1 SUPPLEMENTARY INFORMATION

2

- Mosquito metabolomics reveal that dengue virus replication requires
 phospholipid changes via the remodeling cycle
- 5
- 6 **Contains:**
- 7 Figures S1-S13
- 8 Tables S1-S4
- 9 Legends from Datasets S1-S6

10

11 FIGURES

12

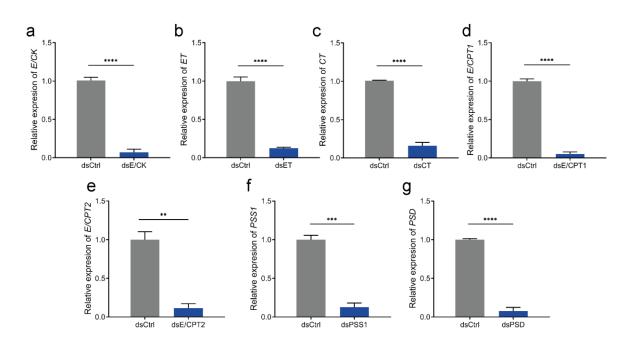


Fig S1. Validation of silencing for *de novo* pathway enzymes. Aag2 cells were transfected
with dsRNA against either (a) E/CK, (b) ET, (c) CT, (d) E/CPT1, (e) E/CPT2, (f) PSS1, (g) PSD

genes. DsRNA targeting LacZ (Ctrl) was used as control. At 72 h post transfection, mRNA from
the targeted genes was quantified by RT-qPCR. *Actin* expression was used for normalization.
Lines show mean ± s.e.m. from 6 biological repeats. **, p-value < 0.01; ***, p-value < 0.001;
****, p-value < 0.0001 as indicated by unpaired t-test. E/CK, ethanolamine/choline kinase; ET,
CTP:phosphoethanolamine cytidyltransferase; CT, CTP:phosphocholine cytidyltransferase;
E/CPT, DAG:CDP-ethanolamine/choline ethanolamine/cholinephosphotranferase; PSS1, PS
synthase; PSD, PS decarboxylase.

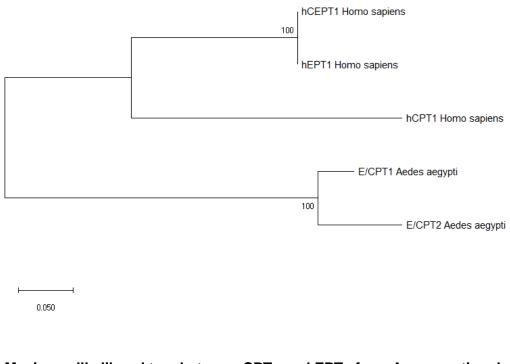


Fig S2. Maximum likelihood tree between CPTs and EPTs from Ae. aegypti and humans.

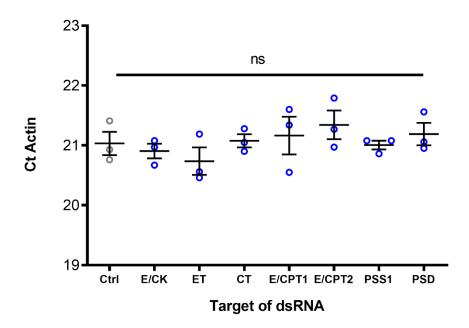


Fig S3. Cell survival measured by actin gene expression. Aag2 cells were transfected with 29 dsRNA against either E/CK, ET, CT, E/CPT1, E/CPT2, PSS1, PSD genes. DsRNA targeting 30 LacZ (Ctrl) was used as control. At 72 h post transfection, Actin expression was quantified. 31 32 Lines show mean ± s.e.m. from 3 biological repeats and compared by Dunnett's multiple comparisons test. E/CK, ethanolamine/choline kinase; ET, CTP:phosphoethanolamine 33 CT, CTP:phosphocholine cytidyltransferase; E/CPT, 34 cytidyltransferase; DAG:CDPethanolamine/choline ethanolamine/cholinephosphotranferase; PSS1, PS synthase; PSD, PS 35 36 decarboxylase.

