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We utilize dissipative particle dynamics (DPD) to model microgel suspensions. DPD is a mesoscale 
particle-based method in which beads represent clusters of molecules and interact via soft and pairwise 
potentials (1). In DPD, three types of forces act between a given bead 𝑖 and each of its neighbors 𝑗 within 

a cutoff radius 𝑟𝐶. The total interaction force 𝑭 = ∑ (𝑭𝑖𝑗
𝐶 + 𝑭𝑖𝑗

𝐷 + 𝑭𝑖𝑗
𝑅 )𝑗≠𝑖 , where, 𝑭𝑖𝑗

𝐶 = 𝑎𝑖𝑗  𝑤(𝑟𝑖𝑗) 𝒓̂𝑖𝑗 is a 

conservative repulsive force accounting for the excluded volume interaction between beads, 𝑎𝑖𝑗 is the 

strength of the repulsive potential between beads 𝑖 and 𝑗, 𝑭𝑖𝑗
𝐷 = −𝛾𝑤(𝑟𝑖𝑗)

2
(𝑟𝑖𝑗 ⋅ 𝑣𝑖𝑗) 𝒓̂𝑖𝑗 is a dissipative force, 

that mimics the effects of viscosity, and 𝑭𝑖𝑗
𝑅 = 𝜎𝑤(𝑟𝑖𝑗) 𝜉𝑖𝑗(𝛥𝑡)−1 2⁄  𝒓̂𝑖𝑗 is a random force, accounting for the 

presence of thermal fluctuations. According to the fluctuation-dissipation theorem, the dissipative and 

random forces are coupled by 𝜎2 = 2𝛾𝑘𝐵𝑇 (1). In addition, 𝑤(𝑟𝑖𝑗) = 1 − 𝑟̃𝑖𝑗 is a weighing function with 𝑟̃𝑖𝑗 =

𝑟𝑖𝑗   𝑟𝐶⁄  and 𝑟𝑖𝑗 = |𝒓𝑖 − 𝒓𝑗| is the center-to-center distance between beads 𝑖 and 𝑗. Moreover, 𝒓̂𝑖𝑗 =

(𝒓𝑖 − 𝒓𝑗)  𝑟𝑖𝑗⁄ ,  𝜉𝑖𝑗(𝛥𝑡) is a variable that is randomly drawn from a Gaussian distribution with zero mean and 

unit variance, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the absolute temperature. In our simulations, we set 
𝑟𝐶 = 1, 𝛾 = 4.5, 𝑘𝐵𝑇 = 1, and take the bead mass to be 𝑚 = 1 (2). The integration time step is set to 𝛥𝑡 =
0.01. We express all dimensional parameters in DPD units, unless indicated otherwise.  

Microgels are assembled from polymer chains with monomers interacting via bond, angle, and 
segmented-repulsive potentials. The bond potential energy, which sets the extensibility of a chain, is 

𝑈𝑏𝑜𝑛𝑑 = 𝑘𝑏𝑜𝑛𝑑(𝑟 − 𝑟𝑒𝑞)
2
, with 𝑘𝑏𝑜𝑛𝑑 the bond stiffness and 𝑟𝑒𝑞  the equilibrium separation length between 

monomer beads. The angle potential energy, which defines the persistence length of a chain, is given by 
𝑈𝑏𝑒𝑛𝑑 = 𝑘𝑏𝑒𝑛𝑑(1 + 𝑐𝑜𝑠 𝜃), with 𝑘𝑏𝑒𝑛𝑑 the bending stiffness and 𝜃 the angle between two monomer bonds 
sharing a common bead. The segmented repulsive potential prevents polymer chains from crossing each 

other. It is given by 𝑭𝑖𝑗
𝑆𝑅𝑃 = 𝐶(1 − 𝑟𝑚𝑖𝑛 𝑟𝑐𝑆𝑅𝑃

⁄ )𝒓̂𝑖𝑗, where 𝑟𝑐𝑆𝑅𝑃
 is the cutoff distance, 𝑟𝑚𝑖𝑛 is the minimum 

distance between two bonds, and 𝐶 is the strength of the potential (3). Following our previous work (1), we 

set 𝑟𝑐𝑆𝑅𝑃
= 0.5, 𝐶 = 100, 𝑘𝑏𝑜𝑛𝑑 = 35, 𝑟𝑒𝑞 = 0.6, and 𝑘𝑏𝑒𝑛𝑑 = 5. All simulations are carried out using the 

LAMMPS software (4).  

