Supplementary Information

Benzene-associated immunosuppression and chronic inflammation in humans: A

systematic review

Helen Guo, Stacy Ahn, Luoping Zhang*

Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, USA

*Corresponding author:

Luoping Zhang, PhD Division of Environmental Health Sciences School of Public Health 2121 Berkeley Way West, #5117 Berkeley, CA 94720-7360 Tel: (510) 643-5189 Fax: (510) 642-0427 Email: luoping@berkeley.edu

Table of Contents

Table S1 . The key characteristics of human carcinogens: evaluation of benzene	3
Table S2. Inclusion and exclusion criteria for study selection	4
Table S3. Detailed summary of human benzene studies with inflammatory outcomes	5
Table S4. Detailed summary of human benzene studies with immunosuppressive outcomes	11
Table S5 . Summary of additional studies identified from an updated search in July, 2020	27
Table S6. Major outcomes from benzene hematotoxicity studies in exposed people	29

Benzene-Induced Hematotoxicity Outcomes	
1. White blood cells	33
2. Platelets	
3. Red blood cells	34

Figure S1. Summary of observed chronic inflammation, immunosuppression, and hematotoxicity	
outcomes in association with benzene exposure	35

ences

Description

In the present systematic review, we utilized the ten key characteristics (KCs) of human carcinogens framework to identify and evaluate the mechanistic evidence for benzene, focusing on KC6: chronic inflammation and KC7: immunosuppression. The ten KCs are outlined in parallel with prior applications of the framework to benzene in **Supplementary Table 1**. We reviewed a total of *eighty-five* studies that reported on inflammatory or immunosuppressive effects in benzene-exposed populations. Supplementary Table 2 outlines our inclusion and exclusion criteria for study selection. Data extracted from 85 reviewed studies include the author, year published, country, study population and size, exposure assessment methods, level of exposure, and relevant outcomes. Detailed information for each individual study related to chronic inflammation (KC6) and immunosuppression (KC7) can be found in **Supplementary Tables 3 and 4**, respectively. An additional six studies identified from an updated search in July, 2020 are summarized in Supplementary Table 5. Additionally, a comprehensive summary of the hematotoxicity outcomes observed is detailed in **Supplementary** Table 6. Following the table, Benzene-Induced Hematotoxicity Outcomes is also described. These outcomes are detailed in the supplement rather than the main paper, since the hematotoxicity of benzene exposure has already been well-characterized in many prior studies. Finally, a summary of the major outcomes relating to chronic inflammation, immunosuppression, and hematotoxicity (overlapped with KC6 and KC7) can be found in **Supplementary Figure 1**.

Note: A comprehensive reference list for the supplement can be found at the end. All original studies reviewed (**Tables S3** and **S4**) are documented here due to the limited number of references we can cite in the main paper.

Abbreviations

AIDS	Acquired immunodeficiency syndrome
NK	Natural killer (cells)
RBC	Red blood cell
WBC	White blood cell

Table S1. The key characteristics of human carcinogens: evaluation of benzene. Modified from Smith *et al.*, 2016 (Table 1).[1]

			Benzene Evaluation				
Key	Characteristics	Relevant Evidence	Smith e <i>t al.</i> (2016)[1]	IARC (2018)[2]	Current Evaluation		
1	Is electrophilic or can be metabolically activated	Parent compound or metabolite with an electrophilic structure (e.g. epoxide, quinone, etc.), formation of DNA and protein adducts	Yes	Yes	N/A		
2	Is genotoxic	DNA damage (DNA strand breaks, DNA-protein cross-links, unscheduled DNA synthesis), intercalation, gene mutations, cytogenetic changes (e.g. chromosome aberrations, micronuclei)	Yes	Yes	N/A		
3	Alters DNA repair or causes genomic instability	Alterations of DNA replication or repair (e.g. topoisomerase II, base- excision or double-strand break repair)	Yes	Yes	N/A		
4	Induces epigenetic alterations	DNA methylation, histone modification, microRNAs	Yes	No	N/A		
5	Induces oxidative stress	Oxygen radicals, oxidative stress, oxidative damage to macromolecules (e.g. DNA, lipids)	Yes	Yes	N/A		
6	Induces chronic inflammation	Elevated WBCs, myeloperoxidase activity, altered cytokine and/or chemokine production	Νο	Νο	Suggestive		
7	ls immunosuppressive	Decreased immunosurveillance, immune system dysfunction	Yes	Yes	Yes		
8	Modulates receptor- mediated effects	Receptor in/activation (e.g. ER, PPAR, AhR) or modulation of endogenous ligands (including hormones)	Yes	Yes	N/A		
9	Causes immortalization	Inhibition of senescence, cell transformation	No	No	N/A		
10	Alters cell proliferation, cell death or nutrient supply	Increased proliferation, decreased apoptosis, changes in growth factors, energetics and signaling pathways related to cellular replication or cell-cycle control, angiogenesis	Yes	Yes	N/A		

Abbreviations: AhR, aryl hydrocarbon receptor; ER, estrogen receptor; IARC, International Agency for Research on Cancer; N/A, not applicable; PPAR, peroxisome proliferator-activated receptor; WBC, white blood cells.

	Types of Studies	Exposure	Outcomes
Inclusion Criteria	 Human studies that involve subjects of any age and any gender Experimental animal studies (mammals only). <i>In vitro</i> studies involving human cells 	 Any level of benzene exposure For <i>in vitro</i> studies: exposure to benzene or 6 major benzene metabolites: benzene oxide, HQ, CAT, BT, MA, SPMA. 	Only studies that report immunosuppressive or chronic inflammatory outcomes or biomarkers will be included.
Exclusion Criteria	 Any reviews Letters, editorials, commentaries Non-English language papers where reviewers don't have a means of translation Any full-text articles that are not retrievable by reviewers 	• Any studies that don't have any benzene exposure data or assessment	• Studies that do not record outcome data relevant to chronic inflammation or immunosuppression will be excluded.

Table S2. Inclusion and exclusion criteria for study selection.

Abbreviations: BT, 1,2,4-benzenetriol; CAT, catechol; HQ, hydroquinone; MA, E,E-muconic acid; SPMA, S-phenylmercapturic acid.

Ref #	Reference (Author, Year)	Study Type	Population	Subject # (N)	Location	Exposure Assessment	Exposure Level	Outcome	Results
[3]	Bogadi-Sare, 1997	Cross- sectional	Shoe factory workers	N=76; 49 exposed, 27 unexposed		General air sampling, BZ in blood (before work shift and in the middle of the working week), phenol in urine (before and end of the same working day)	General air sampling: 5.9 (1.9- 14.8) ppm BZ in blood: Exp: 0.005 mg/L Ctrl: 0.000 mg/L Phenol in pre-shift urine: Exp: 3.840 mg/gCr creatinine Ctrl: 2.197 mg/gCr Phenol in post-shift urine: Exp: 5.240 mg/gCr Ctrl: 2.759 mg/gCr	Hematological parameters: CBC, Hb, HCT, MCV, MCH, MCHC, reticulocytes, serum iron, ALP in neutrophils, and GLT ₅₀	↑ band neutrophils, ↑ MCV, ↓ Hb, ↓ MCHC ^b , ↑ GLT ₅₀ ^a , ↓ WBC ^a , ↓ segmented neutrophils ^a , ↓ lymphocytes ^a
[4]	Chen, 2019	Cross- sectional	Residents near a petrochemical complex	N=421; 240 exposed, 181 unexposed	China	Blood BZ levels	Mean Exp Level Non-smokers: Exp: 41 ng/L Ctrl: 15 ng/L Smokers: Exp: 49 ng/L Ctrl: 14 ng/L	Hematological parameters: WBCs, neutrophils, lymphocytes, monocytes, eosinophils, basophils, RBCs, Hb, HCT, MCV, MCHC, platelets	Correlated w/ t,t-MA: ↓ platelets, ↑ monocytes All exposed: ↓ neutrophil, ↓ RBC, ↓ Hb, ↓ platelet, ↑ monocytes, ↑ basophils
[5]	Doherty, 2017	Cross- sectional	Adult residents of U.S. Gulf Coast (oil spill workers)	N=406	U.S.A.	Blood BTEX concentration	Geometric Mean Exp: Tobacco Smoke Exp: 91 ng/L Tobacco Smoke- Unexp: 25 ng/L Ctrl: Tobacco Smoke- Exp: 188 ng/L Tobacco Smoke- Unexp: 22 ng/L	Hematological parameters: RBC, Hb, HCT, MCHC, RDW, platelets, neutrophils, lymphocytes, monocytes, eosinophils	Tobacco Smoke Unexp: ↓ Hb, ↓ MCHC; ↑ RDW Tobacco Smoke Exp: ↑ RBC, ↑ WBC ^b , ↑ MCV, ↑ MCHC, ↑ neutrophils ^b , ↑ lymphocytes ^b , ↑ monocytes ^a
[6]	Dutta, 2013	Cross- sectional	Premenopausal rural women	N=345; 196 biomass users, 149 petroleum gas users	India	Urinary t,t-MA levels (PM ₁₀ air measurements were also taken)	Exp : 6.4 ± 4.3 mg/L (p < 0.05) Ctrl : 1.1 ± 0.7 mg/L	Airway inflammation: IL-6, IL-8, TNF-α Sputum cytology Oxidative stress: ROS, SOD	Cellular count : ↑ total cell count ^b , ↑ neutrophils, ↑ eosinophils, ↑ lymphocytes, ↑ alveolar macrophages Inflammation : ↑ TNF-α ^b , ↑ IL-6 ^b , ↑ IL-8 ^b
[7]	Elango, 2013	Cross- sectional	Photocopier operators	N=124; 81 exposed, 43 unexposed	India	Air sampling of workplace (5 photocopy centers)	<1.0 ug/m³	Pulmonary function Hematological parameters Oxidative stress + inflammation: CRP, IL-8, LTB4, TBARS, FRAC, 8- isoprostane, CC-16, ICAM-1 and ECP	Hematological: ↑ HCT, ↑ MCV, ↑ RDW Oxidative-Inflammatory Status: ↑ serum protein, ↑ globulin, ↓ FRAC ^a , ↑ TBARS ^b , ↑ LTB4 ^b , ↑ ECP, ↑ IL-8 ^a

