
DRAFT

Supplementary Information
Carl P. Goodricha, Ella M. Kingb, 1, Samuel S. Schoenholzc, Ekin D. Cubukc, and Michael Brennera, b, c

aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; bPhysics Department, Harvard University, Cambridge, MA 02138, USA;
cGoogle Research, 1600 Amphitheatre Pkwy, Mountain View, CA

1. Molecular Dynamics simulations1

We use Molecular Dynamics (MD) simulation in two ways.2

First, in Sec. I, we directly differentiate through MD simu-3

lations in order to optimize the honeycomb and triangular4

lattice assembly rates. Secondly, in Sec. II, we verify our5

optimized transition rates by running MD simulations and6

extracting transition rates from the simulations.7

The MD simulations are performed using JAX MD (1), a
molecular dynamics engine that is compatible with JAX (2), a
freely-available automatic differentiation library. The system
consists of a two- or three-dimensional box containing N
particles at a constant temperature T . To simulate Brownian
motion, the dynamics are given by the overdamped Langevin
equation:

ṙα = γ−1Fα +
√

2kBTγ−1fα(t) [S1]

where Fα is the net force on particle α, γ = 0.1 is the friction8

coefficient, kB is the Boltzmann constant, and the elements of9

fα(t) are uncorrelated Gaussian random variables with zero10

mean.11

In the case of optimizing lattice assembly rates, we simulate12

N = 100 particles that interact via Eq. (1). The particles13

interact within a square two-dimensional simulation box with14

periodic boundary conditions and sides of length 11.4 and15

9.31 for assembling the honeycomb and triangular lattices,16

respectively. Simulations are performed at a temperature of17

kBT = 0.1 using a simulation step size of 5× 10−5.18

In the case of verifying transition rates, we simulate N = 7
particles that interact via a Morse potential of the form

Vαβ(rαβ) = Bαβ
(
e−2a(rαβ−σ) − 2e−a(rαβ−σ)) [S2]

where rαβ is the separation between particles α and β, σ = 119

is the particle diameter, a = 10 determines the range of20

the attraction, and Bαβ is the binding energy between the21

spheres. Simulations are performed at a temperature of kBT =22

1 in a three-dimensional simulation box with free boundary23

conditions using a step size of 5× 10−6.24

2. Optimizing lattice assembly rates25

A. Forward mode AD. To optimize our system, we use the26

RMSProp stochastic optimizer (3) with a learning rate of27

0.1, a memory value of γmem = 0.9, and a smoothing value of28

ε = 10−8. The optimizer acts on a gradient that is determined29

via an average of 100 independent simulations, each with30

random initial positions.31

The loss function we use for the optimization consists of
specifying a “stencil", or a fragment of a perfect lattice centered
around a central particle. The stencil was created with a
particle diameter of 1. A honeycomb lattice stencil and a
triangular lattice stencil are both specified. At the end of a

simulation, we center the stencil on a particle α and define
the overlap function

Oα(θ) =
∑
β,β′

e
−

(rβ−rβ′ (α,θ))2

2σ2 [S3]

where rβ is the position of particle β and rβ′(α, θ) is the
position of the β′ particle in the stencil when the stencil
is centered on particle α and rotated by an angle θ. The
maximum overlap of particle α is

Oα,opt = max
θ

Oα(θ) [S4]

and we define total overlap of the system to be

O = max
α

Oα,opt. [S5]

We use a large stencil, ensuring that a significant overlap is 32

clearly indicative of a honeycomb-like region. Additionally, the 33

particles all interact identically. These two features allow us 34

to use the maximum overlap as an indicator of crystallization. 35

The assembly process as measured by the maximum overlap 36

is contrasted with the assembly process as measured by the 37

mean overlap in Fig. S1. 38

Fig. S1. Assembly process for honeycomb lattices with 5 different sets of parameters,
where a given set of parameters is given by a distinct color. The parameters are
the same as those used to generate the data in Fig. 2. The assembly process as
measured by the maximum over Oα,opt (as shown in S5)is given by dashed lines,
whereas the assembly process as measured by the mean over Oα,opt is given by
solid lines. We see that the two measurements show the same trend, and both serve
as similar indicators of crystallization.

We use a 13 particle stencil for the honeycomb overlap 39

Ohon, and 7 particle stencil for the triangular overlap Otri. 40

1Carl P. Goodrich contributed equally to this work with Ella M. King.