37

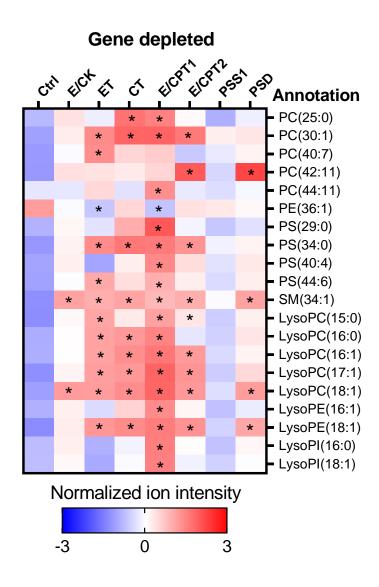
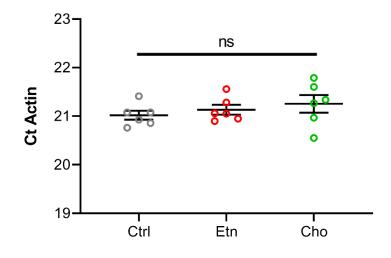



Fig S4. Ion intensity of regulated metabolites in DENV-infected cells after *de novo* pathway gene depletion. Normalized ion intensity was calculated after total ion chromatography normalization and auto scaling from three biological replicates. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 fold change| >1) were indicated with an asterisk. PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; LysoPI, lysophosphatidylinositol; SM, Sphingomyelin; Ctrl, Control dsRNA.

47

50

Fig S5. Cell survival measured by *Actin* gene expression in ethanolamine or choline supplemented cells. Aag2 cells were supplemented with either ethanolamine (Etn) or choline (Cho) and compared to standard growth media (Ctrl). At 24h post supplementation, *Actin* expression was quantified. Lines show mean \pm s.e.m. from 6 biological repeats and compared by Dunnett's multiple comparison test.

56

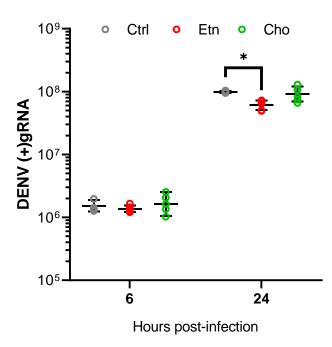


Fig S6. Impact of ethanolamine and choline supplementations on DENV replication after infection at MOI 5. Aag2 cells were supplemented with either ethanolamine (Etn) or choline (Cho) and compared to standard growth media (control). At 24h post supplementation, cells were infected with DENV at MOI 5. Cellular DENV (+)gRNA was quantified at 6 and 24 hpi. Lines show geometric mean ± 95% CI from 6 biological repeats. * p-value < 0.05, as determined by Dunnett's multiple comparisons test.

