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Supporting Information Text

Appendix A: Reflectivity measurement, Kramers-Kronig analysis, Optical conductivity data on flux-grown sample
and Hall resistivity data

The reflectivity R(ω) of CoSi was measured at a near-normal angle of incidence using a Bruker VERTEX 70v Fourier transform
infrared spectrometer. An in situ gold overfilling technique (1) was used to obtain the absolute reflectivity. As shown in
Figure S1(a), the reflectivity spectra have been measured over a very broad frequency range from 40 to 8 000 cm−1 on a shiny
as-grown sample surface by using a series of combinations of sources, beamsplitters and detectors. The reflectivity spectra at
different temperatures from 300 to 10 K were collected with an ARS-Helitran cryostat. Fig. S1(a) also shows the raw spectra
measured for different frequency ranges at 10 and 300 K. It is evident that all spectra exhibit the same temperature dependence
and are overlapping very well in the region where the spectra have been connected to perform the Kramers-Kronig analysis.
This confirms the accuracy and reproducibility of the measured reflectivity spectra.
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Fig. S1. (color online) (a) Reflectivity spectra R(ω) measured for different frequency ranges with a Fourier transform infrared reflectometer and with a grating-based
spectroscopic ellipsometer. (b) Comparison of the optical conductivity spectrum at 300 K as obtained from the ellipsometry data and a Kramers-Kronig analysis of the reflectivity
data. (c) The optical conductivity at 10 K obtained by the Kramers-Kronig analysis of R(ω) with different low-frequency extrapolations, such as Constant (R(ω) = constant),
Hagen-Rubens (R(ω) = 1− A

√
ω), Marginal Fermi Liquid (R(ω) = 1− Aω), and Two Fluid (R(ω) = 1− Aω2).

The optical conductivity σ1(ω) was obtained from a Kramers-Kronig analysis of R(ω) (2). For the low-frequency extrapolation
we used a Hagen-Rubens function R = 1−2

√
2ε0ω
σDC

, where σDC is the dc conductivity determined by the temperature-dependent
DC four-terminal resistivity data. On the high-frequency side, the ellipsometry data were used, for which the spectrum in the
near-infrared to ultraviolet range (4 000 – 50 000 cm−1) was measured at room temperature with a commercial ellipsometer
(Woollam VASE), and the Kramers-Kronig analysis was anchored by the room temperature ellipsometry data, as shown by the
spectra in Fig. S1(b).

To verify the reliability of Kramers-Kronig analysis at low frequencies, in Fig. S1(c) we show how different low-frequency
extrapolations during the Kramers-Kronig analysis of reflectivity influence the obtained spectra of optical conductivity. It shows
that the uncertainty is very small, especially in the energy range above 20 meV where we studied the low-energy interband
transitions associated with multifold fermions, since our reflectivity data have been measured with high accuracy down to very
low energies of about 5 meV.

In Fig. S2, we show the optical conductivity data on the flux-grown CoSi (111) sample, measured under the same conditions
as the CVT sample reported in the main text. Because of the cubic symmetry, the conductivity is the same on (001) and (111)
facets. The temperature dependent real part of the conductivity is shown in Fig. S2(a). The results are very similar to the
CVT sample. The 10 K curve also shows a kink around 0.2 eV. It also has a peak around 0.6 eV and sharp Drude and phonon
peaks at low temperature. In Fig. S2 (b), we show the 10 K conductivity (blue) and the remainder after subtracting single
sharp Drude (green) and four sharp phonon (gray) contributions. The remaining conductivity spectrum is shown in red and is
also shown in Fig. 5 in the main text (black).

In Fig. S3, we show the typical Hall resistivity data on a CVT-grown and a flux-grown CoSi at 2 K. The linear negative
Hall resistivity shows the dominating high-mobility electrons from the pocket at the R point. The carrier density is 2.1 × 10 20

cm−3 and 2.8 × 10 20 cm−3 for the CVT-grown and flux-grown samples, respectively. The mobility is ≈ 2,000 cm2/Vs for the
CVT sample while it is ≈ 6,700 cm2/Vs for the flux-grown sample as one could see some quantum oscillations at high field in
the latter sample. The residual resistivity ratio (RRR) for these two samples are 10 and 34 respectively. Note that these two
samples are different from those measured by optical conductivity.

