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Supporting Information Text14

1. Experimental Methods15

A. Plasmid Construction. DNA encoding kinase domain residues 1090-1416 of human ALK was amplified by using primers that16

included an N-terminal hexahistidine tag and SpeI/NotI restriction sites. Mutations were introduced using the QuikChange17

method (Stratagene), and the PCR product was subcloned into pFastBac1 for protein expression in Sf9 cells. For focus18

formation assays, full-length ALK variants were subcloned into the pcDNA3.1(-) vector (Invitrogen).19

B. Recombinant protein expression and purification. Spodoptera frugiperda Sf9 cells at 1.5− 2× 106 /ml were infected with20

recombinant baculovirus, and harvested by centrifugation after 3 days. Cells expressing histidine-tagged ALK variants were21

lysed by sonication in 100ml of lysis buffer (50 mM sodium phosphate buffer, pH 8.0, 300 mM NaCl, 10mM imidazole, 4mM22

β-mercaptoethanol, and protease inhibitor cocktail (Roche)). After centrifugation at 40,000 x g for 30 minutes to remove23

insoluble cell debris, the supernatant was incubated with Ni-NTA agarose beads (Qiagen) for 1 hour at 4◦ C. The Ni-NTA24

beads were washed with 50 column volumes of lysis buffer, pH 8.0 containing 20mM imidazole and bound ALK TKD protein25

was eluted in lysis buffer, pH 8.0 containing 300mM imidazole. Eluted ALK TKD protein was incubated with 1µM YopH26

phosphatase for 12 h at 4◦C to reverse autophosphorylation that occurred during expression. YopH was then removed using a27

cation exchange column after reducing NaCl concentration to 100 mM. Eluted protein was then further purified using a butyl28

sepharose HP column (GE Healthcare) equilibrated with 1M (NH4)2SO4), 25mM HEPES pH 7.0, 150 mM NaCl and 2mM29

DTT (HIC buffer A), eluting with a 20 column volume linear gradient to 0 M (NH4)2SO4) , 25mM HEPES pH 7.0, 150 mM30

NaCl and 2mM DTT (HIC buffer B). ALK TKD protein was finally subjected to a size exclusion chromatography step using a31

Superdex 200 column (GE Healthcare) equilibrated in 25 mM HEPES pH 7.4, 150 mM NaCl, 4 mM DTT.32

C. Peptide phosphorylation assays. In vitro kinase assays measuring γ−32P incorporation into peptide substrate were performed33

as described (1). The substrate was a peptide mimic of the ALK activation loop with sequence: biotin- ARDIYRASYYRKG-34

GCAMLPVK (CanPeptide). Enzyme concentrations for unphosphorylated ALK-TKD variants were fixed at 50nM. Under35

these assay conditions, reaction rates were linear with respect to enzyme concentration and time. Assays were performed in36

100 mM HEPES pH 7.4, 150 mM NaCl, 2mM DTT, 10 mM MgCl2 and 0.5 mg/ml BSA at 25◦C. kcat values were measured37

by varying peptide concentration from 0.015625 mM to 2mM at excess ATP (2mM). Samples were taken at each time point,38

spotted onto P81 Ion Exchange Cellulose Chromatography paper (Reaction Biology Corp) and quenched with 0.5 % phosphoric39

acid. Liquid scintillation was used to measure incorporated radioactivity on each paper filter. Initial rates were all determined40

from the linear portion of the enzyme reaction (when substrate depletion or product formation is < 10 % ), normalized for41

enzyme concentration, and fit to the Michaelis-Menten equation (vo = vmax[S]/(Km+[S])) using GraphPad Prism 5.0.42