1

DRAFT

These together comprise the two loss functions, weighted as41

follows:42

LH(t) = 1
NH

(−Ohon(t) + ξHOtri(t) + ζH) [S6]43

LT (t) = 1
NT

(Ohon(t)− ξTOtri(t) + ζT) [S7]44

with ξH = 1 and ξT = 104
7 . We choose ζH,T and NH,T such45

that LH and LT range between 0 and 1, where LH,T = 0 for46

a perfect lattice.47

We perform two rounds of optimization. For input rates
k∗H = 1/t∗H and k∗T = 1/t∗T , the first round of optimization runs
t∗ steps and computes L = (LH(t∗H)− 0.5)2 + (LT (t∗T)− 0.5)2

for each of t∗H and t∗T under the appropriate density conditions.
We then run the simulation for t∗ more steps and compute
LH(2t∗H) and LT (2t∗T) at the end of both simulations. The
optimization loss function is a sum of both losses, namely (1)
how close the system is to half-assembled after t∗ steps and
(2) how assembled the system is after 2t∗ steps:

Lopt =
∑
H,T

(L(t∗)− 0.5)2 + L(2t∗). [S8]

The optimal parameters are the parameters associated with48

the minimum loss value over 1,000 RMSProp optimization49

steps. We then perform a second optimization, starting with50

these parameters, in which the optimization loss is restricted51

to Lopt = (LH(t∗H)−0.5)2 +(LT (t∗T)−0.5)2. In both rounds of52

optimization, we use forward mode automatic differentiation53

to calculate dLopt
da

, where a is the set of variable parameters54

in Eq. (1).55

To validate optimization results, we calculate the rates kH56

and kT by computing the losses LH(t) and LT (t) as a function57

of simulation time step. We then find the earliest timestep, t0,58

at which the loss is greater than half its optimal value, and59

the latest timestep, t1, at which the loss is less than half its60

optimal value. Using data in the range (t0 − 3, t1 + 3), we61

approximate a linear fit and use the fit to compute the time62

t∗ at which the loss function is exactly half its optimal value.63

This method allows us to gain insight into a highly non-64

intuitive system by visualizing the results of the optimization.65

Each computation of the gradient of the potential provides66

information about the impact of the shape of the potential67

on the dynamics of the system. In figure S2, we compare our68

potential after many optimization steps to the final, optimized69

potential in (4). We also show the initial potential used to70

start the optimization. We see that our result captures much71

of the structure of the result found in (4), but rather than72

finding two local minima in the potential, we observe kinks in73

the potential in the corresponding locations. This may allow74

for faster transitions out of non-honeycomb-like metastable75

states.76

B. Reverse mode AD. Performing reverse mode AD is more
time efficient, but uses more memory. To conserve memory,
we present an indirect approach to optimizing lattice assembly
rates in which we only differentiate over the final 300 time
steps of the simulation. Consider breaking the simulation up
into two components. We first simulate for τ̃ time steps and
find the configuration

Rτ̃ = SMD (a,R0, ρ, τ̃) [S9]

Fig. S2. The two potentials that drive the behavior displayed in figure 1 in the main text
are pictured here. The potential that has been optimized to be half-assembled after
3,000 simulation steps is pictured in red, and the final potential found in (4) is pictured
in gray. Additionally, the black dashed potential shows the potential associated with
the initial parameter values in both our method and in (4). Note that the black dashed
potential does not lead to assembly of a honeycomb lattice.

at the end of the first simulation. We then begin from the
configuration Rτ̃ and simulate further for τ̄ = 300 time steps,
returning a final configuration

Rτ̄ = SMD (a,Rτ̃ , ρ, τ̄) . [S10]

Crucially, we differentiate over only the second simulation.
To optimize the loss at time τ = τ̃ + τ̄ , we calculate the
derivative

dL (SMD(a,Rτ̃ , ρ, τ̄))
da

∣∣∣∣
Rτ̃

. [S11]

Calculating this derivative at constant Rτ̃ means that we 77

only have to differentiate through τ̄ time steps. In practice, we 78

find good results with τ̄ as small as 300, which we hold constant 79

while varying τ̃H and τ̃T to tune the two crystallization rates 80

relative to each other. Using our results, we can interpolate 81

and find a relationship between τ̃ and the corresponding rate: 82

τ̃ is a knob we can tune to adjust the relative lattice assembly 83

rates. 84

3. Optimizing transition rates in colloidal clusters 85

A. The doubly nudged elastic band calculation. To calculate 86

the transition state between two known adjacent local min- 87

ima in a high-dimensional energy landscape, we follow the 88

procedure from Trygubenko and Wales (5), which we briefly 89

summarize here. We want to find the (monotonically increas- 90

ing) steepest ascent path from the first minimum up to the 91

transition state and the (monotonically decreasing) steepest 92

descent path down to the second minimum. 93

Let R0 and RnI+1 be the configurations of the two minima, 94

and we will represent a path between the two as a series of 95

nI configurations {R1, R2, ..., RnI}. As an initial guess, we 96

always choose a simple interpolation between the two minima. 97

Importantly, in order for this to be a reasonable guess, the two 98

minima have to be rotated so that they are close to overlapping. 99

The potential energy of the i-th individual configuration in the 100

2 | Goodrich and King et al.