Table S3. Detailed summary of human benzene studies with inflammatory outcomes.

[8]	Fenga, 2016	Cross- sectional	Gas station workers	N=154; 91 exposed, 63 unexposed	Italy	Urinary t,t-MA levels	Exp: 0.89 ± 0.57 ug/ml Ctrl: 0.67 ±0.45 ug/ml	NF-kB, STAT3, p38-MAPK, SAPK./JNK signal transduction	↑ NF-kB, phospho-lkB-α proteins ^ь ↓ pSTAT3 ^ь
[9]	Forrest, 2005	Cross- sectional	Shoe factory workers	N=12; 6 highly exposed workers, 6 ctrls	China (Tianjin)	Personal passive monitoring	47.3 ± 24.3 ppm	Global gene expression	↑ CXCL16, ↑ ZNF33, ↓ JUN, ↓ PF4
[10]	Haro-Garcia, 2012	Cross- sectional	Paint company workers	N=54; 24 high exposed, 30 low exposed	Mexico	Personal BTX sampling, urinary SPMA levels	High: 14.4 (3.2-16.3) mg/m ³ TWA Low: 3.2 (1.6-15.4) mg/m ³ TWA High: 3.4 ± 1.8 umol/molCr Low: 2.4 ± 1.0 umol/molCr	Cytokine production : IL- 10, TNF-α, IL-12 production	↓TNF-α ^a , ↓ aggregate production of all three cytokines ^a
[11]	Hotz, 1998	Cross- sectional	Mechanics	N=307; 199 exposed, 108 unexposed		Questionnaire; general workplace sampling (TWA during whole workshift)	<1.14 ppm	Hematological parameters; IL-1α production	No significant change in IL- 1α production and in hematological parameters
[12]	Ibrahim, 2014	Cross- sectional	Ceramic factory workers	N=164; 81 exposed, 83 unexposed	Egypt	Urinary t,t-MA lévels	Exp: 0.22 ± 0.48 mg/gCr Ctrl: 0.043 ± 0.008 mg/gCr	Hematological parameters: WBCs, RBCs, Hb, HCT, MCV, MCH, MCHC	↓ WBC, ↓ RBCs, ↓ Hb [♭] , ↑ MCV ^a , ↓ platelets
[13]	Jorgensen, 2018	Cross- sectional	Tank workers	N=13; 8 exposed, 5 unexposed	Norway	Personal BTEX air monitoring (3 consecutive 12-h work shifts), BZ in blood, BZ in urine, urinary t,t- MA levels	Raw values Air: Exp: 0.21 ± 0.17 ppm Blood: Exp: 19.3 ± 12 nmol/L Ctrl: $0.9 \pm 0.2 \pm$ nmol/L Urine BZ: Exp: 71.3 ± 110 nmol/L Ctrl: 1.1 ± 0.8 nmol/L Urine t,t-MA: Exp: 4.2 ± 4.1 umol/L Ctrl: 2.6 ± 1.5 umol/L	Gene expression	↑ IL-6, ↓ IL-19; ↓ CLEC5, ↓ PRG2; ↑ ACSL1, ↑ IFNB1
[14]	Lehmann, 2001	Cohort	3 year old children	N=200	Germany	Indoor VOC exposure measured with bedroom air sampling	N/A	Prevalence of allergic sensitization; cytokine secretion profile of T cells	↑ percentage of IL-4 producing CD3+ T cells
[15]	Li, 2009a	Cross- sectional	Occupationally exposed workers	N=165; 138 exposed, 27 unexposed	China	Workplace air sampling or diagnosis of BZ poisoning	37.8 mg/m ³	TRECs levels	↓ TRECs, ↓ WBCs, ↓ Hb, ↓ platelets, ↓ RBCs

[16]	Liang, 2018	Cross- sectional	Petrochemical plant workers	N=1064; 532 exposed, 532 unexposed	China	General workplace air sampling (TWA)	Low exposure: 0.006 ppm High exposure: 0.035 ppm Ctrl: <0.006 ppm	Serum protein levels of PLG, PBP, ApoB100, hematological parameters	↑ in serum PLG levels (dose-response); no significant changes in serum PBP or ApoB100, ↑ RBC,
[17]	McHale, 2009	Cross- sectional	Shoe factory workers	N=16; 8 exposed, 8 unexposed	China (Tianjin)	Personal passive monitoring	47.3 ± 24.3 ppm	Global gene expression	↑ CXCL16, ↑ ZNF331, ↓ JUN, ↓ PF4
[18]	McHale, 2011	Cross- sectional	Clothes manufacturing workers	N=125; 83 exposed, 42 unexposed	China (Tianjin)	Individual air benzene measurements	>10 ppm, 5-10 ppm, <1 ppm, <<1 ppm	Global gene expression	↑ B-cell receptor signaling, Affected genes: SERPINB2, TNFAIP6, IL1A, KCNJ2, PTX3, F3, CD44, CCL20, ACSL1, PTGS2, CLEC5A, IL1RN, PRG2, SLC2A6, GPR132, PLAUR
[19]	Moro, 2015	Cross- sectional	Gas station attendants	N=88; 60 exposed, 28 unexposed	Brazil	Personal passive samplers, blood BTX levels, urinary t,t-MA levels	Exp: Air: 144.2 (58.1- 2207.5) ug/m ³ Urinary: 334 (190- 600) ug/gCr Unexp: Air: 42.0 (34.1-52.4) ug/m3 Urinary: 70.0 (50.0- 120.0) ug/gCr	Hematological parameters, ALA-D activity, CD80 + CD86 expression, IL-8	↓ ALA-D activity ^b , ↓ CD80 + CD86 expression ^a , ↑ IL-8 ^b , ↑ neutrophils
[20]	Pelallo-Martinez, 2014	Cross- sectional	Children living near petrochemical area	N=105; 46 Allende, 38 Mundo Nuevo, 21 Lopez Mateos (all exposed)	Mexico	Urinary t,t-MA levels	Mean (range) Allende: 388 (44- 1784) ug/gCr Mundo Nuevo: 363 (63-5521) ug/gCr Lopez Mateos: 369 (62-1414) ug/g Cr	Genotoxicity: DNA damage Hematological effects: WBC, Hb, HCT, RBC, platelets	Lopez Mateos: ↓ Hbª, ↓ HCTª, ↓ WBC, ↓ RBC
[21]	Qu, 2002	Cross- sectional	Factory workers (glue, shoe- making, sporting goods)	N=181; 130 exposed, 51 unexposed	China (Tianjin)	Individual passive monitoring	Median (range) = 3.2 (0.06-122) ppm daily	Blood parameters : RBC, platelets, WBC, neutrophils, lymphocytes, eosinophils, etc.	Exposure-dependent: $\downarrow RBC^{b}, \downarrow WBC^{b}, \downarrow$ neutrophils ^b
[22]	Ray, 2007	Cross- sectional	Petrol pump or automobile service workers	N=85; 25 petrol pump attendants, 25 automobile service station workers, 35 unexposed	India	Urinary t,t-MA levels	Exp: 2.72 ± 0.21 mg of t,t-MA/L Unexp:0.71 ± 0.11 mg/L	Hematological parameters and lymphocyte subsets	Hematological parameters: ↓ RBC, ↓ Hb, ↓ lymphocyte, ↓ platelets, ↑ MCV, ↑ eosinophils, ↑ monocytes, ↑ immature neutrophil, ↑ band cells, ↑ RBC aniso-poikilocytosis, ↑ target cells, ↑ giant platelets Lymphocyte subsets: ↓ CD4+, ↓ CD8+, ↓ CD19+ cells, ↑ CD16+56+ NK cells P-selectin expression on platelet surface: ↑ P- selectin expression