64

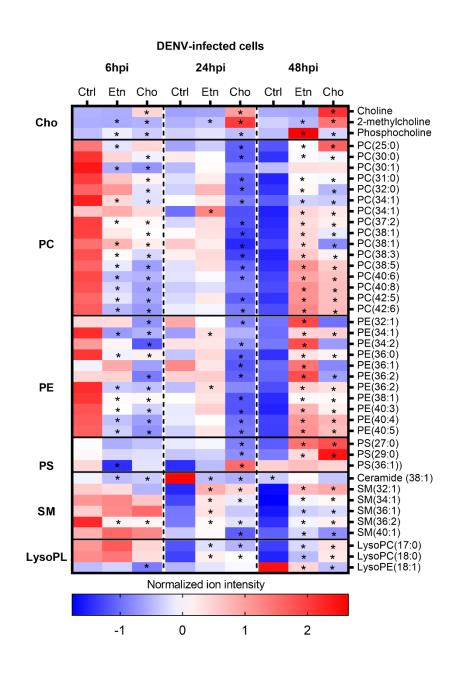
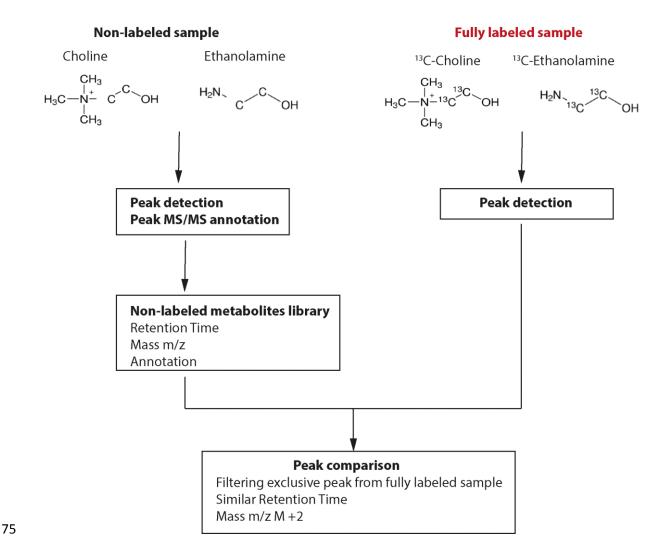
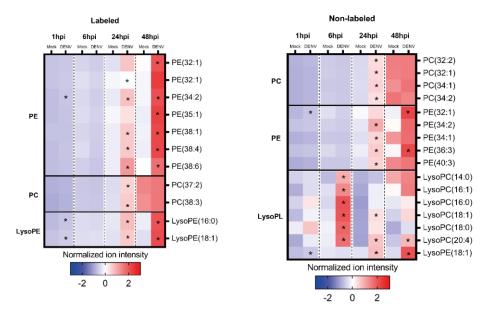
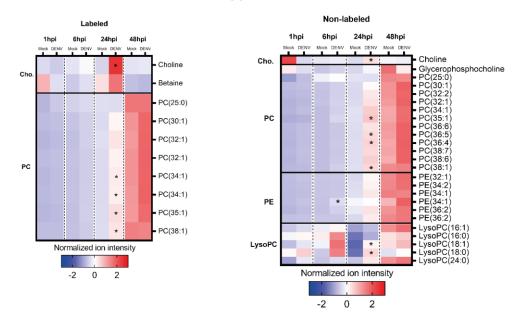




Fig S7. Ion intensity of regulated metabolites in choline or ethanolamine supplemented cells infected with DENV. Normalized ion intensity was calculated after total ion chromatography normalization and auto scaling from three biological replicates. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 fold change| >1) were indicated with an asterisk. Cho, choline; Etn, Ethanolamine; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; LysoPL, lysophospholipid LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; SM, Sphingomyelin;

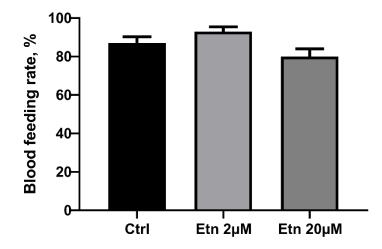
73



- 76 **Fig S8. Scheme to identify isotope labeled** ¹³**C ethanolamine or choline incorporation**
- 77 in phospholipids.

¹³C-Ethanolamine supplementation

¹³C-Choline supplementation


79

80 Fig S9. Ion intensity of regulated metabolites in choline or ethanolamine

81 supplemented cells infected with DENV. Normalized ion intensity was calculated after total

- ion chromatography normalization and auto scaling from three biological replicates.
- 83 Conditions with significantly regulated metabolites (p-value <0.05 and |log2 fold change| >1)
- 84 were indicated with an asterisk. Cho, choline; Etn, Ethanolamine; PE,

- 85 phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; LysoPL,
- 86 lysophospholipid LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine;
- 87 SM, Sphingomyelin;
- 88

90

Fig S10. Impact of Ethanolamine supplementation on mosquito blood feeding. Blood
feeding rate was calculated as the percentage of mosquitoes that imbibed blood over the total
number of mosquitoes that were offered the infectious blood meal. Lines represent percentage
+ s.e.

