ̇ Shear rate applied to cell popu-
lation

Variable (100-10,000 /s) Typical range of shear rates in natural and indus-
trial environments3

L̃ Length of cell population in
dowstream direction

Variable (4-20 µm) Chosen to depend on H̃ such that the height to
length aspect ratio is 0.5, as is typical in early
biofilms or colonies2

D̃e Diffusion coefficient of AI in wa-
ter

500 µm2/s Approximate typical estimate of AI diffusion in wa-
ter used in previous studies4–6

D̃c Diffusion coefficient of AI in cell
layer

500 µm2/s Approximate typical estimate of AI diffusion in wa-
ter used in previous studies4–6. For simplicity, we
also use this value in the cell population, although
it may be lower depending on the conditions5 and
on AI-matrix interactions (see Fig. S5)

Ã0 Autoinducer concentration at
activation threshold

5 nM Taken from various measurements7–9. Note that
the variable Ã0 is a free parameter that does not
affect the model results; we use this value for con-
venience, so that A=1 at activation.

q̃ Basal production of AI 1 nM/s Assuming production of approximately 1
molecules/s/cell, as estimated in various pre-
vious studies10–12; we convert to nM using a cell
volume of 0.4 µm3 (as estimated in Ref. 2)

r̃ Production of LuxR 0.01 nM/s Assuming production of approximately 0.01
molecules/s/cell, estimated from transcription and
degradation rates of the relevant mRNA, and trans-
lation rate, in Ref. 13; we convert to nM as before.

µ̃ Coefficient of activation of LuxI
by C

1000 /s By our linearization µ̃ ≈ µ̃a/K̃a, where µ̃a is the ac-

tivated production rate (in units of nM/s) and K̃a

is the dissociation constant or activation coefficient
(in units of nM). Using an activated expression rate
of LuxI of 1000-10000 nM/s (approximately corre-
sponding to the estimate in Ref. 14; we have con-
verted to nM as before) and a dissociation constant

of 1-10 nM (a measurement of K̃a = 10 nM is given
for TraR in Refs. 15,16), we obtain µ̃ = 1000 /s (see
Fig. S2 for a discussion of the effect of Ka)

λ̃ Coefficient of catalysis of AI by
LuxI

0.01/s Turnover number measured to be approximately
1 /min by Ref. 17

k̃− Unbinding of AI and LuxR 0.01 /s Approximately consistent with previous estimates
in the literature of 1 /min (see Refs. 10,13,18)

k̃+ Forward binding of AI and
LuxR

0.0001 /nM/s Set to give a dissociation constant of 100 nM (as
measured in Ref. 19)

β̃ Decay of LuxR 0.01 /s Taken from measurements of TraR half life of ap-
proximately 1 min (see Ref. 16)

γ̃ Decay of C 0.001 /s Set to be approximately ten times slower than
LuxR degradation16

α̃ Decay of LuxI 0.001 /s Taken to be same order of magnitude as C degra-
dation

κ̃ Decay of AI 0.0001 /s Approximately consistent with estimated inter-
nal and external degradation rates of 0.01/min
(thought to be dependent on pH)10,20–22

ρ Volume fraction of cells in pop-
ulation

Function of time (typical
value 0.1)

Measured number density of cells at onset of quo-
rum sensing was approximately 0.25 cells / µm3