[23]	Rothman, 1996a	Cross- sectional	Occupational factory workers	N=88; 44 exposed, 44 unexposed	China	Organic vapor passive dosimetry badge (worn for a full workshift, 5 days during 1 or 2 weeks before phelobotomy), BZ urinary metabolites (t,t-MA, phenol, CAT, HQ)	Median 8-hr TWA = 31 ppm Urinary: Exp: <31ppm: ttMA: 8.15 ug/mg CAT: 7.0 ug/mg HQ: 12.8 ug/mg Phenol: 38.9 ug/mg >31ppm: ttMA: 46.8 ug/mg CAT: 65.7 ug/mg HQ: 64.3 ug/mg Phenol: 349.7 ug/mg Unexp: ttMA: 0.18 ug/mg CAT: 3.2 ug/mg HQ: 1.6 ug/mg Phenol: 17.3 ug/mg	Hematological parameters: WBC, lymphocyte, Hb, RBC, platelet, MCV, HCT	↓ WBC, ↓ lymphocyte count ^a , ↓ platelets ^a , ↓ RBCs; ↑ MCV
[24]	Rothman, 1996b	Cross- sectional	Occupational factory workers	N=88; 44 exposed, 44 unexposed	China	Organic vapor passive dosimetry badge (worn for a full workshift, 5 days during 1 or 2 weeks before phelobotomy), BZ urinary metabolites (t,t-MA, phenol, CAT, HQ)	Median 8-hr TWA = 31 ppm Urinary: Exposed: MA: 33.0 ug/mg Unexposed: MA: 0.3 ug/mg	Hematological parameters: WBC, lymphocyte, Hb, RBC, platelet, MCV, HCT Cytokine Levels: GM-CSF, IL-6, EPO, TNF-α, IL-3	↓ WBC, lymphocyte count, platelets, RBCs, HCT; ↑ MCV; no significant difference in cytokine values (IL-3, IL-6, EPO, GM-CSF, TNF-α)
[25]	Samadi, 2019	Cross- sectional	Adults exposed to an urban environment	N=219; 74 industrial, 74 high traffic, 71 low traffic	Iran	BTXS air sampling of industrial (28), high traffic (33), and low traffic areas (32) twice a day; Total: 18 stations, 93 air samples	Industrial: 15.92 ± 8.15 ug/m ³ High traffic: 7.33 ± 5.97 ug/m ³ Low traffic: 2.08 ± 1.15 ug/m ³	Hematologic parameters: WBC: neutrophils, eosinophils, monocytes, basophils, lymphocytes; RBC, Hb, HCT, MCV, MCHC, MCH Pro-inflammatory biomarkers: TNF-α, IFN-γ	Btwn industrial and low traffic area groups: $\downarrow RBCs^{b}, \downarrow Hb, \downarrow HCT^{a}, \uparrow$ WBC, \uparrow neutrophils ^a , \downarrow eosinophils, $\uparrow TNF-\alpha^{a}$, $\uparrow IFN-\gamma^{a}$ Btwn high and low traffic: $\downarrow RBCs, \uparrow TNF-\alpha^{a}$, $\uparrow IFN-\gamma^{a}$ Btwn industrial and high traffic: $\uparrow MCHC^{a}, \uparrow$ neutrophils, \downarrow eosinophils
[26]	Schnatter, 2010	Cross- sectional	Factory workers (rubber, shoe, insulation materials)	N=928; 855 exposed, 73 unexposed	China	Individual monitoring of a random sample of workers	Median (range) = 7.4 (0.07-872) mg/m ³	Hematological parameters: WBCs, neutrophils, basophils, eosinophils, monocytes, lymphocytes, RBCs, Hb, MCV, RDW, platelets, MPV SNPs: NQO1, MPO, CYP2E1, GSTT1	↓ WBCs ^a , ↓ lymphocytes, ↓ monocytes, ↓ neutrophils, ↓ RBCs ^b , ↓ Hb ^b , ↓ MCV ^b , ↓ platelets ^a , ↓ MPV ^c

[27]	Townsend, 1978	Cross- sectional	Employees	N=282; all exposed	N/A	TWA estimates of BZ based on environmental measurements	Range: <2 ppm TWA - 30 ppm TWA for periods of <1 yr - 20 yrs+	Blood chemistries: bilirubin, Cr, total protein, albumin, globulin, BUN, LDH, SGOT Blood parameters: HCT, Hb, WBC, RBC, MCV, MCH, MCHC	↓ RBC, ↓ bilirubin
[28]	Uzma, 2008	Cross- sectional	Petrol filling workers	N=78; 42 exposed, 36 unexposed	India	Proxy (occupation)		Respiratory, hematological, and thyroid functions	Hematological ↑ RBCs and ↑ Hb (10-15, >15 yrs of exposure), ↓ WBC (except eosinophils and platelets - ↑ observed in eosinophil count according to yrs of exposure) Thyroid: ↑ T4, ↑ T4F level, ↓ TSH, ↓ T3 Respiratory: ↓ VC, ↓ FVC, ↓ IC, ↓ FIVC (<10 years of exposure)
[29]	Ward, 1996	Retrospective cohort (nested case-control design)	Rubber hydrochloride manufacturing workers	N=657 (all exposed)		Proxy (occupation)	Max daily BZ exposure = 34 ppm	Blood cell count: WBC, RBC	↓ WBCs (strong exposure- response); ↓ RBCs (weak exposure-response)
[30]	Yang, 2014	Cross- sectional	Paint sprayers	N=8; 4 exposed, 4 unexposed	China	General air sampling	BZ-exposed : 6.68 ± 2.28 mg/m ³ Ctrl : 0.06 ± 0.01 mg/m ³	Genome-wide DNA methylation; mRNA expression	Hypermethylated genes with concurrent mRNA down- regulation: PRKG1, PARD3, EPHA8 Hypomethylated genes with concurrent mRNA down- regulation: STAT3, IFNGR1
[31]	Zhang, 2018	Cross- sectional	Chronic BZ poisoning patients	N=165; 90 normal, 53 mild, 8 moderate, 14 severe poisoning	China	Proxy (BZ poisoned patients)		Serum proteins that can serve as biomarkers of chronic BZ poisoning	10 total differentially expressed proteins: ↑ C3, ApoA-1 and AACT compared to normal; ↑ kininogen-1, ↑ transthyretin, ↑ vitronectin, ↑ clusterin, ↑ a1-AT; ↓ serum amyloid P-component, ↓ haptoglobin

Assume all mean differences are significant at p < 0.05 unless marked below:

^aThe mean difference is significant at 0.01 (equal or less)

^bThe mean difference is significant at 0.001 (equal or less)

Abbreviations: a1-AT, alpha-1-antitrypsin; AACT, alpha-1-antichymotrypsin; ALP, alkaline phosphatase; apo, apolipoprotein; BTEX, benzene, toluene, ethylbenzene, xylene; btwn, between; BTX, benzene, toluene, xylene; BUN, blood urea nitrogen; BZ, benzene; C3, complement 3; CAT, catechol; CBC, complete blood count; CC-16, clara cell protein; Cr, creatinine; CRP, C-reactive protein; Ctrl, control; ECP, eosinophil cationic protein; EPO, erythropoietin; Exp, exposed; FIVC, forced inspiratory vital capacity; FRAC, total ferric reducing antioxidant capacity; FVC, forced vital capacity; g, gram; gCr, gram creatinine; GLT₅₀, measure of red cell fragility; GM-CSF, granulocyte-macrophage colony-stimulating factor; GS, gas station workers; Hb, hemoglobin; HCT, hematocrit; HQ, hydroquinone; IC, inspiratory capacity; ICAM-1, intercellular adhesion molecule 1; L, liter; LDH, lactate dehydrogenase; LS, leather shoe factory workers; LTB4, leukotriene B4; max, maximum; mg, milligram; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin

concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; molCr, mole creatinine; ng, nanogram; OR, odds ratio; PAIg, platelet-associated antibody; PBP, platelet basic protein; PDW, platelet distribution width; P-LCR, large platelet cell ratio; PLG, plasminogen; PM, particulate matter; ppm, parts per million; RBC, red blood cell; RDW, red blood cell distribution width; Ref, reference; ROS, reactive oxygen species; SGOT, serum glutamic-oxaloacetic transaminase; SNP, single nucleotide polymorphism; SOD, superoxide dismutase; SPMA, S-phenyl-mercapturic acid; T3, triiodothyronine; T4, thyroxine; T4F, free thyroxine; TBARS, thiobarbituric acid reactive substances; t,t-MA, trans,trans-muconic acid; TREC, T-cell receptor excision DNA circles; TSH, thyroid stimulating hormone; TWA, time-weighted average; ug, microgram; umol, micromole; unexp, unexposed; U.S.A., United States of America; VC, vital capacity; VOC, volatile organic compound; WBC, white blood cell; yrs, years.