DRAFT

path is U(Ri), which we refer to here as the “true potential."101

Thus, the total true potential of the ensemble is102

V =
nI+1∑
i=0

U(Ri). [S12]103

In addition, we connect each adjacent configuration with a104

high-dimensional spring, leading to the following “elastic band"105

or “spring" potential106

Ṽ = 1
2kspr

nI+1∑
i=1

|Ri −Ri−1|2 . [S13]107

In principle, one wishes to minimize Vtot ≡ V + Ṽ over108

all the nI intermediate configurations while keeping the two109

endpoints fixed at their respective minimum. However, inter-110

ference between the true and spring potential can give rise111

to “corner-cutting" and “sliding-down problems." To address112

these problems, we employ a set of adjustments, or “nudges,"113

to the gradient of Vtot, as follows.114

Nudging. First, we decompose the gradient of each configu-
ration into components that are parallel and perpendicular to
the current path. Let τ̂ i be the unit vector tangent to the path
at configuration i, which is defined as follows. If configuration
i does not represent a local optimum, meaning exactly one of
its neighbors j has a higher energy, U(Ri) < U(Rj), then its
tangent vector is

τ̂ i = (j − i)(Rj −Ri)
|Rj −Ri|

. [S14]

However, if either both or none of its neighbors are at higher
energy, then we use

τ̂ i = Ri+1 −Ri−1

|Ri+1 −Ri−1|
. [S15]

The gradient of the true potential can then be decomposed
into

gi = g‖i + g⊥i , [S16]

where

g‖i = (∇iV · τ̂ i) τ̂ i, [S17]

g⊥i = ∇iV − g‖i . [S18]

Similarly, using tildes to denote quantities related to the spring
potential,

g̃i = g̃‖i + g̃⊥i , [S19]

where

g̃‖i =
(
∇iṼ · τ̂ i

)
τ̂ i, [S20]

g̃⊥i = ∇iṼ − g̃‖i . [S21]

The nudged elastic band approach is to project out g‖i and g̃⊥i
when minimizing Vtot. This removes some but not all of the
interference instabilities. The “doubly nudged" approach is to
only project out some of the g̃⊥i term, so that

gi = g⊥i + g̃‖i + g̃⊥i −
(
g̃⊥i · ĝ⊥i

)
ĝ⊥i . [S22]

