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In this supplementary document, we provide a supplementary figure relevant for the materials and methods,
describe the supplementary movies and provide additional experimental results. In addition, we derive the
energy of the pulled drop [Eq. (2) of the main text] and discuss the limitations of our model at large strain
(α & 8).

I. METHODS FIGURE, ADDITIONAL EXPERIMENTAL RESULTS AND SUPPLEMENTARY MOVIES DESCRIPTION

Fig. S1 is referenced within the materials and methods section of the main text.
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FIG. S1. (a) Storage and loss moduli obtained for PDMS with curing accelerator, strain 5%, frequency 0.3 Hz. (b) Schematic of a pendant
drop defining the coordinates used for the numerical integration. (c) Schematic describing the unwrapping of the cylinder. A radial line of
pixel is extracted from each frame. These lines are then appended horizontally to form a spatio-temporal diagram which unwraps the drops
from the whole cylinder. A mark on the cylinder allows us to detect each full rotation on the spatio-temporal diagram which is then cropped
horizontally to have a sub-diagram for each turn. The diagram is then resized horizontally to recover the original drop aspect ratio.



S2

(a)

(b)

FIG. S2. (a) Side by side comparison of VPS-8 hairs of different size obtained by varying the initial rotation speed Ω1. On the left Ω1 = 1800
RPM, Ω2 = 5000 RPM. On the right Ω1 = 400 RPM, Ω1 = 1000 RPM. (b) Close up view of the left pattern in (a). scale bar 300 µm.

Fig. S2 demonstrate the possibility to scale down the hair pattern by scaling down the seed droplets size as described in our
previous work [1]. Hairs similar to the ones in the main text are displayed on the right of Fig. S2 (a). They were obtained
with Ω1 = 400 RPM which results in seed droplets with a typical size `c ≈ 0.5 mm. By increasing the initial rotation speed to
Ω1 = 1800 RPM, we decreased the seed droplet size to `c ≈ 0.12 mm which allowed us to make the smaller hairs shown on the
left of Fig. S2 (a). A close up view of the smaller hairs is shown in Fig. S2 (b) and confirm that their shape is similar to the larger
ones. However, the faster rotation speed induced a faster curing such that we had to adjust the value of t∗.

Movie S1 shows the PDMS multi-step experiment described in Fig. 2 once unwrapped. Close-up views are displayed in the
colored boxes.

Movie S2 shows a VPS-8 experiment where a continuous ramp in speed (300→ 1800 RPM) was applied to the sample. Here
we exceeded the yield point, resulting in large deformations and tearing of the hairs.

Movie S3 illustrate the loss of axisymmetry and void formation observed at the base of the hairs at large strain by rotating on
a platform a VPS-8 hair cut from the pattern.

II. MODEL

The deformation of an hyperelastic drop due to the change in centrifugal acceleration is computed by minimizing the total
energy of the drop, which is the sum of the elastic (or strain) energy and the gravitational potential energy. Placing ourselves
in the drop’s frame of reference, the body force (acceleration) is vertical, i.e. along z in the usual Cartesian coordinates. We
assume that the deformation is homogeneous such that the principal stretches (λx, λy, λz) are isotropic and that the hairs remain
axisymmetric such that λx = λy. Incompressibility finally imposes λxλy = 1/λz and denoting λz = λ = h/h0, the principal
stretches are therefore (λ−1/2, λ−1/2, λ ). Consequently, the initial and deformed drop shapes are self-similar as shown in
Fig. S3(a). We compare the assumed homogeneous deformation to experiments in Fig. S3(b). Although the agreement is not
perfect, as it could be expect from such a simplistic assumption, the hair shape is still reasonably captured. Because the stretch
are isotropic, the total strain energy is Eela =

∫∫∫
V0
W d3r =WV0 withW the strain energy density and V0 the drop initial volume.

For a Neo-Hookean drop of shear modulus G we get:

Eela =
GV0

2

(
λ

2 +
2
λ
−3
)
. (S1)
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FIG. S3. (a) Schematic showing the initial drop shape (dashed curve) in cylindrical coordinate (r,φ ,z) and its deformed shape (dashed curve)
after applying the homogeneous deformation (λ−1/2, λ−1/2, λ ). (b) Comparison between experimental drop and hair shapes [from Fig. 2(b)]
and the simplified homogeneous deformation assumed in our model. The leftmost curve is the small-slope drop shape, i.e. equation (S3).