in Ref. 23. Using typical cell volume of 0.4 µm3

(measured by Ref. 2) gives volume density of 0.1

TABLE S1: Estimated typical orders of magnitude of the dimensional parameters in the problem. Where possible, we take
orders of magnitude consistent with measured values in the literature. Otherwise, we use values in which previous studies fitted
simulations to data, or we use typical estimates from the literature. These parameters could vary widely between species or in
synthetic applications and should not be taken to be definitive values, but are used to guide our understanding of the relevance
of the various identified asymptotic regimes.
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The parameter sets used in all simulations are available via Github at https://github.com/philip-pearce/quorum-flow.
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FIG. S1: Schematic diagrams of simulation domains and boundaries. Our numerical procedure was as follows. The problem
is solved numerically in Comsol Multiphysics 5.5 on two domains: the flow layer and the cell layer. We include an inflow and
outflow region in the flow layer to ensure the boundary conditions do not impose artificial physics upon the results. a) In 2D
simulations, the velocity field in the fluid layer is imposed as a uniform constant-shear flow. Eq. (4) (see main text) is solved in
the fluid layer for autoinducer concentration A. In the cell layer, where it is assumed that no flow is present, Eqs. (1)-(2) (see
main text) are solved for the concentration of the autoinducers and LuxIR proteins. As boundary conditions on autoinducer
concentration A, zero concentration, A = 0, is imposed on the inflow boundary, Γin, and zero flux, n · ∇A = 0, is imposed
on all other external boundaries, Γwall and Γout. On the internal boundary between the cell layer and the fluid layer (dashed
line) continuity of concentration A and its derivatives is imposed. In unsteady simulations, the initial condition is taken to
be the steady solution for the mean Péclet number, which also corresponds to the value of the Péclet number at time t = 0.
The lengths of the inflow and outflow regions, Lin and Lout, and the height of the fluid layer, H2, are taken to be large enough
such that the boundary conditions do not affect the results. For Lin and Lout, a length 5 times the height of the cell layer
was found to be sufficient. For H2, it was found to be sufficient to ensure that LD/γ̇H2

2 < 0.1. b) In 3D simulations, the
fluid layer has height H2 = 50 µm and the cell layer that coats the floor has height H = 5 µm. The crevices are described by
the curve d = C

(
(−1 + cos (4πs/10))2

)
where C is the dimensionless crevice depth and s is the dimensionless distance in the

downstream direction (both scaled by H), and s = 0 is located at the upstream edge of the cell layer. The velocity field u in
the fluid layer is obtained by solving Eq. (4) (see main text), with the viscosity and density taken to be those of water. Zero
pressure, p = 0, is imposed on Γout, and the pressure on Γin, p = pin, is imposed such that the maximum shear rate applied
to the cell layer is approximately 1000 s−1 (thus the channel Reynolds number is approximately 0.25). A no-slip condition,
u = 0, is applied at the remaining external boundaries Γwall, and at the boundary between the cell layer and the fluid layer,
Γcell. The concentrations of autoinducers and LuxIR proteins are then solved for as before. All code required to generate the
simulation results is available on Github at https://github.com/philip-pearce/quorum-flow.
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FIG. S2: Effect of reduction in LuxI activation via saturation in autoinducer-LuxR dimer binding to DNA on quorum sensing
(QS) activation across the critical density. The maximum concentration of autoinducers in the population is plotted for 2D

simulations with the typical parameters listed in Table S1 (and H̃ = 5 µm, γ̇ = 1000 s−1, L = 10 µm). The black line

shows the results for a linearized activation term µ̃C̃ in Eq. (S2), and the remaining lines show the results for a nonlinear

activation term µ̃aC̃/
(
K̃a + C̃

)
in Eq. (S2). In the nonlinear simulations, we vary the dissociation constant K̃a of the dimers

from the DNA; for clarity, we fix the ratio µ̃a/K̃a, i.e. the linearized activation parameter µ̃ (see Table S1). A measure of

the nonlinearity or effect of saturation can be obtained by comparing the concentration of dimers C̃act ≈ rÃ/γK (by the

steady solution Eq. S21, since K is typically large) at the onset of activation, Ã = 5 nM, to the dissociation constant K̃a. If