To evaluate microgel properties such as interpenetration, deformation, and shrinking/swelling 
within the suspension we create surface meshes around each microgel particle. Each surface mesh is 
created using the alpha-shape algorithm developed by Edelsbrunner and Mücke (5), which initially creates 
a Delaunay tessellation based on the coordinates of each DPD polymer particle. The specified probe radius 
or alpha parameter is used to determine whether the tessellated simplices are part of the final microgel 
mesh. The implementation procedure of this algorithm is outlined by Stukowski (6). The generated surface 
meshes are constructed using a probe with a radius of about 2/3 of the average crosslink spacing. Such 
probe size in our case corresponds to approximately 0.45 of the contour length of chains. The crosslinking 
distance and chain length are evaluated after the equilibration in good solvent. On the one hand, we find 
that the use of smaller probe radii can lead to disconnected and segmented meshes. On the other hand, a 
larger probe radius does not capture minute changes in volume. Surface meshing is done using the OVITO 
software (7), where internal voids in the mesh are removed (8, 9). Figure S1 shows a rendering of the 
surface mesh and the corresponding microgel particle. The surface mesh is semi-transparent and colored 
in blue.  
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We obtain the radial density profile by creating a series of radial shells (with thickness 𝑟 = 0.2 
distance units) around the particle center of mass which span from 𝑟 = 𝑟 to 𝑟 = 1.5𝑅; the values of 𝑅 are 
given in Table 1. By tracking the quantity of polymer in each shell we can determine how the density of 
each microgel varies radially. Radial density measurements are taken when the microgels are in equilibrium 
with the solvent. Radial density measurements for each particle are done every 5,000 timesteps over the 
course of 100,000 timesteps. The average radial density is shown in Figure S2 for microgels I-IV. As can 
be seen for microgels I and II with a uniform crosslink distribution, the radial density is constant up to 𝑟 ≈
3 4⁄ 𝑅. The fact that the polymer density does not remain constant for larger 𝑟, can be attributed to the 
random crosslink distribution coupled to the small microgel size, which is 6-10 mesh sizes in diameter; it is 
thus the loose character of the microgels that causes the polymer density to decrease near the gel-solvent 
interphase. In contrast, for microgels III and IV, which have a Gaussian crosslink distribution, the core 
region, where the density is constant, exists only up to approximately 𝑟 ≈ 1 5⁄ 𝑅. Hence, the corona region, 
corresponding to the region where the density clearly decreases, is roughly 3.5 times larger for microgels 
with a Gaussian crosslink distribution compared to microgels with a uniform crosslink distribution. All of 
them nevertheless exhibit the common core-corona structure found for many experimental microgels. 

The chain length distribution of microgels I-IV is shown in Figure S3. The figure shows that although 
the average chain length for microgels I, III, and IV is similar, microgel IV has a much wider chain length 
distribution, ~70% of mean, compared to microgels I and III, which have a distribution width that is ~14% 
of the mean. In addition, microgel II has a mean chain length of ~21; this is nearly twice the mean chain 
length of the other three microgels. The width of the chain length distribution for microgel II is similar to that 
of microgels I and III, and is also ~14% of the mean.  

We define the generalized packing fraction as 𝜁 = 𝜅𝑉𝑒𝑞 𝑉𝑠𝑢𝑠⁄ . Here 𝜅 is the number of microgel 

particles in the suspension, 𝑉𝑒𝑞 is the equilibrium volume of a standalone microgel particle at the given 

solvent condition, and 𝑉𝑠𝑢𝑠 is the volume of the suspension. We alter the generalized packing fraction by 

either changing 𝑉𝑠𝑢𝑠 (volumetric method) or 𝑉𝑒𝑞 (solvency method). The changes in 𝑉𝑠𝑢𝑠 are achieved in 

good solvent conditions via compression whereas the changes in 𝑉𝑒𝑞 are realized by varying the microgel-

solvent interactions. Swelling curves for microgels I-IV are shown in Figure S4. From the figure, we find that 
the lower critical solution value of 𝑎𝑃−𝑆, corresponding to the lower critical solution temperature of 
experimental microgels, is approximately 29. We also find that the swelling ratio is approximately 10.  