We proceed by minimizing Vtot using this nudged gradient. 115

We note that optimizing over such a connected ensemble is 116

especially straightforward in JAX MD because automatic 117

vectorization is natively built in. The result is a sequence of 118

configurations that closely tracks the steepest descent path 119

we are seeking. Furthermore, the image Rt with the highest 120

energy is an approximation of the true saddle point. Note 121

that we do not refine Rt using eigenvector following (6, 7), a 122

practice that is necessary for many applications. While Rt is 123

therefore only an approximation, this seems to be adequate 124

for our purposes. 125

B. Optimization of transition kinetics. As discussed in the 126

main text, we optimize the transition kinetics by first cal- 127

culating Rt using the DNEB method, then calculating dL
dBαβ

128

using backward mode automatic differentiation, where L is 129

the chosen loss function, and finally using this gradient to 130

minimize L. 131

The optimization is performed using the RMSProp algo- 132

rithm as implemented in JAX (2, 3). Note that after each step 133

of the optimization, both the height Et and the position Rt 134

of the saddle point will change slightly. While it is possible 135

to differentiate over the entire DNEB calculation, this is not 136

necessary and we instead calculate dL
dBαβ

at fixed Ri, Rj , and 137

Rt. We furthermore find it unnecessary in practice to redo the 138

DNEB calculation every optimization step. Instead, we take 139

multiple optimization steps in between DNEB calculations, 140

which increases the efficiency of the computation. We find 141

that recalculating Rt every 50 optimization steps works well 142

for this problem. Note that in Fig. 3B, the iteration number 143

refers to the number of times Rt has been recalculated. 144

We run a total of 18 such iterations. As before, we use a 145

memory value of γmem = 0.9, and a smoothing value of ε = 146

10−8. However, we use a variable learning rate of 0.064, 0.016, 147

and 0.004 for the first, second, and third set of 6 iterations, 148

respectively. 149

Finally, we note that due to the long-range tail in the 150

potential (Eq. (S2)), the exact position of the two minima 151

technically change slightly during optimization. Therefore, be- 152

fore calculating Rt each iteration, we first recalculate the local 153

minima, though in practice this does not make a significant 154

difference. 155

C. Validation of transition rates using MD. To validate the 156

transition rates, we run 100 simulations (described above) 157

for 3× 106 time steps each. Every 104 steps, we compare the 158

positions of the particles to the nI images, calculated using the 159

DNEB procedure, that compose the transition path between 160

the two states. Specifically, we find the image i that minimizes 161∑
αβ

(rαβ−rαβ,i)2, where rαβ is the distance between particles 162

α and β in the current state, and rαβ,i is the distance between 163

the particles in image i. 164

The grey signal in Fig. 3C shows iclosest as a function of 165

time. Note that the images near 0 and 100 (roughly 0-20 and 166

80-100, see flat lines in Fig. 3B) are identical up to rotations, 167

so the distinction between them is meaningless and we do 168

not need to be concerned that the data in Fig. 3C does not 169

reach iclosest = 0. Note also that this signal is quite noisy, due 170

in part to fluctuations in directions that do not align with 171

the transition path. Therefore, it is important to filter this 172

signal to remove transients that do not correspond transitions 173

Goodrich and King et al. PNAS | January 14, 2021 | vol. XXX | no. XX | 3

DRAFT

between the two states. This is done with a second-order174

lowpass Butterworth filter (see black curve in Fig. 3C).175

This filtered signal is then matched to one of the two minima176

by comparing it to the image number corresponding to the177

transition state (purple dashed line in Fig. 3C), leading to a178

binarized signal (blue curve in Fig. 3C). We then calculate179

the average dwell time of each state, τi and τj . The measured180

rates are then kij,MD = 1/τi and kji,MD = 1/τj .181

Figure S3 compares the rates extracted in this way to the182

rates obtained from the Kramer approximation (Eq. 4) and183

the target rate.184

100 101

measured rate, kMD

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

A

kMD kKramers
kMD

100 101

target rate, k *

B

k * kMD
k *

Fig. S3. Comparison of rates. A) Comparison of kKramers and kMD when targeting
desired energy barriers (see Fig. 4B). Perfect agreement is not expected because
kKramers is an approximation that only considers the curvature at two points in the
energy landscape, and the observed error of less than 50% is very small compared
to the two orders of magnitude of variation in the rates. B) Comparison of kMD and
the target rate k∗ when targeting desired transition rates (see Fig. 4D). Again, the
observed error of mostly less than 20% is expected and very small compared to
the variation in the magnitude of the rates. The comparison of kKramers and k∗ is
shown in Fig. 4C.

4. Using automatic differentiation in new systems185

In determining whether AD can be useful in studying a particu-186

lar system of interest there are several considerations that must187

be taken into account. Given a function (that could involve an188

entire molecular dynamics simulation) that produces a scalar189

output, reverse-mode AD can compute its gradients using a190

single pass through the simulation. However, a consequence of191

this is that the entire simulation trajectory must be retained192

during the simulation. This induces a memory cost that grows193

both with the size of the simulation and the number of sim-194

ulation steps and can quickly become unmanageable. There195

are several ways of ameliorating this cost. First, one can use196

gradient rematerialization to recompute short segments of the197

simulation during the backward pass. This typically reduces198

the memory cost to scale logarithmically in the duration of the199

simulation at the cost of a logarithmic increase in the required200

computational budget. Another option employed here is to use201

forward-mode AD which does not require additional storage202

during the simulation. However, here one pass through the203

entire simulation is required for each parameter and so the204

computational complexity grows quickly with the number of205

parameters in the function to be differentiated.206

1. SS Schoenholz, ED Cubuk, JAX, M.D.: End-to-End Differentiable, Hardware Accelerated, 207

Molecular Dynamics in Pure Python. arXiv (2019). 208

2. J Bradbury, et al., JAX: composable transformations of Python+NumPy programs. (2018). 209

3. T Tieleman, G Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its 210

recent magnitude. COURSERA: Neural networks for machine learning 4, 26–31 (2012). 211

4. MC Rechtsman, FH Stillinger, S Torquato, Optimized interactions for targeted self-assembly: 212

application to a honeycomb lattice. Phys. Rev. Lett. 95, 228301 (2005). 213

5. SA Trygubenko, DJ Wales, A doubly nudged elastic band method for finding transition states. 214

J. Chem. Phys. 120, 2082–2094 (2004). 215

6. CJ Cerjan, WH Miller, On finding transition states. J. Chem. Phys. 75, 2800–2806 (1981). 216

7. DJ Wales, Finding saddle points for clusters. J. Chem. Phys. 91, 7002–7010 (1989). 217

4 | Goodrich and King et al.

	Molecular Dynamics simulations
	Optimizing lattice assembly rates
	Forward mode AD
	Reverse mode AD

	Optimizing transition rates in colloidal clusters
	The doubly nudged elastic band calculation
	Optimization of transition kinetics
	Validation of transition rates using MD

	Using automatic differentiation in new systems