Ref #	Reference (Author, Year)	Study Type	Population	Subject # (N)	Location	Exposure Assessment	Exposure Level	Outcome	Results
[32]	Baiz, 2011	Prospective cohort	Pregnant persons exposed to air pollution	N=56	France	Personal exposure assessment of mothers w/ diffusive air sampler	3.3 ± 2.0 ug/m ³	Development of newborn immune cells (cord blood lymphocyte count): CD19+ B cells, CD16+56+ NK cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD4+CD25+ T cells	↓ CD4+CD25+ T cells
[33]	Barman, 2016	Cross-sectional	Petrol pump workers	N= 100; 50 exposed, 50 unexposed	India	Proxy (occupation)	Cumulative exposure per worker: Median (Range) = 17.92 (1.71-74.2) mg/m ³	Pulmonary function: FVC, FEV1, FEV1/FVC, FEF 25- 75%. PEFR, AEC Eosinophil count	↓ FVC, ↓ FEV1, ↓ FEF25-75%, ↓ PEFR, ↓ eosinophil count
[34]	Bassig, 2016	Cross-sectional	Shoe factory workers	N=390; 250 exposed workers, 140 unexposed workers	China (Tianjin)	Personal passive monitoring	Median (10th, 90th percentiles) = 1.2 ppm (0.3, 12.4)	Hematotoxicity, monosomy 7, B-cell activation	Hematotoxicity: All findings were exposure-dependent; ↓ WBCs ^b , ↓ granulocytes ^b , ↓ platelets ^b , ↓ lymphocytes ^a , ↓ CD4 T cells, ↓ CD4/CD8 ratio, ↓ B cells ^b , ↓ NK cells ^a B-cell activation: ≥10 ppm: ↓sCD27 Monosomy 7: <10 ppm: ↓monosomy 7, ≥10 ppm: ↑monosomy 7 ^a
[35]	Biro, 2002	Cross-sectional	Occupational workers	N=72; 10 styrene exposed, 10 PAH exposed, 9 BZ exposed, 14 mixed exposure, 29 unexposed	Hungary	Proxy (occupational)	N/A	Lymphocyte populations: CD3, CD4, CD8 CD14, CD19, CD25, CD38, CD45, CD45RO, CD54, CD56, CD62L, CD71, HLA-DR Genotoxicological parameters: CA, SCE, unscheduled DNA synthesis	Lymphocytes: Mixed exposure: ↓ leukocytes, ↓ neutrophils, ↓ CD3 T-cells, ↑ CD19+ B cells, ↓ CD25+/CD3+, ↓ CD25+/CD4+, ↑ CD71+/CD3+, ↑ HLA-DR+/CD3+, ↑ CD45RO+/CD3+, ↑ CD45RO+/CD4+ BZ-exp: ↑ HLA-DR+/CD3+, ↑ CD71+/CD19+, ↓ CD62L+/CD3+

Table S4. Detailed summary of human benzene studies with immunosuppressive outcomes.

[3]	Bogadi-Sare, 1997	Cross-sectional	Shoe factory workers	N=76; 49 exposed, 27 unexposed		General air sampling, BZ in blood (before workshift and in the middle of the working week), phenol in urine (before and end of the same working day)	General air sampling: 5.9 (1.9-14.8) ppm BZ in blood: Exp: 0.005 mg/L Ctrl: 0.000 mg/L Phenol in pre- shift urine: Exp: 3.840 mg/gCr Ctrl: 2.197 mg/gCr Phenol in post- shift urine: Exp: 5.240 mg/gCr Ctrl: 2.759 mg/gCr	Hematological parameters: CBC, Hb, HCT, MCV, MCH, MCHC, reticulocytes, serum iron, ALP in neutrophils, and GLT ₅₀	<pre>↑ band neutrophils, ↑ MCV, ↓ hemoglobin, ↓ MCHC^b, ↑RBC glycerol lysis time, ↑ GLT₅₀^a ↓ WBC^a, ↓ segmented neutrophils^a, ↓ lymphocytes^a</pre>
[36]	Bogadi-Sare, 2000	Cross-sectional	Shoe factory workers	N=75; 49 exposed, 26 unexposed	Croatia?	Workplace area monitoring (stationary sampling at 10 stations); blood BZ levels, urinary phonel levels	Air: Median (range) = 5.9 (1.9-14.8) ppm Blood: 0.005 (0.002-0.030) mg/l Urine: 5.240 (2.150-27.310) mg/gCr phenol post-shift	Immunological parameters: IgA, IgM, IgG, B- and T-lymphocytes	↑ IgG, ↓ B-lymphocytesª
[37]	Boscolo, 2000	Cross-sectional	Non- symptomatic atopic women exposed to an urban environment	N=60; 30 non- symptomatic atopic women, 30 non-atopic women	Italy	Urinary t,t-MA levels	Median (25th- 75th percentiles) Atopic: 44.0 (18.5-111.8) ug/l Control: 60.0 (17.7-100.7) ug/l	Lymphocyte subpopulations: helper CD4-CD45RO T cells, CD3-CD8 lymphocytes, CD16-CD56 NK cells, CD19 B lymphocytes, CD3- HLA-DR (activated T, B, and NK lymphocytes), CD3-CD25 (T and B lymphocytes activated by IL-2) Cytokines: IL-4, IFN-γ Trace elements: blood Pb, serum Zn and Cu, urinary Cr and Ni	t,t-MA positively correlated with CD16+CD56+ NK cells

[38]	Casale, 2016	Cross-sectional	Outdoor police workers exposed to urban traffic areas	N=215; 112 traffic policemen, 69 drivers, 9 motorcyclists, 25 workers with other outdoor tasks (all exposed)	Italy	Blood BZ levels; individual air sampling (8 traffic policemen, 4 police drivers)	Air: Traffic police: 337.1 ± 287.09 ug/m^3 Drivers: $304 \pm$ $365.2 ug/m^3$ Motorcyclists: 206.33 ± 89.82 ug/m^3 Other: $185.04 \pm$ $45.94 ug/m^3$ Blood: Traffic: $17.28 \pm$ 10.42 ng/l Drivers: $10.81 \pm$ 7.85 ng/l	Blood cell counts	↓ WBCs, ↓ neutrophils, ↓ lymphocytes
[4]	Chen, 2019	Cross-sectional	Residents near a petrochemical complex	N=421; 240 exposed, 181 unexposed	China	Blood BZ levels	Mean Non-smokers: Exp: 41 ng/L Ctrl: 15 ng/L Smokers: Exp: 49 ng/L Ctrl: 14 ng/L	Hematological parameters: WBCs, neutrophils, lymphocytes, monocytes, eosinophils, basophils, RBCs, Hb, HCT, MCV, MCHC, platelets	Correlated w/ t,t-MA: ↓ MCHC, ↓ platelets, ↑ monocytes All exposed: ↓ neutrophil, ↓ RBC, ↓Hb, ↓ HCT, ↓ MCHC, ↓ platelet, ↑ monocytes, ↑ basophils
[39]	Cody, 1993	Retrospective cohort	Rubber hydrochloride workers	N=161; all exposed	U.S.A.	Proxy (occupation)		Blood cell counts: WBC, RBC	↓ WBC during first 4 months (p = 0.04), \uparrow WBC during months 6-11 (p = 0.05)
[40]	D' Andrea, 2013a	Retrospective cohort	People exposed to flaring incident at the British Petroleum (BP) refinery	N=200; 100 exposed, 100 unexposed	U.S.A.	Subjects were chosen from residential areas in and surrounding Texas City, USA Urinary phenol levels	Mean = 22.7 mg/L	Hematological function: WBC count, platelet count, Hb, HCT, blood urea nitrogen (BUN), creatinine Hepatic function: ALP, AST, ALT Renal function: Creatinine	↑ WBC ^b , ↑ platelet ^a , ↑ ALP ^b , ↑ AST ^a ; ↓ BUN ^b , ↓ creatinine
[41]	D' Andrea, 2013b	Retrospective cohort	Subjects exposed to oil spill and disperant	N=247; 117 exposed, 130 unexposed	U.S.A.	Participants in oil spill clean-up activities along the coast of Louisiana for a duration of over 3 months; urinary phenol levels	20-29 years : 8.7 ± 9.5 mg/L 30-39 years : 7.6 ± 9.9 mg/L 40+ years : 5.3 ± 5.9 mg/L	Hematological function: WBC, platelet, Hb, HCT, BUN, creatinine Hepatic function: ALP, AST, ALT Renal function: Creatinine Somatic symptom complaints	↓ platelet, ↓ BUN, ↑ Hb ^b , ↑ HCT ^b , ↑ALP ^b , ↑ AST ^a , ↑ HCT ^b