In the volumetric method, we initially replicate each microgel particle 𝜅 = 106 times in a cubic 

simulation box with dimensions 300 × 300 × 300 and fill the remaining space with solvent. Initially the 
microgel particles are frozen and the solvent is allowed to equilibrate around the microgels (100,000 
timesteps). After this, the microgel dynamics is turned on and the microgel particles are allowed to 
equilibrate with the external solvent (200,000 timesteps). To change 𝜁 we compress the computational box 

in 0.2 increments per 10,000 timesteps along each dimension, at constant 𝑎𝑃−𝑆. Once the required packing 
fraction is obtained (the target box sizes are listed in Table S1), the suspension is equilibrated so that the 
pressure is constant with time, which usually takes approximately 500,000 timesteps. Generally, the 
number of microgel particles in the suspension is set to 𝜅 = 106, except in two cases where to reduce 

computational costs 𝜅 was decreased (see Tables S1 and S2). In these cases, 𝜅 was decreased by 
removing microgel particles from the suspension and replacing them with extra solvent. For each of these 
cases the equilibration process again involved running the dynamics until the pressure in the suspension 
is constant with time. The total DPD bead density is always kept constant and equal to 𝜌 = 3 (1). 

For the solvency method, we keep the box size 𝑉𝑠𝑢𝑠 constant and change 𝑉𝑒𝑞 by varying the 

polymer-solvent repulsion parameter 𝑎𝑃−𝑆 in the range between 25 and 35. After changing 𝑎𝑃−𝑆 each 
suspension is equilibrated for approximately 500,000 timesteps, until the internal pressure in the 
suspension is constant with time. 

To measure the bulk modulus, we start from an equilibrated state and compress the simulation box 
5 times in 0.2% increments every 50,000 timesteps. The suspension bulk modulus is obtained as an 
average of these 5 measurements. The single-microgel bulk modulus 𝐾𝑝 is measured by placing the 

microgel inside a semi-permeable shell which restricts the polymer network but allows solvent to freely 
pass. By varying the radius of the shell, we compress the network mimicking changes in the osmotic 
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pressure, as outlined in our earlier work (1). The single-microgel modulus 𝐾𝑝 is measured at the average 

microgel volume in the suspension at the given solvency 𝑎𝑃−𝑆. This approach matches the experimental 
procedure in ref. (10). Figure S5 shows the behavior of the single-microgel modulus at approximate 
suspension conditions. As shown by the light and dark green triangles in the figure, the increases in 𝜁0 

cause the microgel bulk modulus to increase in good solvent. Meanwhile, for a fixed 𝜁0, microgel IV has the 

lowest 𝐾𝑃 in good solvent, most likely due to the large dangling loose chains near the microgel periphery, 
which are attributed to both the Gaussian crosslinking structure and the wide chain length distribution.  

To establish how our microgel model is capable of reproducing relevant mechanic and kinetic 
behavior of experimental microgels, we compare our model to experimentally validated theories. 
Specifically, we match the response of our microgels with the well-established theories of Flory-Rehner 
(11) and Tanaka (12), as shown in Figures S6 and S7, respectively. The fitting parameters associated with 
both theories are presented in Table S3. We emphasize that these theories are known to describe 
experimental behavior. We use the agreement between our simulations and the theories as a benchmark 
to affirm that our computational models properly capture relevant experimental behavior. We further note 
that these theories pertain to different aspects of microgel behavior: while the theory of Flory-Rehner 
describes the equilibrium swelling behavior, the theory of Tanaka describes swelling kinetics and thus 
pertains to the dynamic behavior. 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Surface mesh of an example DPD microgel particle. The mesh is colored in blue 

and is transparent. The microgel is shown in green. 
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 Figure S3. Chain length distribution for microgels I-IV. Microgels I, III, and IV have on average 

12 beads per chain. Meanwhile, microgel II has on average 21 beads per chain. The width of 

the chain length distribution for microgels I and III is nearly identical. Microgel IV has a much 

wider chain length distribution than the other 3 microgels. 