As shown in the inset of Fig. 4(a) of the main text, the RRR in the two samples measured by optical conductivity is ∼ 10,
while it was 1.5 in previous studies (3, 4). While the room temperature resistivity is similar, the low-temperature value in our
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Fig. S2. (a) Temperature-dependent optical conductivity spectra σ1(ω) of a flux-grown CoSi (111) sample. (b) Optical conductivity of CoSi at 10 K (blue); thin solid lines
represent fit contributions of the Drude term (green) and phonon modes (grey), as well as the rest of the interband contributions to σ1(ω) (red).
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Fig. S3. Hall resistivity data on a CVT-grown and a flux-grown CoSi at 2 K.

sample is usually one order of magnitude smaller than previous ones (3, 4). We also observe much sharper phonon peaks in our
crystal, which most likely indicates much better crystal quality in terms of lower carrier density and higher mobility. The onset
of interband excitations in our samples is around 20 meV while it was 125 meV in previous studies (3, 4), which is consistent
with lower chemical potential (Pauli-blocking energy) in our samples.

Appendix B: Optical conductivity formula

The complex optical conductivity σ(ω) is defined through

ja(ω) = σab(ω)Eb(ω), [1]

where the superscripts a and b represent Cartesian directions, j(ω) is the Fourier component of j(t) =
∑

ω
j(ω)e−iωt, and E(ω)

is the Fourier component of E(t) =
∑

ω
E(ω)e−iωt. Using linear response theory, the complex optical conductivity is expressed

as
σab(ω) = ie2~

∑
m 6=n

∫
d3k
8π3

fnm
Enm

vanmv
b
mn

Enm − ~ω + iη
, [2]

where fnm(k) = fn(k) − fm(k) is the Fermi-Dirac occupation difference between the nth and mth band at k, Enm(k) =
En(k)− Em(k) is the band energy difference between these two bands, vanm =< nk|va|mk > is the velocity matrix element,
and η accounts phenomenologically for disorder-related broadening.

The real part of the complex linear conductivity, which we refer to as the linear conductivity in this paper, is

σab(ω) = −πe2~
∑
m 6=n

∫
d3k
8π3

fnm
Enm

vanmv
b
mnδ(Enm − ~ω). [3]
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Fig. S4. (a) The band structure calculated from first-principles calculations without SOC; (b) The band structure calculated from the Wannier tight-binding model without SOC.
(c) The band structure calculated from first-principles calculations with SOC. (d) The band structure calculated from Wannier tight-binding model with SOC. (e) Comparison
between the conductivity calculated from first-principles calculations with non-SOC bands and that from Wannier tight-binding model; (f) Comparison between the conductivity
calculated from first-principles calculations with SOC bands and that from the Wannier tight-binding model.

This expression is symmetric under exchange m↔ n if a = b. Given any positive ~ω, the delta function will be nonzero only
when Enm > 0, or n > m, so the summation over bands where m 6= n could be safely replaced by the summation where
n ∈ unocc and m ∈ occ, where unocc and occ refer to unoccupied and occupied states respectively. The conductivity is also
symmetric under the exchange ω ↔ −ω. Note that, when computing the optical conductivity from non-SOC bands, the
conductivity should be multiplied by a factor of 2 to account for the spin degeneracy of the bands.

Appendix C: Computational details of first-principles calculations

We performed first-principles density functional theory (DFT) calculations in the software package of Quantum Espresso, with
norm-conserving pseudopotentials generated from the OPIUM package. We chose the kinetic energy cutoff for th wavefunctions
to be 90 Ry, and we used an 8× 8× 8 k-point sampling grid for the crystal structure and band structure calculations. The
relaxed lattice constants of CoSi are a = 4.485 Å.