D. Focus formation assays. For focus-formation assays, full-length ALK variants were subcloned into the pcDNA3.1 (-)43

(Invitrogen). Low-passage (typically < 15) NIH 3T3 cells at approximately 60 % to 70 % confluence were transfected with44

full-length mutated ALK constructs using Lipofectamine 2000 (Invitrogen). After 2 days of recovery, transfected NIH3T3 cells45

were divided into 2 groups and plated. The first (focus formation) group was plated on 10-cm dishes and left to reach full46

confluence and to form foci in DMEM with GlutaMaX with 5 % calf serum. For the second (colony formation) group, serially47

diluted cells were plated in wells of 6 plates in DMEM with GlutaMax with 10 % calf serum and 0.5 mg/ml G418 to select48

colonies for counting.49

Medium was then changed every 3 days until foci and colonies were formed, which typically takes 2-3 weeks. Cells were50

then fixed in 3.7 % formaldehyde in phosphate-buffered saline (PBS) for 5 minutes and then stained with 0.05 % crystal51

violet in distilled water for 30 minutes. Data are reported as a transformation index, which is the number of foci corrected52

for transfection efficiency (estimated by the count of G418-resistant colonies), and normalized to a parallel assessment of53

transformation by the activating F1174L mutation, which was given the arbitrary transformation index of 1.0. Each independent54

experiment was performed in triplicate, and mean values are reported with standard deviation.55

2. Computational Methods56

A. Molecular Dynamics Simulations. Simulations and analysis were carried out using the BioPhysCode software suite (2). The57

initial structures of ALK were as previously reported (3). All homology models were constructed using MODELLER (4) and58

all mutations were introduced using a BioPhysCode Automacs routine based on MODELLER. The inactive wild-type ALK59

TKD structure (residues 1096-1399) was taken from PDB entry 3LCS (5). Missing residues 1084-1095 and 1400-1405 were60

added to the model based on PDB entry 4FNW using MODELLER. Mutated structures were generated using MODELLER by61

making point mutations to the modified inactive wild-type model. A homology model of active ALK TKD was generated with62

MODELLER, using as the primary template the active insulin receptor TKD structure (PDB entry 1IR3), with which ALK63

TKD shares 46% sequence identity. Residues 1097-1399 were modeled from 3LCS, whereas residues 1084-1096 and 1400-140564

were again modeled from 4FNW. All structures were modeled without bound substrate. Simulations were run with Automacs65

using GROMACS (6) with the CHARMM27 force field (7) with TIP3P explicit solvent (8) in a periodic water box with at least66

12 Åbetween the protein and box edge. An ionic concentration of 0.15 M NaCl was used and the final charge of the full system67

was zero. Minimization was carried out using steepest descent and the system was equilibrated first at constant volume, then68

at constant pressure using Berendsen thermostat (9) before production MD simulations were carried out constant pressure69
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using Parinello-Rahman (10). Equilibration and production MD runs were carried out at constant temperature using velocity70

rescaling (11), with linear center of mass motion removal. LINCS (12) was used to constrain all bonds during equilibration71

and hydrogen bonds were constrained during production MD. Particle mesh Ewald electrostatics (3) was used to account for72

long-ranged interactions (13). Simulations were run for a total of 101 ns and two replicates were performed for each simulation.73

B. Molecular Dynamics Analysis. Analysis was performed, unless otherwise noted, on the last 100 ns and the two replicates74

were averaged together. Structures were sampled from each trajectory at 20 ps intervals, resulting in a total of 5001 structures75

for analysis. Plotting was performed with Omnicalc using matplotlib (14).76

B.1. Hydrogen bond occupancy. Each amino acid is considered to have a maximum of 3 possible hydrogen bonds: a main chain77

donor, a main chain acceptor, and the side chain — meaning that some residues such as Arg or Asp can have more than78

one side chain hydrogen bond in a single frame; however, bonds are counted uniquely so that this could only happen if e.g.79

Arg-i and Asp-j side chains make both possible hydrogen bonds. For each structure in a trajectory and for each bond (see80

Fig. S1) the hydrogen bond occupancy (O) was calculated by dividing the number of frames with a hydrogen bond is observed81

by the total number of frames. After computing the occupancy for each residue i in the inactive WT (OWT,i) and residue82

i in the inactive mutant (OMUT,i) the occupancy difference in the mutant MUT for residue i (∆MUT,i) was calculated83

as ∆MUT,i = OMUT,i − OWT,i. For each residue i, if ∆MUT,i > threshold, then ∆MUT,i is added to an accumulator84

