

Supplementary Information for

Structural insights into a-synuclein monomer-fibril interactions

Pratibha Kumari^{a,1}, Dhiman Ghosh^{a,1}, Agathe Vanas^a, Yanick Fleischmann^a, Thomas Wiegand^a, Gunnar Jeschke^a, Roland Riek^{a,2}, and Cédric Eichmann^{a,b,2}

^aDepartment of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland

^bDepartment of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel

¹P.K. and D.G. contributed equally to this work.

²To whom correspondence may be addressed. E-mail: roland.riek@phys.chem.ethz.ch or cedric.eichmann@phys.chem.ethz.ch

This PDF file includes:

Figures S1 to S8

Fig. S1. Secondary nucleation of α -Syn at pH 7. (A) Seeded aggregation kinetics of wild-type α -Syn aggregation at constant monomer concentration with systematic variation of α -Syn seeds from 0-60% (expressed as percentage of the concentration of monomeric α -Syn) under quiescent conditions using mature fibrils without sonication at 37 °C. Inset, negative-stain EM of the ThT sample containing 3% seeds after 84 h of incubation, scale bar 400 nm. (B) Aggregation of wild-type α -Syn in absence and presence of 3% sonicated seeds, sonication time 7, 15, and 35 min. (C) Aggregation kinetics of wild-type α -Syn in absence and presence of 3% wild-type α -Syn in absence and presence of 3% wild-type α -Syn in absence and presence of 3% wild-type α -Syn is addition of 3% wild-type α -Syn seeds. (D) Comparison of wild-type and mutant α -Syn(K6A;K10A;K12A) aggregation with and without addition of 3% wild-type α -Syn seeds. Monomer sample concentrations are 300 μ M. Error bars denote standard deviations based on measurements on two independent replicate samples.

Fig. S2. Mechanisms of α -Syn aggregation. Global fitting of seeded wild-type α -Syn aggregation kinetics at pH 7 is consistent with (A) surface-catalyzed secondary nucleation but not with (B) elongation of fibrils.

Fig. S3. Aggregation of monomeric α -Syn in presence of fibrils. Residue-resolved NMR signal intensity ratios (I/I₀) of monomeric α -Syn before (I₀) and after 5 h (I) incubation with 5.4-fold molar excess of α -Syn fibrils at pH 7 (blue) and pH 6 (green). Positions of C-terminal α -Syn proline residues without peptide amide resonances are shown in one-letter amino acid code.

Fig. S4. Kinetics of α -Syn fibril interaction. ¹⁵N R₂ relaxation rates of N-terminal α -Syn residues in presence of increasing concentration of α -Syn fibrils at (A) pH 7 were fitted by a hyperbolic binding function $r = a + b*n[\alpha$ -Syn fibril]ⁿ/(K_d + [α -Syn fibril]ⁿ), n = number of fibril binding sites. (B) At pH 6, fast α -Syn aggregation upon addition of α -Syn fibrils did not allow fitting of the R₂ data to determine K_d values.

Fig. S5. Absence of structural features in transiently fibril-bound α -Syn. (A) $\omega_1({}^{1}\text{H})/\omega_3({}^{1}\text{H})$ strips obtained from 3D ${}^{15}\text{N}$ -resolved [${}^{1}\text{H},{}^{1}\text{H}$]-NOESY experiments for the 10 N-terminal residues of monomeric α -Syn in absence (black) and presence of α -Syn fibrils (blue, 6.7-fold molar excess of fibrils) at pH 7. The strips are centered about the amide proton chemical shifts and taken at the ${}^{15}\text{N}$ chemical shifts of the amide groups

for the indicated residues. (B) 1D $\omega_3(^1H)$ cross sections of the diagonal peak intensities from the NOESY spectrum.

Fig. S6. Wild-type and α -Syn cysteine mutants are intrinsically disordered. Overlay of 2D NMR spectra of α -Syn(A90C), (Δ N;A90C), (K6A;K10A;K12A;A90C), and (E20C;E35C) (blue) with wild-type (WT) α -Syn (black) at pH 7. Chemical shift differences $\Delta\delta$ of non-proline backbone ¹⁵N-¹H resonances between wild-type and α -Syn mutants were calculated as $\Delta\delta = [(\Delta\delta_{1H})^2 + (\Delta\delta_{15N} \times 0.2)^2]^{1/2}$. Residues without $\Delta\delta$ values were not analyzed because of missing cross-peak assignment.

Fig. S7. PRE of \alpha-Syn mutants. Residue-resolved PRE intensity profiles I_{param}/I_{diam} of para- (I_{param}) and diamagnetic (I_{diam}) labeled (**A**) α -Syn(A90C), (**B**) α -Syn(Δ N;A90C) and (**C**) α -Syn(K6A;K10A;K12A;A90C) at pH 7. Positions of C-terminal α -Syn proline residues without peptide amide resonances are shown in one-letter amino acid code.

Fig. S8. Solid-state NMR assignment of the Glu side-chain atoms in the mobile region of α -Syn fibrils. (A) 2D ¹H-¹³C INEPT spectrum of α -Syn fibrils. The cross-peak of Glu ¹³C^{γ} is indicated. (B) 2D ¹³C-¹³C INEPT-TOBSY spectrum of α -Syn fibrils showing the spin system of the Glu side-chain. (C) 1D ¹³C MAS CP NMR spectra of α -Syn fibrils at pH 7 (blue) and 6 (green). Salt-free conditions.