Next, we used the software package Wannier90 to construct a tight-binding model in the basis of maximally-localized
Wannier functions, fitted to the first-principles calculation results. To construct this model, we chose the initial projection
functions to be s- and d-orbitals of Co, and s- and p-orbitals of Si; the converged maximally-localized Wannier functions that
span the Bloch state valence manifold are well-localized in real space. The model can describe the electronic bands up to 1.5 eV
above the Fermi level accurately, allowing us to calculate the conductivity accurately up to that energy scale. The comparison
between the bands obtained from first-principles calculations and from this tight-binding model is shown in Fig. S4 (a-d). Here,
we also calculated the conductivity with different smearing width shown in Fig. S5. As the smearing width increases, the dip
around 0.25 eV get smeared out and the peak around 0.6 eV gets broadened.
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Fig. S5. The optical conductivity calculated from the Wannier TB model (w SOC) with different smearing width and the same number of 500× 500× 500 k-points

We calculate the conductivity from DFT directly and from the solutions of the tight-binding model, and these are compared
in Fig. S4 (e-f). In both calculations, to achieve faster convergence, the delta function δ(Enm − ~ω) in Eq. 3 is replaced by a
broadened delta function δ̃(Enm − ~ω), expressed in the form of Gaussian function

G(Emn, ~ω, σ) = 1√
πσ

e−(Emn−~ω
σ

)2
[4]

where σ, the width of the function, represents the carrier lifetime in materials. Since one of our primary goals is to focus on the
slope of the linear conductivity at low frequency, which is controlled by the slope of the dispersing band of the spin-1 three-fold
degenerate node at Γ, we choose carefully the size of the k-point sampling and the smearing width σ such that the Gaussian
function can capture the energy change between adjacent k-points. In other words, we choose dE

dk
≈ ∆E

∆k , where
dE
dk

is the slope
of the dispersing bands around Γ, which, in our case, is 1.231 eV·Å, and ∆k is the distance between adjacent k-points in a
chosen k-point grid. For example, if we use a 150× 150× 150 k-point grid to calculate the optical conductivity, the smearing
width is chosen to be σ = 12 meV, which are used in Fig. S4 (e-f) for the DFT and Wannier tight-binding calculation. In the
main text, we used 500× 500× 500 k-point grid and σ = 5 meV for the Wannier tight-binding calculation. We also perform a
calculation with a Gaussian broadening of 1.2 meV and 3 meV, and the latter is the experimental Drude peak width at 10 K,
and the results with four different broadening (1.2 meV, 3 meV, 5 meV and 12 meV) overlaps with each other. Note that 3 meV
is the low-temperature Drude peak width in both samples, which is a reasonable estimate of the broadening.

The calculations of the velocity matrix elements in Quantum Espresso is implemented through vanm = panm/m0, where m0 is
the electron mass and panm is the momentum matrix element. For the tight-binding model from Wannier90, the velocity matrix
elements are calculated from < nk|v|mk >= − i

~ (Emk−Enk)Anm(k), where the Berry connection is Anm(k) =< nk|i∇k|mk >.

Appendix D: Velocity matrix elements and momentum-resolved contribution

Along the Γ− R −M lines, the contributions to the peak at 0.62 eV in the optical conductivity originate mainly from the
R −M line, as can be seen from the main text. This can be further analyzed by focusing on the velocity matrix elements
(Fig. S6(a)) and momentum-resolved JDOS (Fig. S6(b)) individually. As can be seen from Fig. S6, the magnitude of the
velocity matrix elements are comparable on both lines, but the JDOS is much larger on the R−M line than on the Γ−R line.
This suggests that the energy difference between the bands along the R −M line are much closer to 0.62 eV, which makes
them contribute more to the peak at 0.62 eV in the conductivity.

Appendix E: Contributions of spin-orbit-split bands along the R − M line

When turning on SOC, a peak at around 0.011 eV appears in the calculated optical conductivity, as shown in Fig. S7(a). This
peak originates from the spin-orbit-split bands along the R−M high-symmetry line, as can be seen in Fig. S7(b). Without
SOC, these bands are degenerate in energy; since the pair of bands along the R−M line crosses the Fermi level, transitions
are enabled at k-points where one band is below the Fermi level and the other is above EF . The transition energy, or the
position of the peak, indicates the SOC strength of CoSi.

Note that when calculating the peak, the smearing width σ has to be much smaller than the photon energy step; otherwise
the peak will lead to nonzero conductivity at ~ω = 0 eV. In the main text and this section, we used the smearing width
σ = 0.0012 eV and the energy step ∆(~ω) = 0.005 eV, and correspondingly a very dense kpoint sampling scheme, in order to
show the position of the peak. In Appendix G, we used the smearing width σ = 0.012 eV.
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Fig. S7. (a) The calculated optical conductivity from SOC-split bands. (b) The calculated band structure (including SOC) along the R−M high-symmetry line of CoSi.