(∆MUT,Total). Here threshold is set to 0.75 and a mutation considered to have a different occupancy than WT if ∆MUT,Total85

is nonzero and exceeds a second threshold. This threshold is varied to get a sensitivity of the chosen value to the prediction86

accuracy as discussed in the main text.87

B.2. RMSD analysis. RMSD was computed for αC helix and activation loop residues after aligning the rest of the Cα carbon88

atoms with the active and the inactive reference states. The temporal RMSD plots were generated for each mutant system89

as depicted in the example plots in Fig. S2. A threshold standard deviation of RMSD change of > 2 Å either in the αC90

helix or the activation loop in a given system was scored as activating. The resultant analysis yielded similar BACC to that91

obtained using hydrogen bond occupancy. Since the hydrogen bond occupancy can yield residue level information, we utilize92

that method in the final analysis and comparison to experiments.93

C. Metadynamics. Well tempered metadynamics (15) (WTMD) was used to sample the large scale configurational space94

between the inactive and the active configurations of ALK to assess conformational the conformational changes in the kinase95

subdomains that provide distinguishable features (mainly the activation loop and the αC helix), with the active configuration96

having α C-in and the activation loop being extended, and the inactive active configuration of ALK having α C-out and the97

activation loop not being extended: inactive configuration of ALK (3). The biased simulations were performed using PLUMED98

2.3.5 patched with GROMACS 5.0.7. Metadynamics accelerates rare events along certain collective variables (CVs) that are99

functions of positional coordinates. Here we use a simple geometry based CV or path based CV: RMSD to the active structure100

of ALK as CV1 and RMSD to inactive structure of ALK as CV2. The RMSD is calculated based on only the non-translational101

and non-rotational motion of the alpha carbon atoms in the protein backbone. Metadynamics involves adding an external102

history dependent Gaussian potential for the system to be able to cross the barrier.103

V (~s, t) =
∑
kτ<t

W (kτ)exp
(
−

d∑
i=1

(si − s̄i(kτ))2

2σ2
i

)
[1]104

To parallelize the metadynamics calculations, we use four walkers meaning four parallel simulations that sample the105

configurational space simultaneously and are cognizant of the deposited Gaussian potentials by other walkers on the CV grid106

space through a file sharing system of PLUMED. Here in eq 1, σi is the width of the Gaussian for the CV si, W represents the107

height of the Gaussian and τ is the Gaussian deposition stride. WTMD uses decaying Gaussian height to ensure smoother108

convergence.109

W (kτ) = Woexp

(
− V (~s, kτ)

kB∆T

)
[2]110

In the larger time limits, the free energy for the CV space is obtained as,111

V (S, t→∞) = − ∆T
T + ∆T F (S) + C [3]112

We set in the PLUMED script, the energy in kcal/mol and length in Å. The parameters used in this study to perform113

WTMD are:bias factor γ = T+∆T
T

= 20, height = 0.6 and pace = 500.114

C.1. Convergence of free energy profile obtained through metadynamics. The CVs that we have employed, CV1:RMSD to active115

and CV2: RMSD to inactive span a very large configurational space, but is required to capture the transition between the116

active and the inactive states. Initially, we utilized the configurations that resulted from equilibration of the structures from117

PDB/homology modeling as the inactive and active reference structures for CV1 and 2. After a first round of metadynamics,118

we identified the zones corresponding to the inactive and active states and then utilized representative structures from these119
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ALK WT inactive Hbonds contact map

ALK WT inactive replicate 400 ns Hbonds contact map

Fig. S1. Inactive hydrogen bond contact maps. Residues are colored by type of side chain. Darkness is determined by the number of hydrogen bonds a residue
participates in during a single frame. Backbone and side chain contributions are taken together. Only residues that participate in at least one hydrogen bond for at least 10% of
frames are shown.
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Fig. S2. RMSD evolution of the C1156Y mutant as an example in two (replicate) trajectories. Overall RMSD as well as those of αC helix and the activation loop regions
are shown.