[42]	D' Andrea, 2014a	Retrospective cohort	Children (<17 years old) exposed to flaring incident at the British Petroleum (BP) refinery	N=312; 157 exposed,155 unexposed	U.S.A.	Subjects were chosen from residential areas in and surrounding Texas City, USA Urinary phenol levels	Exposed to BZ for a prolonged period up to 40 days from BP refinery flaring disaster that occurred on April 6, 2010 and lasted through May 16, 2010 Mean = 8.0 (1.0- 64.2) mg/L	Hematological function: WBC count, platelet count, Hb, HCT, BUN, creatinine Hepatic function: ALP, AST, ALT Renal function: Serum creatinine Somatic symptoms	↓ WBC, ↑ plateletª, ↑ ALP, ↑ AST, ↑ ALTª, ↑ creatinine ^b
[43]	D' Andrea, 2014b	Retrospective cohort	Nonsmoking subjects exposed to flaring incident at British Petroleum (BP) refinery	N=1422; 1093 exposed and 329 unexposed	U.S.A.	Subjects were chosen from residential areas in and surrounding Texas City, USA	Exposed to BZ for a prolonged period up to 40 days from BP refinery flaring disaster that occurred on April 6, 2010 and lasted through May 16, 2010	Hematological function: WBC count, platelet count, Hb, HCT, blood urea nitrogen (BUN), creatinine Hepatic function: Alkaline phosphatase (ALP), aspartate amino transferase (AST), alanine aminotransferase (ALT) Renal function: Serum creatinine	↑ WBC ^b , ↑ platelet ^b , ↑ Hb ^b , ↑ HCT ^b , ↑ creatinine ^b , ↑ BUN ^b , ↑ ALP ^b , ↑ AST ^b , ↑ ALT ^b
[44]	D' Andrea, 2016	Retrospective cohort	Adults (18+) exposed to flaring incident at British Petroleum (BP) refinery	N=2123; 1826 exposed, 387 unexposed	U.S.A.	Self-reported exposure; subjects chosen from residential areas in and surrounding Texas City, USA	Exposed to BZ for a prolonged period up to 40 days from BP refinery flaring disaster that occurred on April 6, 2010 and lasted through May 16, 2010	Hematological function: WBC count, platelet count, Hb, HCT, BUN, creatinine Hepatic function: ALP, AST, ALT Renal function: Serum creatinine	↑ WBC ^b , ↑ platelet ^b , ↑ creatinine ^b , ↑ ALP ^b , ↑ AST ^b , ↑ AST ^b
[45]	D' Andrea, 2017	Retrospective cohort	Smoking subjects exposed to flaring incident at British Petroleum (BP) refinery	N=791; 733 exposed, 58 unexposed	U.S.A.	Subjects were chosen from residential areas in and surrounding Texas City, USA	Exposed to BZ for a prolonged period up to 40 days from BP refinery flaring disaster that occurred on April 6, 2010 and lasted through May 16, 2010	Hematological function: WBC count, platelet count, Hb, HCT, BUN, creatinine Hepatic function: ALP, AST, ALT Renal function: Serum creatinine	↑ WBC ^a , ↑ platelets ^b , ↑ ALP ^a , ↑ AST, ↑ ALT

[5]	Doherty, 2017	Cross-sectional	Adult residents of U.S. Gulf Coast (oil spill workers)	N=406	U.S.A.	Blood BTEX concentration	Geometric Mean Exp: Tobacco Smoke- exp: 91 ng/L Tobacco Smoke- unexp: 25 ng/L Ctrls: Tobacco Smoke- exp: 188 ng/L Tobacco Smoke- unexp: 22 ng/L	Hematological parameters: RBC, Hb, hematocrit, mean corpuscular hemoglobin concentration, RBC distribution width, Platelets, neutrophils, lymphocytes, monocytes, eosinophils	Tobacco smoke unexposed: \downarrow Hb, \downarrow MCHC; \uparrow RDW Tobacco smoke exposed: \uparrow RBC, \uparrow WBC ^b , \uparrow Hb, \uparrow HCT ^b , \uparrow MCV, \uparrow MCHC, \uparrow neutrophils ^b , \uparrow lymphocytes ^b , \uparrow monocytes ^a
[6]	Dutta, 2013	Cross-sectional	Premenopausal rural women	N=345; 196 biomass users, 149 petroleum gas users	India	Urinary t,t-MA levels (PM ₁₀ air measurements were also taken)	Exp: 6.4 ± 4.3 mg/l (p<0.05) Ctrl: 1.1 ± 0.7 mg/l	Airway inflammation: IL- 6, IL-8, TNF-α Sputum cytology Oxidative stress: ROS, SOD	$\begin{array}{l} \textbf{Cellular count:} \uparrow total cell count^{b}, \\ \uparrow neutrophils, \uparrow eosinophils, \uparrow \\ lymphocytes, \uparrow alveolar \\ macrophages \\ \textbf{Sputum cytology:} \uparrow metaplasia^{b} + \\ \uparrow dysplasia^{b}, ciliocytophthoria, \\ Charcot-Leyden crystals, \\ Curschmann's spiral \\ \textbf{Inflammation:} \uparrow TNF-\alpha^{b}, \uparrow IL-6^{b}, \\ \uparrow IL-8^{b} \\ \textbf{Oxidative stress:} \uparrow ROS^{b}, \downarrow SOD^{b} \end{array}$
[46]	Erdei, 2003	Cross-sectional	Schoolchildren 9-11 years old	N=2788	Hungary	Passive monitoring of 33 children's homes (bedroom)		Immune biomarkers; hematological parameters	BZ displayed positive, but nonsignificant associations with # of lymphocytes and eosinophil granulocytes
[9]	Forrest, 2005	Cross-sectional	Shoe factory workers	N=12; 6 highly exposed workers, 6 ctrls	China (Tianjin)	Personal passive monitoring	47.3 ± 24.3 ppm	Global gene expression	↑ CXCL16, ↑ ZNF33, \downarrow JUN, \downarrow PF4
[47]	Froom, 1994	Case report	Pipe fitter	N=1	Israel	Unclear - personal detection Area monitoring (every 3 months for an year)	Personal detection: 0.9 ppm BZ TWA, 0.1 ppm phenol Area monitoring: 03- 1.2 ppm	WBC counts, production of erythropoietin-independent BFU-E colonies	During exposure: Leukocytosis, ↑ WBCs, erythropoietin-independent BFU-E colonies Exposure terminated: ↓ BFU-E, WBC, and leukocyte alkaline phosphatase scores to normal over 12 months
[48]	Hancock, 1984	Cross-sectional	Coke oven workers	N= 91; 70 exposed, 21 unexposed		Available personal monitoring, general air sampling, estimates by plant environmental health engineers	Low-level BZ exposure: Acid plant : 0.1 ppm Litol Plant: 1.8 ppm Plant A: 1.9 ppm Plant B:1.9 ppm BZ Plant: 31.5 ppm	Hematological parameters: RBC, WBC, Hb	No significant difference in blood parameters

[49]	Harati, 2017	Cross-sectional	Painters	N=80; 40 exposed, 40 unexposed	Iran	Sampling of breathing zone	Range = 0.54 - 0.83 ppm daily TWA = $0.69 \pm$ 0.14 ppm daily	Hematological parameters: RBC, WBC, HCT, Hb, platelet, white cell differential count	↓ eosinophils ^b , ↑ MCHCª
[50]	Haufroid, 1997	Cross-sectional	Garage workers	N=309		Questionnaire, general workplace air sampling (during the whole workshift), urine HQ, CA, SPMA level (collected after shift)	Air: < 0.001 ppm Urinary (mg/g): Never smokers: MA:0.08 HQ:1.06 CA: 2.92 SPMA: 0.64 Phenol: 2.58 Ex-smokers: MA:0.08 HQ: 1.39 CA:4.6 SPMA:2.09 Phenol: 3.24 1-10 Cigarettes: MA: 0.13 HQ: 1.50 CA: 3.42 SPMA: 2.09 Phenol: 2.38 11-20 Cigarettes: MA: 0.17 HQ: 2.40 CA: 6.52 SPMA: 2.85 Phenol: 3.04 >20 Cigarettes: MA: 0.18 HQ: 2.49 CA: 6.31 SPMA: 2.55 Phenol: 3.19 Pipe, cigars, cigarillos: MA: 0.20 HQ: 2.22 CA: 5.92 SPMA: 2.62 Phenol: 4.95	Hematological parameters: leukocytes, neutrophils, lymphocytes, monocytes, eosinophils, basophils, large unstained cells, erythrocytes, hematocrit, Hb, MCV, thrombocytes, IL-1a	↑ leukocytes ^b , ↑ neutrophils ^b , ↑ lymphocytes ^b , ↑ monocytes ^b , ↑ basophils ^b , ↓ RBC ^b , ↑ HCT ^b , ↑ MCV