Appendix F: Linear Models

The low-energy Hamiltonian without SOC, describing the spin-1 fermion node at Γ is

H = E0Î3×3 + ~vF

( 0 ikx −iky
−ikx 0 ikz
iky −ikz 0

)
, [5]

where the parameter E0 = Enode −Ef = 0.0222 eV is the energy difference between the node and Fermi energy, and vF = 1.231
eV·Å is the Fermi velocity. The fitted band structures along M − Γ−R high-symmetry lines are shown in Fig. S8 (a).

The low-energy Hamiltonian with SOC, describing the spin- 3
2 and spin- 1

2 node at Γ, is

H = E0Î6×6 + ε∆̂ + λ1D1 · k + λ2D2 · k + λ3D3 · k + λ4D4 · k [6]

where Di · k = Dixkx +Diyky +Dizkz (i = 1, 2, 3, 4), and

∆̂ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

 ,
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The fitted parameters are shown in Table S1, and the fitted band structures along M − Γ − R high-symmetry lines are
shown in Fig. S8 (b).

By using the band structure in Fig. S8 (a) and (b), the calculated conductivity with a 12 meV broadening is shown in
Fig. S9.

E0 (meV) ε (meV) λ1 (eV Å) λ2 (eV Å) λ3 (eV Å) λ4 (eV Å)

43.7 18.4 0.7904 -0.0052 -0.0222 0.0219

Table S1. The fitted parameters of the tight-binding model with SOC

Appendix G: Four-band tight-binding model

Following Ref. (5), we have constructed a four-band tight-binding model for CoSi that is consistent with its crystal symmetry
to describe the closest four energy bands to the Fermi level of this material. In general, this model can describe any material in
space group 198, and without spin-orbit coupling it is defined through three material-dependent parameters: v1, vp, and v2. In
addition to these paramaters (5) we incorporate the orbital embedding as described in Appendix F of Ref. (6). The orbital
embedding x describes the position (or embedding) of orbitals in real space. It enters as a momentum-dependent unitary
transformation (7), leaving the band structure unaltered, but modifying its eigenfunctions and, as a result, the predicted optical
conductivity.

To describe CoSi specifically, we fix xCoSi = 0.3865, as determined by crystallographic databases, and find v1, vp, and v2 by
fitting the tight-binding spectrum to the DFT bands. To capture the separation in energy between the multi-fold nodes at
Γ and R, we fix it to match that found by DFT, which equals 210 meV. By expanding the Hamiltonian to linear order in
momentum around Γ and R, we see that the parameter vp sets the Fermi velocity of the three-fold and double Weyl fermion at
the Γ and R points to vΓ

F = vp/2 and vΓ
R = vp/(2

√
3), respectively (8). To set the right energy scale in the tight-binding model

we add a constant energy shift of E0 = 0.551 eV, H = H198(v1, vp, v2;x) + (E0 − µ)I4×4. All chemical potentials are measured
with respect to this energy shift.
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Fig. S10. (a) Band structure of CoSi obtained using a four-band tight-binding model with v1 = 1.29, v2 = 0.25 and vp = 0.55 compared to DFT bands (dotted grey). Fermi
levels for different chemical potentials are marked as horizontal dashed lines. (b) Optical conductivity for the chemical potentials shown in (a) with 0 meV broadening. For
reference we show as a solid line the optical conductivity of a threefold fermion σ3f = ω

3πvF
with vF = vp/2. (c) Optical conductivity at two fixed chemical potentials, one

above and one below the Γ node, calculated with a finite broadening of 12 meV.
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Fig. S11. Same as Fig. S10 with vp = 0.41. (a) Band structure of CoSi obtained using a four-band tight-binding model with v1 = 1.29, v2 = 0.25 and vp = 0.41
compared to DFT bands (dotted grey). Fermi levels for different chemical potentials are marked as horizontal dashed lines. (b) Optical conductivity at the chemical potentials
in (a). For reference, we show as a solid line the optical conductivity of a threefold fermion σ3f = ω

3πvF
with vF = vp/2. (c) Optical conductivity at two fixed chemical

potentials, one above and one below the Γ node calculated with a finite broadening of 12 meV.