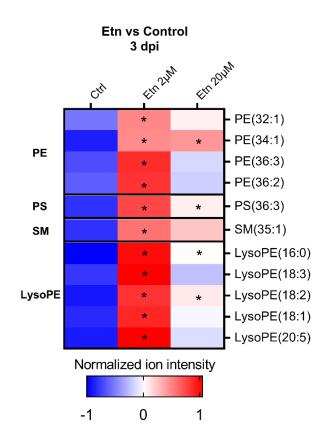


Fig S11. Ion intensity of regulated metabolites at 3 dpi on ethanolamine-supplemented 96 DENV-infectious blood. Normalized ion intensity was calculated after total ion 97 chromatography normalization and auto scaling from four biological replicates, each containing 98 99 10 mosquitoes. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 100 fold changel >1) were indicated with an asterisk. Etn, Ethanolamine; PE. phosphatidylethanolamine; PS, phosphatidylserine; LysoPE, lysophosphatidylethanolamine; 101 SM, Sphingomyelin; 102

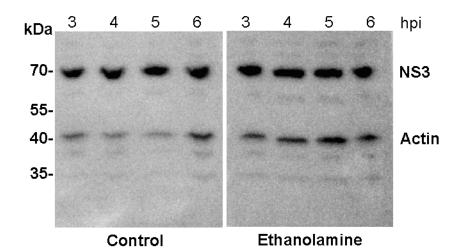


Fig S12. Immunoblot of DENV NS3 expressed in DENV-infected Aag2 cells at 3, 4, 5 and
6 hpi. 30µg of protein extracted from mosquito cells lysates (Aag2) were electrophoresed and

107 western blotted with anti-NS3 polyclonal antibody and detected by chemiluminescence. Anti-

108 beta actin was used as loading control.

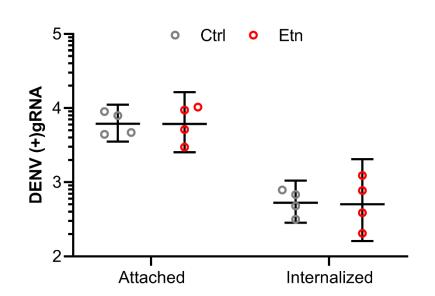


Fig S13. Attachment and internalization for DENV propagated in ethanolaminesupplemented cells. Aag2 cells were supplemented with either ethanolamine (Etn) or control media (Ctrl) for 24 h before infection with DENV. Viruses grown in Etn- or Ctrl-supplemented media were used to estimate attached and internalized (+)gRNA in Aag2 cells. Lines show geometric mean \pm 95% Cl from 4 biological repeats. Not significant as determined by unpaired t-test.

- 120
- 121
- 122
- 123
- 124

125 TABLES

Table S1. CDP-aminoalcohol motif comparison between human and Ae. Aegypti CPT 126 and EPT homologues. Human choline/ethanolaminephosphotransferase (hCEPT1), 127 128 cholinephosphotransferase (hCPT1) and ethanolaminephosphotransferase (hEPT1) are involved in the synthesize of PC and PE through the *de novo* PL pathway⁴²⁴³. hCEPT1 has the 129 130 dual ability to synthesize choline- and ethanolamine-containing phospholipids, while hCPT1 exclusively synthesizes PC and hEPT1 exclusively synthesizes PE. hCEPT1 and hEPT1 131 contain an identical CDP-alcohol phosphotransferase motif spanning residues 136-158 of 132 hCEPT1^{26,42}. hCPT1 differs in position 146 by a Cysteine instead of Serine, suggesting that 133 this difference is responsible for CDP-Choline specificity. Ae. aegypti contains 134 phosphotransferases (E/CPT1 and 2). Red indicates amino acids shared between E/CPT1-2 135 and hEPT1 and hCEPT1. Green indicates amino acids specific to hCPT1. Yellow indicates 136 137 amino acids specific to E/CPT1-2,