[11]	Hotz, 1998	Cross-sectional	Mechanics	N=307; 199 exposed, 108 unexposed		Questionnaire; general workplace sampling (TWA during whole workshift)	<1.14 ppm	Hematological parameters; IL-1α production	No significant change in IL-1α production and in hematological parameters
[51]	Hristeva- Mirtcheva, 1998	Cross-sectional	Petrol processing workers	N=208; 171 exposed, 37 unexposed	Bulgaria	Unclear	Group 1: exposed to 6-7 times above maximum allowable concentration (MAC) values Group 2: 2-3X above MAC Group 3: near MAC values	Hematological parameters	WBC count abnormalities (leukocytosis, slight leukopenia, neutropenia, lymphocytosis) - statistically significant
[52]	Huang, 2012	Cross-sectional	Chronically exposed patients	N=18; 9 patients, 9 unexposed (for validation, samples from 30 other cases and 30 controls were included)	China	Short-term exposure air concentrations at workplace, BZ concentrations in used solvent materials	Mean BZ exposure concentration: 357.996 mg/m ³ ; Mean BZ concentration in solvent: 55.43%	Proteomics, hematological parameters	↑ PLG, ↓ PBP, ↓ Apo B100 Hematological parameters: ↓ WBC, ↓ neutrophils, ↓ platelet, ↓ RBC, and ↓Hb
[53]	Huang, 2014	Cross-sectional	Petrochemical factory workers	N=231; 121 exposed, 110 unexposed	China	Workplace monitoring (7 sampling points in the workshop of the refinery between Jan 2008 - June 2012)	Cumulative exposure per worker: Median (Range) = 17.92 (1.71-74.2) mg/m ³	Hematological: WBC count, Hb, platelets, PDW, MPV, P-LCR PAlgs	↑ PDW, ↑ MPV, ↑ P-LCRª, ↑ P AlgG, ↑PAlgA, ↑ PAlgM
[12]	Ibrahim, 2014	Cross-sectional	Ceramic factory workers	N=164; 81 exposed, 83 unexposed	Egypt	Urinary t,t-MA levels	Exposed: 0.22 ± 0.48 mg/gCr Control: 0.043 ± 0.008 mg/gCr	Hematological parameters: WBCs, RBCs, Hb, HCT, MCV, MCH, MCHC	↓WBC, ↓ RBCs, ↓ Hb ^b , ↓ HCT ^a , ↑ MCV ^a , ↓ MCHC ^a , ↓ platelets
[54]	Kamal, 2012	Cross-sectional	Automobile workers (mechanics and spray painters)	N=78; 24 mechanics, 25 painters, 29 unexposed	Pakistan	Workplace air sampling	Unreported	Hematological parameters: RBCs, WBCs, platelets, Hb, PCV, MCV	Painters: ↓ RBCs, ↓ WBCs, ↓ Hb, ↓ MCV ^a , ↓ PCV Mechanics: ↓ RBCs, ↓ Hb All exposed: ↓ RBCs, ↓ Hb ^a , ↓ MCV, ↓ PCV
[55]	Kasemy, 2019	Cross-sectional	Taxi drivers	N=400; 280 exposed, 120 unexposed	Egypt	Ambient air measurements inside 120 taxis	Mean = 0.89 ± 0.42 ppm	Complete blood count	↓ TLC ^ь , ↓ platelet ^ь , ↓ MCHª, ↑ MCHC ^ь

[56]	Kipen, 1988	Retrospective cohort	Rubber hydrochloride workers	N=459; all exposed	U.S.A	BZ concentrations estimated by period and area (see Table 1)		Hematological parameters: complete blood count, RBC, WBC, Hb, lymphocytes, monocytes, eosinophils, basophils	Early effects (1940-1948): ↓ WBC, ↓ large lymphocytes ^a No persistent trend over the ensuing 25 years
[57]	Kirkeleit, 2006	Cross-sectional	Cargo tank workers	N=22; 13 exposed; 9 unexposed	Norway	Individual air sampling; urinary BZ levels; blood BZ levels	Air: 0.15 (0.01- 0.62) ppm Urine (post- shift): mean = 27.0 nmol/l Blood (post- shift): mean = 12.3 nmol/l	Lymphocytes: total lymphocytes, CD3, CD4, CD8, CD19, CD56, CD4/CD8 ratio Complement: C3, C4 Ig: IgG, IgA, IgM, IgE	↓ IgM, ↓ IgAª, ↓ CD4 T cells
[58]	Koh, 2015	Cross-sectional	Korean workers	N=10702	Korea	TWA personal air benzene measurements	0.192 ± 2.233 ppm	Blood cell counts	No statistically significant results (only significant when stratified by gender)
[59]	Lan, 2004	Cross-sectional	Clothes factory workers	N=390; 250 exposed, 140 unexposed	China (Tianjin)	Individual benzene exposure monitoring	Mean benzene exposure level: Shoe factory A: 21.86 ppm Shoe factory B: 3.46 ppm	Hematological parameters: Complete blood count, myeloid progenitor colony formation	 ↓ WBC^b, ↓ granulocytes^b, ↓ lymphocytes^a, ↓ CD4+ T cells, ↓ CD4+/CD8+ ratio, ↓ B cells^b, ↓ NK cells^b, ↓ platelets^b, ↓ progenitor cell colony formation
[60]	Lan, 2005	Cross-sectional	Shoe factory workers	N=90; 45 exposed, 45 unexposed	China (Tianjin)	Individual passive monitoring; urinary BZ levels	Air: 15.8 ± 17.9 ppm Urine: 452.6 ± 961.7 ug/l	T-cell receptor excision DNA circles (TRECs) levels	No significant difference in TREC levels per 10 ⁶ peripheral blood leukocytes
[15]	Li, 2009a	Cross-sectional	Occupationally exposed workers	N=165; 138 exposed, 27 unexposed	China	Workplace air sampling or diagnosis of BZ poisoning by the Occupational Diseases Diagnosis Group in Guangzhou, China	37.8 mg/m ³	T-cell receptor excision DNA circles (TRECs) levels	↓ TRECs, ↓WBCs, ↓ Hb, ↓ platelets, ↓ RBCs
[61]	Li, 2009b	Cross-sectional	BZ exposed workers	N=25; 16 exposed, 9 unexposed	China	Air sampling of workplace	37.8 mg/m ³	CDR3 region of T cells	↓ Vβ subfamilies (P<0.05); most frequently used genes are Vβ3, Vβ21, Vβ6, Vβ16

[62]	Li, 2012	Cross-sectional	Paint factory workers	N=46; 20 exposed, 7 chronic mild BZ poisoning, 5 chronic severe BZ poisoning, 14 unexposed	China	Diagnosis of BZ poisoning according to the Diagnostic Criteria of Occupational Benzene Poisoning	Unclear	Hematological: CD3, CD4, CD8 lymphocyte levels Gene expression: CD3γ, CD3δ, CD3ε, CD3ζ	Hematological: ↓ CD4+ T lymphocytes, ↓ CD4+/CD8+ ratio (significant in each group except mild BZ-poisoned) Gene expression: BZ-exposed: ↑ CD3δ ^a , ↑ CD3ε, ↑ CD3ζ Mild BZ-poisoned: no significant differences Severe BZ-poisoned: ↓ CD3γ ^a , ↓ CD3ε ^a , ↓ CD3ζ ^a
[63]	Li, 2018	Cross-sectional	Petrochemical factory workers	N=269; 147 exposed, 122 unexposed	China	Individual air sampling of 18 exposed workers, Urinary SPMA levels	Air : Exposed: 0.120 (0.007-0.345) mg/m ³ Unexposed: 0.120 (0.065- 0.280) mg/m3 Urinary SPMA: Exposed: 100.12 ng/gCr Unexposed: 55.25 ng/g Cr	Hematological parameters: WBCs, neutrophils, lymphocytes, monocytes, RBC, platelets	↓ WBC ^b , ↓ neutrophils, ↓ lymphocytes ^b , ↓ monocytes ^b
[64]	Li, 2019	Cross-sectional	Residents around a petrochemical industrial zone	N=499 (all exposed)	China	Blood BZ levels	Median (25th, 75th percentiles) Male : 0.162 (0.053, 0.364) ug/L Female : 0.130 (0.062, 0.355) ug/L	Hematological parameters: WBC, neutrophil, lymphocyte, monocytes, eosinophil, basophil, RBC, Hb, MCV, MCH, MCHC, RDW, platelet, PDW, MPV, PCT	Abnormal rate of eosinophils (28.7%), basophils (16.2%), HCT (17.2%), MCHC (14.8%)
[17]	McHale, 2009	Cross-sectional	Shoe factory workers	N=16; 8 exposed, 8 unexposed	China (Tianjin)	Personal passive monitoring	47.3 ± 24.3 ppm	Global gene expression	↑ CXCL16, ↑ ZNF331,↓ JUN, ↓ PF4
[65]	Midzenski, 1992	Cohort	Shipyard workers (degassers)	N=15; all exposed	U.S.A	Industrial sampling of tanks	Range = 60 - 600 ppm	Clinical symptoms Hematological parameters: CBC, WBCs, lymphocytes, MCV, Hb, platelets, hematological abnormalities	Hematological findings: 9/15 workers had at least 1 hematological abnormalities; large granular lymphocytes observed in 6; 4 presented w/ persistent hematologic abnormalities one year after acute exposure; no consistent patterns of correlation observed for hematological parameters