C̃act/K̃a is large, we expect saturation in binding to DNA at the onset of activation; in this case, the nonlinearities in the
activation term will be important, and the concentration of autoinducers at activation will be reduced from the linearized case.
If C̃act/K̃a is small, we do not expect saturation in binding to DNA at the onset of activation; in this case, the concentration
of autoinducers at activation will be close to the linearized case. Using the dissociation constant of 10 nM measured in Ref. 15,
we find C̃act/K̃a ≈ 0.05 nM/10nM = 0.005, which explains why the linearized approximation is successful at capturing the
onset of QS activation for these parameters (purple line). For systems with smaller dissociation constants, the estimate of the
critical density is still quite accurate, but the maximum concentration after QS activation is lowered; therefore, in such systems
the population-level robustness of QS activation would be expected to be reduced.
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FIG. S3: The thin diffusive boundary layer at the downstream edge of the cell population has a non-dimensional thickness
(scaled by the cell layer height) which is O(Pe−1/2). The Péclet number is plotted against the distance from the downstream
edge of the location where the calculated effective Péclet number at the boundary, Az/A, is minimised. Simulations correspond
to those in Fig. 2 in the main text (for clarity, colors correspond to the value of the Péclet number in the same way as in Fig. 2).

The dashed line corresponds to an arbitrary constant multiplied by Pe−1/2, for comparison.
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performed as described in Fig. 1 in the main text, but with parameters given in the ‘Simulation Parameter Sets’ section of the
Supporting Information. Note that some points are indistinguishable because at high Péclet number the critical density does
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FIG. S5: Effect on steady QS activation of a reduced diffusion coefficient in the cell population (so that D > 1; see Eq. S9),
which can be caused by interactions between autoinducers and the extracellular matrix. Simulations correspond to those in
Fig. 1c in the main paper, with γ̇ = 10000 s−1, and with the diffusion coefficient D̃c inside the cell population reduced by a
factor of 10 (left; D̃c = 50 m2/s) and a factor of 100 (right; D̃c = 5 m2/s). We set H = 2 µm (left) and H = 5 µm (right);
the latter plot is for comparison with the bottom panel of Fig. 1c in the main paper. Compared to corresponding populations
but with identical diffusion coefficients, a reduction in diffusion inside the population causes an increase in the effective Péclet
number and a reduction in the critical density through Eqs. (6)-(8) in the main paper (compare right panel to the bottom panel

