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Table S1: Alternative models and parameter estimates. A comparison of models considered is 18 

shown with median parameter values and followed by 95% credible intervals. Models are 19 

ordered by LOOIC (leave-one-out information criterion). Of the 153,664 models that could be 20 

constructed from the collection of variables we considered (each weather variable summarized 21 

by the minimum, mean, and maximum over a 14- or 7-day window) we considered those which 22 

were pertinent to our specific a priori hypotheses about the roles of temperature, humidity, and 23 

UV on growth of COVID-19 infections. Variable names are abbreviated as: Temp=temperature, 24 

UV=ultraviolet light, RH=relative humidity, AH=absolute humidity, PopDensity=Population 25 

density, PropOver60=proportion of population over26 
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 27 

Fig. S1. Posterior predicted probabilities of growth rate reflect weak trends with 28 

environment and high uncertainty in predictions. 29 
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 31 

Fig. S2. A map of the growth rate of COVID-19 cases during the worst week considered 32 

in this study (Jan 22, 2020 - April 13, 2020). 33 
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 36 

Fig. S3. A map of the date (first day of the week) of the mean growth rate of COVID-19 37 

cases during the worst week (as shown in Fig. S2) considered in this study (Jan 22, 2020 38 

- April 13, 2020).  39 
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 41 

Fig. S4. Semivariogram of the model residuals from the best model, used to confirm that there 42 

is no spatial dependence apparent.  43 
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 45 

Figure S5. Top, Mean and standard error of the mean of the detrended residuals of log COVID-46 

19 daily increase in new cases by day of week. Detrending was done to remove the temporal 47 

trend of increasing number of cases during the study period and was performed by calculating the 48 

residuals of a cubic spline generalized additive model of daily log COVID-19 increase by day. The 49 

Bayesian 95% credible intervals for Saturday through Wednesday did not overlap with Friday. 50 

Bottom, Plot of temporal autocorrelation (ACF) of same data by lag time in days reveals a strong 51 

weekly pattern as indicated by the significant peaks at t = 7 and t = 14 days. Lines that exceed 52 

the dotted line are significantly different from zero. We restricted the analysis to the period 53 

3/12/20 – 7/14/20 because preliminary analyses suggested high day-to-day variance due to early 54 

vagaries in reporting.    55 
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 56 

Figure S6. In the main text, we calculated the growth rate of COVID-19 infections over 1-week 57 

intervals in each polity separately, under the assumption that testing rates were, on average, 58 

roughly similar over the interval within a given polity. To relax this assumption and examine 59 

whether our results are robust to it, we built two additional variations on our best model (Fig. 2a, 60 

main text). In the first variation, we modeled the growth rates of the worst 21 1-day intervals and 61 

in the second variation we modeled the worst 7 3-day intervals. These models reflect relaxed 62 

assumptions of shorter time intervals over which testing rates were assumed to remain similar. 63 

Importantly, the coefficient values, and their relationships to one another are essentially 64 

unchanged compared to the weekly models in the main text, hence our predictions -which derive 65 

from these coefficient estimates - are robust to this variation. Not surprisingly, the median R^2 66 

was lower using 1-day intervals, reflecting additional noise likely driven by regional reporting 67 

patterns on particular days of the week (e.g., reporting is lowest on Mondays and highest on 68 

Fridays, globally).  69 
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 70 

Figure S7. Coefficient estimates from various ways of calculating weather covariates. Notably all 71 

show the same pattern as the model in the main text (Fig. 2a, and bottom left panel here) due to 72 

the strong temporal autocorrelation in weather. In the main text, we present weather covariates 73 

that were calculated as the (unweighted) average of the 14-day interval preceding a given 74 

COVID-19 growth rate estimate. This reflects the assumption that each day is equally important in 75 

determining growth rate. For example, if weather influences if an individual was infected on a 76 

given day, then each day is equally likely. One might also hypothesize that the weather is most 77 

important on a particular suite of days rather than across the entire interval, e.g., because the 78 

typical time for symptoms to emerge is 4-5 days, there may be a few days lag before an individual 79 

has access to testing, and results of tests can take multiple days to be reported. To examine 80 

sensitivity in different assumptions about the most important time interval for weather and 81 

different times when an individual might be infected, we built six additional variations on our best 82 

model (Fig. 2a). We calculated the same three weather covariates used in the best model (mean 83 

daily temperature, mean daily relative humidity, and maximum daily UV) over a 21-day lagged 84 

interval as Gaussian weighted averages centered on 6, 9, and 12 days (denoted m6, m9, m12 in 85 
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variable names in the figure), each with standard deviation of 2 or 4 (denoted v2 and v4 in 86 

variable names in the figure). All models using the Gaussian weighted variables showed the 87 

same basic patterns, because typically high temporal autocorrelation in weather means that all 88 

variants of weighting schemes will result in similar covariate values (see Fig. S8). It is interesting 89 

that higher explanatory power was found (R^2=0.37) when using the unweighted averages, 90 

perhaps indicating that some cumulative effect of weather, rather than instantaneous values on 91 

the day of infection, is important.  92 
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 94 

Figure S8. High correlations are apparent among different ways of calculating lagged weather 95 

covariates. Gaussian weighted variables showed the same basic patterns as the uniformly 96 

weiged 14-day lagged variables, because typically high temporal autocorrelation in weather at 97 

each location means that all variants of weighting schemes will result in similar covariate values. 98 

Variable names are coded as : Temp=mean daily temperature, rh=mean daily relative humidity, 99 

uv= maximum daily UV. Codes m6, m9, and m12 correspond to Gaussian weighting centered on 100 

days 6, 9, or 12 days before a recorded positive test. Codes v2 and v4 reflect the standard 101 

deviations of 2 or 4, respectively, for these weights. It is evident from these very high correlations 102 

within each variable block (7 x 7 blocks on the diagonal) that high temporal autocorrelation in 103 

weather means that variable assumptions about the timing of reporting and infection during a 14-104 

day interval does not exhibit sufficient variation to affect our results appreciably. Rather, the 105 

important weather variation is among polities, not among daily differences within polities. 106 
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