zones in the definition of the CVs. This one-step iterative procedure led to superior convergence of the landscapes. The choice120

of the CVs and the iterative procedure culminates in a very long biased simulation time. Hence, we simulate to ensure the121

convergence of certain zones of interest in the free energy landscape to with less than 0.5 kcal/mol for 100 ns based on evolution122

of the free energy of these zones or states according to,123

Fs = −kBT log
(∫ ∫

e−βF̂ (s1,s2)ds1ds2

)
, [4]124

where Fs is the free energy of the state, F̂ (s1, s2) is the free energy of the value at that collective variable coordinates (s1, s2).125

These zones represent the transition from the inactive-like to active-like configurations of ALK as depicted in the main text.126

The nature of metadynamics is such that it discourages the system from visiting more frequently visited regions. However, a127

convergence analysis needs to be performed to ensure reproducibility. We perform such an analysis in Fig. S3.128

Fig. S3. We compute and depict the evolution of the quantity Fz1-Fz4 or free energy for zones 1-4 (columns) using eq 4. The rows represent the free energy values after
2400 (top), 2500 (middle), and 2600 (bottom) ns of metadynamics, respectively. The converged values of the free energies are tabulated in the main text.

A summary of the four zones is depicted in Fig. S4. The zones are identified as regions in the free energy landscape within129

5kBT of the minimum free energy value in that zone.130
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Fig. S4. Four converged zones identified on the free energy landscape subjected to further analysis.

D. Machine Learning Algorithm.131

D.1. Curation of Dataset. A pan-kinase mutation dataset was constructed via text mining of the UniProt database using a Perl132

script. The resulting data set was validated by searching the literature for a subset of the entire dataset to ensure that class133

assignments were correct. The final set used in this work contained 829 total point mutations, with 230 positive, activating134

mutations, and 599 negative, non-activating mutations. For each mutation, a feature vector with 59 elements was generated,135

addressing chemical properties of the wild type and mutant residues.136

D.2. Construction of Feature Vectors. For each mutation, a feature vector of the following values was constructed. This leads to a137

feature vector for each mutation with 59 elements. Each element of the resulting vectors is normalized so that all values are in138

[-1,1]. A large number of the elements will be zero for each mutation. The following is a list of all the features:139

1. Wild type residue (one feature element for each of the 20 amino acids)140

2. Mutated residue (one feature element for each of the 20 amino acids)141

3. Wild type residue type (from aliphatic, acidic, basic, aromatic, and polar)142

4. Mutated residue type (from aliphatic, acidic, basic, aromatic, and polar)143

5. Difference between wild type and mutated residue for following:144

(a) Kyte-Doolittle hydropathy145

(b) Free energy of solvation146

(c) Normalized van der Waals radius147

(d) Polarity difference148

(e) Charge difference149
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6. Whether the mutation falls in one of the following kinase subdomains:150

(a) nucleotide binding loop151

(b) αC helix152

(c) catalytic loop153

(d) activation loop154

D.3. Construction of Data Matrix and Training. Feature vectors were generated for each of the 829 mutations via a python script that155

extracted features from the data. The data file has the following information for each kinase.156

1. The name of the kinase (BRAF, ALK, etc.)157

2. The wild type residue (before point mutation)158

3. The mutated residue (after point mutation)159

4. The location of the point mutation (residue number)160

5. Label (+1: activating, -1: non-activating)161

A data matrix was generated with the features (normalized numerical values) and labels for each mutation. Data were162

divided into a training set and a test set. The test set consists of all 41 ALK mutations in Fig. 4A. The training set consists of163

all of the other 784 mutations. Since the data were imbalanced, the SMOTE algorithm, for up sampling of the minority class,164

was performed on the training set so that it consisted of an equal number of activating and non-activating mutations. SMOTE165

was only applied on the training set to prevent overfitting (16–18). 5-fold cross validation was then performed on the training166

set to determine the optimal hyperparameters that maximized both the f1 score and the ROC AUC score. The following167

algorithms were used in this study: Support Vector Machine (SVM), Logistic Regression, Neural Net, and Random Forest.168