Figure S2. Radial density profiles for microgels I-IV. Microgels I and II have a uniform crosslink 

distribution and have an approximately constant crosslink density throughout the microgel 

domain. For these microgels the density decreases near the gel-solvent interphase. This can 

be attributed to the random distribution of crosslinking sites. For microgels III and IV, the radial 

density is constant only near the particle center, which then defines the microgel core. The 

corona region, where the density decreases, spans the range 1 5⁄ 𝑅 < 𝑟 < 𝑅. 
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Figure S4. Swelling curves for microgels I-IV. 

Figure S5. Single-microgel bulk modulus at the specified solvency and generalized packing 

fraction. The light blue semi-transparent region highlights the data which was used to 

normalize the suspension bulk moduli in the volumetric method. Microgel IV which has a wider 

chain length distribution is softer in the good solvent. In the bad solvent, all microgels reach a 

nearly identical deswollen state and, hence, attain similar bulk moduli. 
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Figure S6. Comparison of bulk modulus data with Flory-Rehner theory. The fits follow the 

procedure outlined in our previous work (1). Resulting fitting parameters for the bulk modulus 

fits are listed in Table S3. In all cases, the theoretical fits match the computational data well. 

Figure S7. Comparison of swelling kinetics for microgels I-IV with Tanaka’s theory. In these 

simulations, initially swollen microgels (𝑎𝑃−𝑆 = 25) are exposed to bad solvent (𝑎𝑃−𝑆 = 35) at 

time 𝑡 = 0. The values of 𝜏𝑐ℎ𝑎𝑟  are reported in Table S3. Close agreement is found between 

the theory and the simulation results. Note that the marks for different microgels overlap.  
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Table S1. Simulation box length 𝐿 (𝑉𝑠𝑢𝑠 = 𝐿3) for all suspensions in the volumetric method at which 

measurements are taken. The cells marked in green were also examined using 𝜅 = 16, 26, and 46. All 

other cells were studied with 𝜅 = 106. 
 

 Simulations 

 I (aP-S = 25) II (aP-S = 25) III (aP-S = 25) IV (aP-S = 25) 

  
B

o
x
 l
e
n

g
th

s
, 
L

 (
ζ)

 

300 (0.39) 
230 (0.15 0.25, 

0.43, 1.0) 
276 (0.68) 265 (0.62) 

276 (0.50) 210 (1.32) 266 (0.76) 
226 (0.15, 0.25, 

0.43, 1.0) 

264 (0.57) 190 (1.78) 257 (0.84) 180 (1.98) 

250 (0.68) 180 (2.09) 245 (0.97) 170 (2.35) 

224 (0.94) 160 (2.98) 233 (1.13) 160 (2.82) 

175 (1.96) 150 (3.61) 197 (1.87) 150 (3.42) 

155 (2.90) 139 (4.54) 173 (2.76) 140 (4.21) 

135 (4.27) 128 (5.81) 162 (3.37)   

125 (5.37)   149 (4.33)   

    137 (5.57)   
 

Table S2. Simulation box length 𝐿 (𝑉𝑠𝑢𝑠 = 𝐿3) for all suspensions in the solvency method at which 

measurements were taken. 

 

Simulations Box lengths, L (ζ) 

I (ζ0 ≈ 4.2) 135 (4.27, 3.52, 2.36, 1.05, 0.73, 0.61, 0.53, 0.49) 

II (ζ0 ≈ 4.2) 139 (4.54, 3.46, 2.39, 1.08, 0.69, 0.52, 0.47) 

III (ζ0 ≈ 4.2) 149 (4.33, 3.28, 2.43, 1.24, 0.75, 0.58, 0.53) 

IV (ζ0 ≈ 2.8) 161 (2.82, 2.58, 1.91, 0.79, 0.44, 0.34, 0.30) 

IV (ζ0 ≈ 4.2) 141 (4.21, 3.79, 2.84, 1.13, 0.66, 0.50, 0.46) 

 
Table S3. Fitting parameters for the bulk modulus and kinetics fits 

 

Microgel kbT / νs Ncνs / V0 χ0 χ1 χ2 𝜏𝑐ℎ𝑎𝑟  

I 2.15e-21 2.48E+22 0.5099 0.0496 0.5012 1200 

II 2.13e-21 2.50E+22 0.4979 0.0502 0.5021 1000 

III 2.50e-21 3.10E+22 0.5009 0.0497 0.5026 950 

IV 1.93e-21 2.69E+22 0.5148 0.05 0.4993 930 
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