Species	Protein	RefSeq	Amino	CDP-alcohol
			acids	phosphotransferase motif
Ното	hCEPT1	NP_001317672.1	416	D G K Q A R R T N S <mark>S</mark> S P L G E L F D H G C D
sapiens				
Ното	hEPT1	NP_277040.1	406	D G K Q A R R T N S <mark>S</mark> S P L G E L F D H G C D
sapiens				
Ното	hCPT1	NP_064629.2	397	D G K Q A R R T N S <mark>C</mark> S P L G E L F D H G C D
sapiens				
Ae.	E/CPT1	AAEL014395	378	D G K Q A R R T N S <mark>S T</mark> P L G E L F D H G C D
aegypti				
Ae.	E/CPT2	AAEL011841	367	D G K Q A R R T N S <mark>S T</mark> P L G E L F D H G C D
aegypti				

- 140 Table S2. ¹³C isotope-labeled phospholipids after 24h supplementation of ¹³C-
- 141 ethanolamine or ¹³C-choline in mock-infected Aag2 cells.

	¹³ C fully labeled		Non-labeled		
Supplementation	RT	Mass m/z	Annotation	RT	Mass m/z
Ethanolamine	2.976	692.5139	PE(18:1(9Z)/14:0)	2.939	690.5084
Ethanolamine	2.842	718.5323	PE(16:0/18:2(9Z,12Z))	2.895	716.5224
Ethanolamine	3.155	720.5444	PE(18:1(9Z)/16:0)	3.229	718.5375
Ethanolamine	2.897	720.5446	PE(18:1(9Z)/16:0)	2.944	718.5377
Ethanolamine	6.446	744.5445	PE(16:0/20:3(8Z,11Z,14Z))	6.499	742.5374
Choline	11.184	106.1078	Choline	11.167	104.1067
Choline	7.634	668.4445	PC(16:0/9:0(COOH))	7.635	666.4341
Choline	6.527	706.5334	PC(14:0/16:1(9Z))	6.514	704.5219
Choline	6.503	734.5647	PC(14:0/18:1(11Z))	6.501	732.5535

Table S3. Primers for dsRNA synthesis.

Gene name	Gene code	Fragment size	Forward primer	Reverse primer
E/CK	AAEL009765	301	GGCTTAGGGGATCGAGAGAC	GTCATCGTTGGCGTTATTGTT
СТ	AAEL011564	305	CCGGTACGGTTGTACGGA	CGCCTCAAGGTTTCGATTTA
E/CPT1	AAEL014395	395	ATCATCGCGAATGCAATTTT	CAGCTGTAGGGCATGGACTT

E/CPT2	AAEL011841	312	GACCCTGTTCTACTGTGCCC	AACAGGAACGGTATGATGGG
ET	AAEL005651	313	ACGGAGCTCGGAGGCTTACT	TCGTCAACCCATTTAATGCC
PSD	AAEL010223	314	GGTCTGTACTCGACCGCTTT	GCATTGTCGGGTGATTTCTT
PSS	AAEL008393	337	GTGGACGATATTTCGCTGGA	TAAAATTCCGTAACGTGGGG
LacZ	/	370	TACCCGTAGGTAGTCACGCA	TACGATGCGCCCATCTACAC