The data were utilized to determine the optimal hyperparameters. Namely, the hyperparameters were tuned in cross-validation.169

After training the models using the training data and optimized hyperparameters, the model was evaluated on the test data.170

D.4. Support Vector Machine (SVM). Model Choice: The Support Vector Machine (SVM), with the Radial Basis Function (RBF)171

kernel, was chosen since the data were numerical and the number of samples was much greater than the dimensions of the feature172

space. Model Training and Hyperparameter Search: The training data were utilized to determine the optimal hyperparameters.173

SVM has a number of parameters that can be optimized. For the SVM RBF, the error penalty, C, and the Gaussian width174

γ can be optimized. The error penalty C controls how smooth the decision surface is, with larger values of C leading to an175

increasingly jagged boundary that attempts to classify every example correctly. The Gaussian width γ controls how large of176

a region in feature space (or any mapping of feature space) that the training examples take up, with larger values meaning177

training examples are ‘felt’ in a smaller region. Both C and γ can be tuned in cross-validation (19). To this end, a grid178

search was implemented over all combinations of values of γ ∈ [1× 10−5, 1× 104] increasing by a factor of 10 in each iteration,179

C ∈ {0.01, 0.1, 1, 2, 3, 4, 5} for loss functions that maximize one of F1, ROC AUC. The F1 score is a weighted average of the180

precision and recall, both of which are defined later when discussing the measures used in evaluating the performance of the181

model. The F1 score reaches its best value at 1 and worst score at 0. The ROC is a plot of the false positive rate (x-axis)182

versus the true positive rate (y-axis) for a number of different candidate threshold values between 0.0 and 1.0. ROC AUC183

calculates the area under the ROC curve; the best possible AUC is 1 while the worst is 0.5 (the 45 degrees random line). F1184

and ROC AUC are more representative loss functions, than accuracy, since the data are imbalanced.185

The grid search was conducted by performing 5-fold cross validation. The training data set was shuffled randomly and then186

split into 5 groups. For each unique group, that group was taken as the test data set and the remaining groups as a training187

data set. A model was fit on the training set and evaluated on the test set. The model was discarded after retaining the f1 and188

ROC AUC scores and the process was repeated for each unique group. The skill of the model with that particular combination189

of hyperparameter values was then summarized using the sample of model evaluation scores. For the training set used here,190

C = 5, γ = 0.1, kernel=rbf were found to be the hyperparameters that maximized the ROC AUC and F1 loss functions. A plot191

of the ROC AUC scores for combinations of Gamma and C values tested during cross validation is depicted in Fig. S5. In192

addition, we performed a statistical test (F-test) to determine the relevance of the features in the ML algorithm S6. The F-test193

is a statistical test used to compare between models and to check if the difference in performance is significant. In this case,194

iterations of hypothesis testing are done where one model, X, contains “n” features, and model Y has “n+1” features. The195

least squares errors in both models are compared and a p-value is calculated to determine whether the difference in errors196

between model X and Y are significant or introduced by chance. A significant difference means that the feature added provided197

a meaningful contribution to the performance and improvement of the ML algorithm.198

D.5. Neural Network. Model Choice: The neural net was constructed using the Keras framework. The optimizer was chosen to be199

“stochastic gradient descent” and the loss function was designated as “binary cross entropy.” Given the size of the data set200

and the number of features at our disposal, a 3 layered neural net was constructed. The first layer has 8 units and an input201

dimension of 59; the second layer has 8 units and the “tanh” activation function; the third layer has 1 unit and the “sigmoid”202

activation function. The max epoch number was set to 500 and the batch size was set to 32 (20).203
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Fig. S5. Plot of ROC AUC scores for combinations of γ and C values tested during cross validation. Optimal combination of parameters found to be: C = 5, γ = 0.1,
’kernel’=’rbf’.