of Fig. 1c). Furthermore, owing to the increased effective Péclet number, a decreased D̃c increases spatial heterogeneity inside
the cell population compared to the situation where the diffusivities are equal in the cell population and the flow, although QS
activation remains robust - even for the very high effective Péclet numbers shown in the right panel, only a very small region of
the cell population near the boundary between the population and the flow remains inactivated for densities above the critical
value (inset).
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FIG. S6: The effect of the number of crevices on steady quorum sensing activation. Simulations correspond to those in Fig.
3, but with no crevices (top) or one crevice (bottom). a) Left: Autoinducer concentration fields for a density just below the
activation threshold (top, ρ = 0.206, bottom, ρ = 0.187). Right: Autoinducer concentration fields for a density just above the
activation threshold (top, ρ = 0.208, bottom, ρ = 0.188). For a channel with a single crevice, quorum sensing is first activated in
the crevice and in the downstream region of the population; after activation, the whole downstream region becomes activated.
For a channel without a crevice, quorum sensing is first activated downstream. b) A cell population in a channel with a
single crevice requires a higher cell density for activation than a population in a similar geometry but with multiple crevices
(corresponding to the geometry shown in Fig. 3).
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FIG. S7: The critical activation time for an oscillating flow is found to be of order of magnitude 10 hours across a range
of cell layer heights and shear rate oscillations, as predicted in the main text. Panels a)-d) show the results of simulations
corresponding to those shown in Fig. 4 in the main text, but with a cell layer height H = 10 µm, and mean shear rate
γ̇ = 10000 s−1; the amplitude in the shear rate oscillations is 9000 s−1 (note that the shear stress is always below 20 Pa, which
is expected to be lower than the yield stress of a population of cells embedded in matrix24). Panels e)-f) show the results of
simulations with cell layer height H = 10 µm, and mean shear rate γ̇ = 10000 s−1; the amplitude in the shear rate oscillations
is e) 7500 s−1, or f) 9500 s−1. Dynamic QS activation is found to be weaker for oscillations that enter into the activation region
of parameter space for a smaller proportion of the total oscillation period (panel e).
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FIG. S8: Shear rate oscillations in a system without feedback (simulations correspond to those in Fig. 4, but with λ = 0; we
note that the binding parameters k+ and k− do not have a distinguishable effect in this case). a) In steady flow, the autoinducer
concentration does not vary over orders of magnitude for the range of shear rates studied (corresponding to the ones shown in
Fig. 4). b) In unsteady flow, the system behaves almost identically for slow oscillations (left, tact = 150 hrs, corresponding to
the blue line in Fig. 4b inset) and fast oscillations (right, tact = 1.5 hrs, corresponding to the red line in Fig. 4b inset). The
range of concentration values on the vertical axis is the same in each panel.
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FIG. S9: The delay time associated with population growth is of the same order of magnitude as the doubling time, for the
kinetic parameters listed in Table S1. The delay time was calculated using the large-Ω results of Section IV D, but with
Ω = δuν3, as described in (S62)–(S63).
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FIG. S10: We expect nutrients to be plentiful in the conditions considered in this study, so that all cells can be assumed to
be physiologically active. This is based on the observation that cells in biofilms with radius around 10 µm remain uniformly
growth-active even in shear rates a hundredfold smaller than the smallest shear rates used here2 (where a smaller shear rate
implies reduced access to nutrients). To confirm this assumption further, we perform simulations of a nutrient that satisfies an
advection-diffusion equation in the flow, and a reaction-diffusion equation in the cell layer, where the reaction rate is taken to be
an uptake rate multiplied by the cell density. For simplicity, we use parameters for glucose estimated in Ref. 23. Therefore, we
take the diffusion coefficient to be D = 600 µm2/s in both the fluid layer and the cell layer, and the uptake rate in the cell layer
to be constant at 108 molecules/min/cell, or approximately u = 107 nM/s (we convert to nM/s using the same assumptions as
in Table S1). We set the cell layer height to be H = 10 µm (the largest population size used in this study), and the channel
height to be H2 = 100 µm, using the same geometry as in Fig. S1a. We take the cell density to be 0.1 (see Table S1), and
the shear rate to be γ̇ = 100 s−1, which corresponds to the smallest shear rate used in this study, and therefore the most
nutrient-limiting conditions. The system is characterised by the Péclet number Pe = γ̇H2/D and a non-dimensional uptake
rate U = uH2/Dcin, where cin is the nutrient inflow concentration. We find nutrients to be plentiful for a range of values of U
from U = 0.06 up to U = 6, which spans values of cin from cin = 28 mM (corresponding to the glucose concentration of M9
medium with 0.5% glucose23) to cin = 0.28 mM. For populations with significantly reduced access to nutrients, the assumption
of uniform base autoinducer production throughout the population may need to be relaxed.
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FIG. S11: The low-pass filter associated with positive feedback can also lock the cell population into a QS activated state, if
the mean in the shear rate oscillations is low enough. Simulations and oscillation periods correspond to those shown in the
inset of Fig. 4b (i.e. the blue line corresponds to slow oscillations and the red line corresponds to fast oscillations), but the
shear rate has mean γ̇ = 175 s−1 and amplitude γ̇ = 75 s−1.
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Movie S1: Simulations of quorum sensing activation in oscillating flows, for a population with height H = 8 µm. The shear
rate is oscillated with a fixed mean and amplitude, but with either a slow time period or a fast time period (corresponding
to the blue and red points, respectively, on Fig. 4b). For slower oscillations, the system passes through cycles of activation
and inactivation, and the autoinducer concentration rises drastically throughout the domain during each oscillation. For faster
oscillations, the system remains in the QS inactivated state owing to the delay time caused by the positive feedback in the
system.

Movie S2: Simulations of quorum sensing activation in oscillating flows, for a population with height H = 10 µm. The shear
rate is oscillated with a fixed mean and amplitude, but with either a slow time period or a fast time period (corresponding
to the blue and red points, respectively, on Fig. S7b). For slower oscillations, the system passes through cycles of activation
and inactivation, and the autoinducer concentration rises drastically throughout the domain during each oscillation. For faster
oscillations, the system remains in the QS inactivated state owing to the delay time caused by the positive feedback in the
system.