147 Table S4. Primers for qPCR.

Gene	Gene code	Forward primer	Reverse primer	
name				
E/CK	AAEL009765	GGCTTAGGGGATCGAGAGAC	GTCATCGTTGGCGTTATTGTT	
СТ	AAEL011564	CCGGTACGGTTGTACGGA	CGCCTCAAGGTTTCGATTTA	
E/CPT1	AAEL014395	ATCATCGCGAATGCAATTTT	CAGCTGTAGGGCATGGACTT	
E/CPT2	AAEL011841	GACCCTGTTCTACTGTGCCC	AACAGGAACGGTATGATGGG	
ET	AAEL005651	ACGGAGCTCGGAGGCTTACT	TCGTCAACCCATTTAATGCC	
PSD	AAEL010223	GGTCTGTACTCGACCGCTTT	GCATTGTCGGGTGATTTCTT	
PSS	AAEL008393	GTGGACGATATTTCGCTGGA	TAAAATTCCGTAACGTGGGG	
Actin	AAEL011197	GAACACCCAGTCCTGCTGACA	TGCGTCATCTTCTCACGGTTAG	

148

149

150

151 **DATASETS**

152 Dataset S1. Metabolites detected upon gene depletion of de novo PL pathways in DENV-

153 infected cells at 48 hpi. Details of the detected compounds: m/z, retention time (Rt in min),

154 MS/MS spectrum fragmentation and intensity, adducts ion name, regulation of compounds (p-

value < 0.05; $|\log 2 \text{ fold change}| \ge 1$) with dsRNA as compared to dsControl and annotation

156 classes (3 rank) with MS-Finder.

Dataset S2. Metabolites detected upon ethanolamine or choline supplementation before infection. Details of the detected compounds: m/z, retention time (Rt in min), MS/MS spectrum fragmentation and intensity, adducts ion name, regulation of compounds (p-value < 0.05; $|\log 2$ fold change| \geq 1) with Etn or Cho supplementation as compared to Control and annotation classes (3 rank) with MS-Finder.

164

Dataset S3. Metabolites detected upon ethanolamine and choline supplementations in DENV-infected cells at 6, 24 and 48 hpi. Details of the detected compounds: m/z, retention time (Rt in min), MS/MS spectrum fragmentation and intensity, adducts ion name, regulation of compounds (p-value < 0.05; $|\log 2$ fold change| \geq 1) with Etn or Cho supplementation as compared to Control at 6, 24 and 48 hpi and annotation classes (3 rank) with MS-Finder.

170

Dataset S4. Non-labeled phospholipids after 24h supplementation of labeled ethanolamine or choline in mock-infected cells. The two tabs contains details of the detected compounds in Etn or Cho supplemented cells: m/z, retention time (Rt in min), MS/MS spectrum fragmentation and intensity, adducts ion name, average ion intensity (TIC normalization) at 24h post-supplementation and annotation classes (3 rank) with MS-Finder.

176

Dataset S5. Labeled and non-labeled metabolites detected upon ¹³C-ethanolamine or ¹³C-choline supplementations in DENV-infected cells at 1, 6, 24 and 48 hpi. The four tabs contains details of the detected compounds in ¹³C-Etn or ¹³C-Cho supplemented cells and in ¹²C-Etn or ¹²C-Cho supplemented cells for the generation of the library: m/z, retention time (Rt in min), MS/MS spectrum fragmentation and intensity, adducts ion name, regulation of compounds (p-value < 0.05; |log2 fold change| \geq 1) with ¹³C-Etn or ¹³C-Cho supplementation

as compared to Control at 1, 6, 24 and 48 hpi, average ion intensity (TIC normalization) in
 Mock or DENV condition at 1, 6, 24 or 48 hpi for ¹²C-Etn or ¹²C-Cho supplemented cells and
 annotation classes (3 rank) with MS-Finder.

186

187Dataset S6. Metabolites detected following ethanolamine blood supplementation in188DENV-infected mosquitoes at 3 dpi. Details of the detected compounds: m/z, retention time189(Rt in min), MS/MS spectrum fragmentation and intensity, adducts ion name, regulation of190compounds (p-value < 0.05; |log2 fold change| \geq 1) with 2µM or 20µM Etn supplementation as191compared to Control at 3 dpi and annotation classes (3 rank) with MS-Finder.