[19]	Moro, 2015	Cross-sectional	Gas station attendants	N=88; 60 exposed, 28 unexposed	Brazil	Personal passive samplers, blood BTX levels, urinary t,t-MA levels	Exposed: Air: 144.2 (58.1- 2207.5) ug/m ³ Urinary: 334 (190-600) ug/gCr Unexposed: Air: 42.0 (34.1- 52.4) ug/m3 Urinary: 70.0 (50.0-120.0) ug/gCr	Hematological parameters, ALA-D activity, CD80 + CD86 expression, IL-8	↓ ALA-D activity ^b , ↓ CD80 + CD86 expression ^a , ↑ IL-8 ^b , ↑ neutrophils
[66]	Moszcynski, 1996	Cross-sectional	Workers exposed to organic solvents	N=139; 60 exposed, 79 unexposed	Poland	Air sampling; urinary phenol levels	Air sampling: TWA avg = 19 mg/m ³ (6 ppm) Mean annual avg = 48 mg/m ³ (15 ppm) Phenol: Smokers: 16.8 \pm 6.2 mg/l Non-smokers: 18.4 \pm 9.7 mg/l	Blood counts: T-cells (CD3+), T-helper (CD4+), T-suppressor (CD8+), NK cells (CD16+)	↓ T-cells, ↓ NK cells, ↑ T-suppressor cells, ↓ T-helper/T- suppressor (CD4/CD8) ratio
[67]	Moszczynski, 1985	Cross-sectional	Occupationally exposed workers	N=154; 108 exposed, 46 unexposed	Poland	Workplace air sampling; phenol in urine	Air : 0.370 mg/m ³ Phenol : 16.2 ± 9.6 mg/l	NAG-positive lymphocyte count	↓ T-lymphocytes (exposure- dependent), ↓ in lymphocytes w/ intact NAG-positive lysosomes
[20]	Pelallo- Martinez, 2014	Cross-sectional	Children living near petrochemical area	N=105; 46 Allende, 38 Mundo Nuevo, 21 Lopez Mateos (all exposed)	Mexico	Urinary t,t-MA levels	Mean (range) Allende: 388 (44-1784) ug/gCr Mundo Nuevo: 363 (63-5521) ug/gCr Lopez Mateos: 369 (62-1414) ug/g Cr	Genotoxicity: DNA damage Hematological effects: WBC, Hb, HCT, RBC, platelets	Lopez Mateos: ↓ Hbª, ↓ HCTª, ↓ WBC, ↓ RBC
[68]	Pitarque, 1996	Cross-sectional	Service station attendants	N=93; 50 exposed, 43 unexposed	Spain	Personal air sampling; phenol urinary levels	Air: 8-h TWA: 0.91 ± 0.14 mg/m ³ Phenol: Exposed: 5.06 ± 0.51 mg/gCr Control: 3.73 ± 0.53 mg/gCr	Genetic damage: MN Hematological parameters: differential WBC count	No significant differences in MN and differential WBC counts between exposed and control populations
[21]	Qu, 2002	Cross-sectional	Factory workers (glue, shoe-making, sporting goods)	N=181; 130 exposed, 51 unexposed	China (Tianjin)	Individual passive monitoring	Median (range) = 3.2 (0.06-122) ppm daily	Blood parameters : RBC, platelets, WBC, neutrophils, lymphocytes, eosinophils, etc.	Exposure-dependent: $\downarrow RBC^{b}, \downarrow WBC^{b}, \downarrow$ neutrophils ^b

[22]	Ray, 2007	Cross-sectional	Petrol pump or automobile service workers	N=85; 25 petrol pump attendants, 25 automobile service station workers, 35 unexposed	India	Urinary t,t-MA levels	Exposed: 2.72 ± 0.21 mg of t,t- MA/L Unexposed:0.71 ± 0.11 mg/L	Hematological parameters and lymphocyte subsets	Hematological parameters: ↓ RBC, ↓ Hb, ↓ lymphocyte, ↓ platelets, ↑ MCV, ↑ eosinophils, ↑ monocytes, ↑ immature neutrophil, ↑ band cells, ↑ RBC aniso-poikilocytosis and ↑ target cells, ↑ giant platelets Lymphocyte subsets: ↓ CD4+, CD8+, CD19+ cells, ↑ CD16+56+ NK cells P-selectin expression on platelet surface: ↑ P-selectin expression
[69]	Renzetti, 2009	Cross-sectional	Untreated allergic children w/ mild persistent asthma	N=37	Italy	Fixed air quality monitoring stations in the city (hourly)	Exposed: 3.9 ± 0.5 ug/m ³ Unexposed: 0.2 ± 0.1 ug/m ³	Airway inflammation and airway function after relocation to rural area (days 0-7): nasal eosinophils, FE _{NO} from lower airways, peak expiratory flow (PEF), urinary LTE ₄	↓ nasal eosinophilsª, ↓ FE _{NO} concentration, ↑PEF ^b
[23]	Rothman, 1996a	Cross-sectional	Occupational factory workers	N=88; 44 exposed, 44 unexposed	China	Organic vapor passive dosimetry badge (worn for a full workshift, 5 days during 1 or 2 weeks before phelobotomy), BZ urinary metabolites (t,t-MA, phenol, catechol, HQ)	Median 8-hr TWA = 31 ppm Urinary: Exposed: <31ppm: MA: 8.15 ug/mg CA: 7.0 ug/mg HQ: 12.8 ug/mg Phenol: 38.9 ug/mg >31ppm: MA: 46.8 ug/mg CA: 65.7 ug/mg HQ: 64.3 ug/mg Phenol: 349.7 ug/mg Unexposed: MA: 0.18 ug/mg CA: 3.2 ug/mg HQ: 1.6 ug/mg Phenol: 17.3 ug/mg	Hematological parameters: WBC, lymphocyte, Hb, RBC, platelet, mean corpuscular volume, hematocrit	↓ WBC, ↓ lymphocyte countª, plateletsª, RBCs; ↑ MCV