Fig. S6. (top) F-Test Scores for features in SVM Algorithm. Dotted Line drawn at 0.5 to highlight most important features. (bottom) Features with greatest scores from
F-test analysis

D.6. Logistic Regression. Model Training and Hyperparameter Search: The training data was utilized to determine the optimal204

hyperparameters. The following were the parameters that can be optimized for Logistic Regression: solver, algorithm to use in205

the optimization problem; C, inverse of regularization strength; and, multi-class, where if ‘ovr’ is chosen, a binary problem206

is fit for each label and if ‘multinomial’ is chosen, the loss minimized is the multinomial loss fit across the entire probability207

distribution, even when the data is binary. All of these parameters can be tuned through cross-validation (21). To this end, a208

grid search was implemented over all combinations of values of solver ∈ {0.01, 0.1, 1, 2, 3, 4, 5}, multi-class ∈ [‘ovr’,’multinomial’209

], and C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. For the training set used here, ’solver’ = ’newton-cg’, ‘multi-class’ = ‘multinomial’,210

‘C’ = 100 were found to be the hyperparameters that maximized the ROC AUC and F1 loss functions.211

D.7. Random Forest. Model Training and Hyperparameter Search: The training data was utilized to determine the optimal212

hyperparameters. The following were the parameters that can be optimized for Random Forest: n-estimators, the number213

of trees in the random forest; max-features, the number of features to consider at every split; max-depth, the maximum214

number of levels in each tree; min-samples-split, the minimum number of samples required to split a node; min-samples-leaf,215

the minimum number of samples required at each leaf node; and, bootstrap, the method of selecting samples for training216

each tree. All of these parameters can be tuned through cross-validation (22). Since this is a large hyperparameter space, a217

randomized grid search was implemented. This means that not all parameter values are tried out, but rather a fixed number of218

parameter settings is sampled from the specified distributions. This was done over all combinations of values of n-estimators219

∈ [200, 2000] increasing by 180 in each iteration, max-features ∈ [‘auto’,’sqrt’], max-depth ∈ [10, 110]∪ [‘None’] increasing by 9220

each iteration, min-samples-split ∈ [2, 5, 10], min-samples-leaf ∈ [1, 2, 4], and boostrap ∈ [True, False] for loss functions which221

maximize one of [F1, ROC AUC]. For the training set used here, [n-estimators=1200,min-samples-split=10,min-samples-leaf=1,222

max-features="sqrt",max-depth=None,bootstrap=True] were found to be the hyperparameters that maximized the ROC AUC223

and F1 loss functions.224
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D.8. Evaluation. After training the models using the training data and optimized hyperparameters, the model can be evaluated225

on the test data. Using the trained model, we made predictions on the labels (1: activating, -1: non-activating) of the226

test set. The following measures are usually used in evaluating the performance of the model: TP = # of true positives,227

TN = # of true negatives, FP = # of false positives, and FN = # of false negatives, where BACC = Balanced Accuracy,228

TPR = True Positive Rate, TNR = True Negative Rate, TN = True Negative Rate, FPR = False Positive Rate, TPR =229

True Positive Rate, TNR= True Negative Rate, and FNR = False Negative Rate. All ML implementations were executed230

in Python. Here: TPR=TP/(TP+FN), FPR=FP/(FP+TN), FNR=1-TPR, TNR=1-FPR, BACC=(TPR+TNR)/2, and231

Accuracy=(TP+TN)/(TP+TN+FP+FN).232

E. GitHub Repository. The machine learning models, training data, and documentation are available for download from233

https: //github.com/kksuresh25/Cancer-AI234

The molecular dynamics and metadynamics files are available for download from235

https: //github.com/KesPatil/ALK_files_2021_PNAS.git236

3. Additional SI Figures and Tables237

ALK H-bond donor H-bond acceptor
# simulation
bond is labile

Arg-1181 side Glu-1197 side 47
Arg-1231 side Glu-1384 side 40
Arg-1253 side Asp-1249 side 33
Arg-1284 side Asp-1163 side 30
Arg-1279 side Asp-1163 side 23
Arg-1275 side Asp-1276 side 22
Arg-1284 side Asp-1276 side 21
Listed bonds/total labile bonds 216/390

Table S1. Labile hydrogen bonds: all listed H-bonds are between residue side chains (side) but main chains were also considered.
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