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Fig. S1. Secondary nucleation of α-Syn at pH 7. (A) Seeded aggregation kinetics of 

wild-type α-Syn aggregation at constant monomer concentration with systematic 

variation of α-Syn seeds from 0-60% (expressed as percentage of the concentration of 

monomeric α-Syn) under quiescent conditions using mature fibrils without sonication at 

37 °C. Inset, negative-stain EM of the ThT sample containing 3% seeds after 84 h of 

incubation, scale bar 400 nm. (B) Aggregation of wild-type α-Syn in absence and 

presence of 3% sonicated seeds, sonication time 7, 15, and 35 min. (C) Aggregation 

kinetics of wild-type α-Syn in absence and presence of 3% wild-type and α-Syn(ΔC) 

seeds. (D) Comparison of wild-type and mutant α-Syn(K6A;K10A;K12A) aggregation 

with and without addition of 3% wild-type α-Syn seeds. Monomer sample 

concentrations are 300 µM. Error bars denote standard deviations based on 

measurements on two independent replicate samples. 

 

 

 

 

 

 

 



 3 

 
Fig. S2. Mechanisms of α-Syn aggregation. Global fitting of seeded wild-type α-Syn 

aggregation kinetics at pH 7 is consistent with (A) surface-catalyzed secondary 

nucleation but not with (B) elongation of fibrils. 
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Fig. S3. Aggregation of monomeric α-Syn in presence of fibrils. Residue-resolved 

NMR signal intensity ratios (I/I0) of monomeric α-Syn before (I0) and after 5 h (I) 

incubation with 5.4-fold molar excess of α-Syn fibrils at pH 7 (blue) and pH 6 (green). 

Positions of C-terminal α-Syn proline residues without peptide amide resonances are 

shown in one-letter amino acid code. 
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Fig. S4. Kinetics of α-Syn fibril interaction. 15N R2 relaxation rates of N-terminal α-

Syn residues in presence of increasing concentration of α-Syn fibrils at (A) pH 7 were 

fitted by a hyperbolic binding function r = a + b*n[α-Syn fibril]n/(Kd + [α-Syn fibril]n), n 

= number of fibril binding sites. (B) At pH 6, fast α-Syn aggregation upon addition of α-

Syn fibrils did not allow fitting of the R2 data to determine Kd values. 
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Fig. S5. Absence of structural features in transiently fibril-bound α-Syn. (A) 

ω1(1H)/ω3(1H) strips obtained from 3D 15N-resolved [1H,1H]-NOESY experiments for 

the 10 N-terminal residues of monomeric α-Syn in absence (black) and presence of α-

Syn fibrils (blue, 6.7-fold molar excess of fibrils) at pH 7. The strips are centered about 

the amide proton chemical shifts and taken at the 15N chemical shifts of the amide groups 
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for the indicated residues. (B) 1D ω3(1H) cross sections of the diagonal peak intensities 

from the NOESY spectrum. 
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Fig. S6. Wild-type and α-Syn cysteine mutants are intrinsically disordered. 

Overlay of 2D NMR spectra of α-Syn(A90C), (ΔN;A90C), (K6A;K10A;K12A;A90C), 

and (E20C;E35C) (blue) with wild-type (WT) α-Syn (black) at pH 7. Chemical shift 

differences Δδ of non-proline backbone 15N-1H resonances between wild-type and α-

Syn mutants were calculated as Δδ = [(Δδ1H)2 + (Δδ15N × 0.2)2]1/2. Residues without ∆δ 

values were not analyzed because of missing cross-peak assignment. 
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Fig. S7. PRE of α-Syn mutants. Residue-resolved PRE intensity profiles Iparam/Idiam of 

para- (Iparam) and diamagnetic (Idiam) labeled (A) α-Syn(Α90C), (B) α-Syn(ΔN;A90C) 

and (C) α-Syn(K6A;K10A;K12A;A90C) at pH 7. Positions of C-terminal α-Syn proline 

residues without peptide amide resonances are shown in one-letter amino acid code. 
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Fig. S8. Solid-state NMR assignment of the Glu side-chain atoms in the mobile 

region of α-Syn fibrils. (A) 2D 1H-13C INEPT spectrum of α-Syn fibrils. The cross-

peak of Glu 13Cγ is indicated. (B) 2D 13C-13C INEPT-TOBSY spectrum of α-Syn fibrils 

showing the spin system of the Glu side-chain. (C) 1D 13C MAS CP NMR spectra of α-

Syn fibrils at pH 7 (blue) and 6 (green). Salt-free conditions. 
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