The drop gravitational energy is Eg =
∫∫∫

V ρgeffzd3r with geff the centrifugal acceleration (assumed constant over the drop
since R� h) and V the volume of the deformed drop. Introducing the cylindrical coordinate centered at the drop base [see
Fig. S3(a)] and defining the deformed drop surface with {r,z} we have Eg = πρgeff

∫ h
0 zr2(z)dz from axisymmetry. We can

reduce the integral over the deformed shape to an integral over the undeformed shape {r0,z0} using the change of variables
(z0 = z/λ , r0 =

√
λ r) which yields Eg = πλρgeff

∫ h0
0 z0r2

0(z0)dz0. Using the theoretical drop shapes we obtained by numerically
solving the Young-Laplace equation [Eq. (5)] we get

Eg = βρgeffh0V0λ (S2)

after numerically evaluating the integral with β a number that varies between 0.289 < β < 0.300 depending on the exact profile
used. This result can be derived analytically by considering the small slope solution of pendant drops [2]

z0(r0)

h0
=

J0(R/`c)− J0(r0/`c)

J0(R/`c)−1
. (S3)

Here, J0 is the Bessel function of the first kind of order 0 and R≈ 3.83`c is the drop radius defined by J′0(R/`c) = 0. As shown
on the leftmost picture of Fig. S3(b), Eq. (S3) is a good analytical approximation of the drop shapes. Using it to compute
the gravitational energy we recover Eq. (S2) with β = J0(R/`c)/(J0(R/`c)−1) ≈ 0.287, very close to our previous numerical
estimation.

The total energy of the drop is finally E = Eela−Eg or

E = GV0

2

(
λ

2 +
2
λ
−3
)
−βρgeffh0V0λ , (S4)

which is equivalent to Eq. (2) of the main text. Minimizing the energy finally yields

∂E
∂λ

= GV0

(
λ − 1

λ 2 −βα

)
= 0,

which becomes the cubic equation in the main text after multiplying both sides by λ 2/(GV0).

III. LIMITATIONS OF OUR ELASTIC FRAMEWORK

When the dimensionless acceleration exceeds α & 8, or equivalently when the drop stretch exceeds λ & 250%, our Neo-
Hookean elastic framework no longer reproduces the deformations observed quantitatively. In Fig. S4(a) we plot the stretch
λ = h/h0 as a function of the dimensionless gravity α = ρgeffh0/G for individual drop as in Fig. 3 of the main text, but this time
including data for very large deformations obtained with a very soft PDMS melt. As shown the stretch at high accelerations is
higher than predicted by both the FEM (with G calibrated at small deformations) and the model. Representative images of the
experiment are shown in Fig. S4(b) and a high resolution image of a similar experiment done with VPS-8 is shown in Fig. S4(c).
At these high deformations the drops loose axisymmetry and develop one or multiple voids at their base illustrated in Fig. S4(c)
and movie S3. These voids are reminiscent of the elastic fingering and fringe instabilities that occurs in stretched hyperelastic
solids [3–5]. However, theses instabilities are quantitatively reproduced by 3D FEM simulations [4] which is not the case of
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FIG. S4. (a) Stretch λ = h/h0 as a function of the dimensionless gravity α = ρgeffh0/G, including data for very large deformations. The
legend is identical to Fig. 3 of the main text. (b) Snapshots of a representative portion of the fast camera reconstructed images of the experiment
shown as squares in (a). The values of the dimensionless gravity for the rightmost drop are from top to bottom α = {0−6.7−12.9−20.9}.
(c) High-resolution image of a cured VPS-8 drop exhibiting similar deformations, with the formation of a void at the base of the drop.

the voids we observe in our experiments. This suggests that other physical effects come into play and shows the limitations
of our Neo-Hookean purely elastic framework. Because the voids appear at high stretch and at the base of the hairs where the
elastic energy is highest, we hypothesize that they result from viscous or plastic effects. Eventually at even higher accelerations
α & 20 (or λ & 1000%), the hairs get teared off (see Movie S2). These thresholds roughly coincide for PDMS and VPS-8 but are
probably material dependent. The teared morphology is for instance different between PDMS and VPS-8, the former displaying
viscous like filaments while the latter appears more brittle with very little material left on the cylinder.
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