It is illustrative then to compare two different fits, one that matches well the Fermi velocity near the Γ point, and a second
one to match the Fermi velocity at the R point. For vp = 0.55, we fit the Fermi velocity of the bands near the Γ point (see
Fig. S10 (a)). Upon closer inspection, we find that it provides a better description of the upper band of the three-fold crossing
at the Γ point than that of the middle and lower bands. For vp = 0.41, we fit to the Fermi velocity of the bands near the R
point (see Fig. S11 (a)). Despite being a good fit for the R point, we observe this to be a fair description also of the lower
and middle bands at the Γ point away from the Γ node. For both fits, we obtain v1 = 1.29 and v2 = 0.25 for the remaining
tight-binding parameters.

In Fig. S10 and Fig. S11 (b) we compare the optical conductivities obtained for different chemical potentials crossing
the node with 0 meV broadening. The (c) panels show the optical conductivity for selected chemical potentials and with a
finite phenomenological Lorentzian disorder broadening of 12 meV. For both values of vp, we find that a chemical potential
that crosses the bands below the Γ node results in a peak and dip structure. In the case of vp = 0.55, which amounts to
vF = 1.23 eV·Å, the conductivity has an increasing trend when lowering the chemical potential, which agrees well with the
trend observed in Fig. S12 in Appendix H. The curve with vp = 0.55, µ = −39 meV shown in Fig. S10(c) falls closest to the
Wannier tight-binding calculation.

It is interesting to note that although a good agreement between the four-band tight-binding model and the flux sample
data is found for vp = 0.41 with the chemical potential above the node, and a 12 meV broadening (Fig. S11 (c)), this value of
the chemical potential does not agree with the rest of our observations. As discussed at length in this appendix and in the
main text, from transport results to ab-initio calculations we find that CoSi is a compensated semimetal with a hole pocket
at the Γ, implying that the chemical potential in the sample is below the node. In this case, the curve with µ = −39 meV
vp = 0.55 in Fig. S10 (c) results in the best fit to the data and first-principles calculations.

Appendix H: The effect of chemical potential on the calculated conductivity in the Wannier tight-binding models

The chemical potential in real materials could be different from that obtained in DFT, due to extrinsic effects such as
the presence of impurities. Therefore, we have calculated the optical conductivity with different chemical potentials. The
conductivity calculated without SOC coupling is shown in Fig. S12. Under the condition that the chosen chemical potential
is lower than the flat middle band near the Γ point, transitions will always occur between the lower band and the middle
band when the energy of the incoming photon is small (< 0.1 eV), and occur near the R point when the energy is relatively
large (> 0.2 eV). Therefore, changing the chemical potential will influence the position and the shape of the dip structure
(σ1(ω ≈ 0.25 eV)) in two ways. Firstly, as the chemical potential decreases, more transitions could occur between the lower
band and the middle band, and this would lead to an increase in conductivity at the downward part of the dip structure.
Secondly, more transitions could also occur near the R point due to the decrease in chemical potential, so it is also expected
that the upward region of the dip structure will increase. Combining these two results, decreasing the Fermi level will tend to
flatten (and perhaps eventually remove) the dip structure.

When turning on SOC, the conductivity calculated with different chemical potentials are shown in Fig. S12. The conclusions
drawn from the non-SOC case can also be applied here; namely, decreasing the chemical potential will smooth the dip structure.
Furthermore, we studied the case where the chemical potential is placed between the middle band pair (the purple curve in
Fig. S12 (c)). In this case, the number of transitions between the lower band pair and the middle band pair is reduced, which
leads to a decrease in the lower-frequency region. However, the transitions which occur near the R point are almost unaffected,
which justifies the fact that the slope of the upward part of the dip structure is similar to that of the intrinsic Fermi level.

To summarize, assuming a lower chemical potential increases the conductivity below 0.2 eV, but still the agreement with the
CVT-grown sample is not as good as the agreement achieved for the flux-grown sample. This is an indication that either the
additional contribution in the CVT-grown (001) sample is not coming from inter-band transition or the origin of defects in
the CVT sample is slightly different. Another possible scenario is the additional contribution from surface states in the (001)
facets (9), which is absent in the (111) facets.
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Fig. S12. (a) The position of several chosen chemical potentials superimposed on the calculated band structure without SOC. (b) The optical conductivity calculated with each
of the chosen chemical potentials. (c, d) Same as (a, b), but incorporating SOC.
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