[24]	Rothman, 1996b	Cross-sectional	Occupational factory workers	N=88; 44 exposed, 44 unexposed	China	Organic vapor passive dosimetry badge (worn for a full workshift, 5 days during 1 or 2 weeks before phelobotomy), BZ urinary metabolites (t,t-MA, phenol, catechol, HQ)	Median 8-hr TWA = 31 ppm Urinary: Exposed: MA: 33.0 ug/mg Unexposed: MA: 0.3 ug/mg	Hematological parameters: WBC, lymphocyte, Hb, RBC, platelet, mean corpuscular volume, hematocrit Cytokine Levels: G-CSF, IL-6, erythropoietin, and TNF-a, IL-3	↓ WBC, lymphocyte count, platelets, RBCs, HCT; ↑ MCV; no significant difference in cytokine values (IL-3, IL-6, EPO, GMCSF, TNFa)
[25]	Samadi, 2019	Cross-sectional	Adults exposed to an urban environment	N=219; 74 industrial, 74 high traffic, 71 low traffic	Iran	BTXS air sampling of industrial (28), high traffic (33), and low traffic areas (32) twice a day; Total: 18 stations, 93 air samples	Industrial: 15.92 ± 8.15 ug/m ³ High traffic: 7.33 ± 5.97 ug/m ³ Low traffic: 2.08 ± 1.15 ug/m ³	Hematologic parameters: WBC: neutrophils, eosinophils, monocytes, basophils, lymphocytes; RBC: Hb, HCT, MCV, MCHC, MCH) Pro-inflammatory biomarkers: TNF-α, IFN-γ	Between industrial and low traffic area groups: $\downarrow \text{RBCs}^b$, $\downarrow \text{Hb}$, $\downarrow \text{HCT}^a$, $\uparrow \text{WBC}$, \uparrow neutrophils ^a , $\downarrow \text{eosinophils}$, $\uparrow \text{TNF-}\alpha^a$, $\uparrow \text{IFN-}\gamma^a$ Between high and low traffic: $\downarrow \text{RBCs}$, $\uparrow \text{TNF-}\alpha^a$, $\uparrow \text{IFN-}\gamma^a$ Between industrial and high traffic: $\uparrow \text{MCHC}^a$, $\uparrow \text{ neutrophils}$, $\downarrow \text{ eosinophils}$
[70]	Santiago, 2017	Case report	Gas station workers	N=2 (Case 1 8h/day, 6 days/week, 4years at a gas station; Case 2 48h/week, 9years at a gas station)	Brazil	Proxy (occupation)		Complex chromosomal rearrangements (CCR), NK cell count	Case 1: mild neutropenia, ↓ NK cells (all NK CD56+/CD16-), miscarriage in the first half of pregnancy, headache, dizziness, irritability, asthenia, changes in the thyroid gland, nodules in the right lobe, nonspecific pulmonary auscultation, found in 1/100 metaphases a CCR involving 8 chromosomal breakpoints, abnormal CD16 expression Case 2: one CCR found in 1/100 metaphases involving 3 breakpoint event, ↓ NK cells (all NK CD56+/CD16-) Both: CCRs. ↓ NK cells (all NK CD56+/CD16-), abnormal CD16 expression

[71]	Sauer, 2018	Cross-sectional	Gas station workers	N=145; 74 exposed, 71 unexposed	Brazil	Personal passive samplers, urinary t,t- MA	Exposed: Air: 0.216 (0.140-0.406) mg m ⁻³ Urinary: 243.7 (106.1 - 617.8) ug/gCr Unexposed: Air: 0.040 (0.0- 0.09) mg m-3 Urinary: 74.3 (40.9-114.9) ug/gCr	B7.1 + B7.2 protein and gene expression; C3+C4 serum levels, p53 gene expression	\downarrow B7.1 /CD80 + B7.2/CD86 protein and mRNA expression ^b , \downarrow C3 and C4 complement fraction levels ^b
[26]	Schnatter, 2010	Cross-sectional	Factory workers (rubber, shoe, insulation materials)	N=928; 855 exposed, 73 unexposed	China	Individual monitoring of a random sample of workers	Median (range) = 7.4 (0.07-872) mg/m ³	Hematological parameters: WBCs, neutrophils, basophils, eosinophils, monocytes, lymphocytes, RBCs, Hb, MCV, RDW, platelets, MPV SNPs: NQO1, MPO, CYP2E1, GSTT1	↓ WBCs ^a , ↓ lymphocytes, ↓ monocytes, ↓ neutrophils, ↓ RBCs ^b , ↓ Hb ^b , ↓ MCV ^b , ↓ platelets ^a , ↓ MPV ^c
[72]	Shen, 2008	Cross-sectional	BZ-exposed workers	N=80; 40 exposed (20 in 1-10 ppm group, 20 in >10 ppm group), 40 unexposed	China (Tianjin)	Individual passive monitoring; urinary BZ levels	Air: 1-10 ppm: 5.06 ± 2.97 ppm >10 ppm: 26.30 ± 19.16 ppm Urine: 1-10 ppm: 99.76 ± 156.10 ug/L >10 ppm: 820.82 ± 1253.27 ug/L	mtDNA copy number Blood cell counts: WBC, granulocytes, lymphocytes, CD4+, CD8+, B cells, NK cells, monocytes, platelets, Hb	1-10 ppm : ↓ WBC ^a , ↓ granulocytes ^a , ↓ CD4+, ↓ CD4+/CD8+ ratio ^b , ↓ platelets ^a , ↑ mtDNA >10 ppm : ↓ WBC ^a , ↓ granulocytes ^a , ↓ CD4+, ↓ CD4+/CD8+ ratio ^b , ↓ B-cells ^b , ↓ platelets ^a , ↑ mtDNA
[73]	Singh, 2014	Cross-sectional	Petrol pump workers	N=94; 50 exposed, 40 unexposed	India	Proxy (occupation)	U U	Eosinophil count	↓ in eosinophils according to years of exposure (1-5, 6-10, and >15, exception of those in the 11-15 years of exposure)
[74]	Smolik, 1973	Cross-sectional	Occupational workers	N=79; 34 exposed (group 1), 45 unexposed (group 2)	Poland	Area monitoring	Group 1: 0.011- 0.022 mg/L of air; Group 2: 0.003-0.02 mg/L	Serum complement level	↓ Serum complement
[75]	Spatari, 2015	Cross-sectional	Oil refinery workers	N=67; 51 exposed, 16 unexposed	Italy	Personal air sampling (during work shift of 8h)		IL-10 serum levels	No significant difference between IL-10 in Groups A+B

[76]	Sukaisi, 2017	Cross-sectional	BZ-filling station workers	N=43; 35 exposed, 8 unexposed	Indonesia	Urinary t,t-MA levels	587 ± 1326.5 ug/gCr	Hematological parameters: Examination of CD4+ and CD8+ T cells	↑ CD8+ T cells
[77]	Sul, 2005	Cross-sectional	Factory workers (printing, shoe- making, chemical production)	N=61; all exposed	South Korea	Breath BZ levels (personal sampler); t,t-MA and phenol in urine	Breath: 0.268 ± 0.216 (0.005- 2.03) ppm t,t-MA: 1.02 ± 0.45 (0.24-2.77) mg/gCr Phenol: 10.9 ± 8.66 (2.5-46.6) mg/gCr	DNA damage, hematological parameters (secondary outcome) - WBC, neutrophils, lymphocyte, monocyte	No statistically significant differences between worker groups (although no comparison to unexposed was investigated)
[78]	Swaen, 2010	Retrospective cohort	Dow employees with low BZ exposure	N=20705; 8532 exposed, 12173 unexposed	Netherlands	21,584 BZ air measurements (8h TWA) - job exposure matrix	Low concentrations of BZ	Hematological parameters	 ↓ eosinophils in stratified analysis and continuous analysis^b but not in the categorical analysis ↑ monocytes in categorical^b, continuous and stratified analysis
[27]	Townsend, 1978	Cross-sectional	Employees	N=282; all exposed	N/A	TWA estimates of benzene based on environmental measurements	Range: <2 ppm TWA - 30 ppm TWA for periods of <1 yr - 20 yrs+	Blood chemistries: bilirubin, creatinine, total protein, albumin, globulin, BUN, LDH, SGOT Hematological parameters: HCT, Hb, WBC, RBC, MCV, MCH, MCHC	↓ RBC, ↓ bilirubin (not statistically significant)
[79]	Tsai, 2004	Retrospective cohort	Employees that participated in the Shell BMSP	N=4427; 1200 exposed, 3227 unexposed	U.S.A	Representative exposure monitoring data (personal sampling)	1977-1988 mean: 0.60 ppm After 1988 mean: 0.14 ppm	Complete blood count : WBC, RBC, lymphocyte, platelet, Hb, MCV	↓ MCV (no statistically significant changes)
[80]	Tunsaringkarn, 2013	Cross-sectional	Gasoline station workers	N=102; all exposed	Thailand	Urinary t,t-MA levels	1.45 ± 2.42 mg/gCr	Hematological parameters: Hb, HCT, MCV, WBC count, neutrophils, lymphocytes, monocytes, eosinophils, basophils, platelets	Inverse correlation between urinary t,t-MA and Hb ^a ; inverse correlation between urinary t,t-MA and HCT ^a ; higher urinary t,t-MA (>0.5 mg/gCr) correlated with lower eosinophil counts
[28]	Uzma, 2008	Cross-sectional	Petrol filling workers	N=78; 42 exposed, 36 unexposed	India	Proxy (occupation)		Respiratory, hematological, and thyroid functions	Hematological ↑ RBCs and Hb (10-15, >15 years of exposure), ↓ WBC (except eosinophils and platelets - ↑ observed in eosinophil count according to yrs of exposure) Thyroid: ↑ T4, ↑ T4F, ↓ TSH, ↓ T3 Respiratory: ↓ VC, ↓ FVC, ↓ IC, and ↓ FIVC (<10 years of

exposure)

[81]	Uzma, 2010	Cross-sectional	Gasoline filling workers	N=506; 428 exposed; 78 unexposed	India	Individual air sampling; urinary BZ levels; blood BZ levels	Air: 0.345 (0.118-0.527) ppm Blood (post- shift): 12.1 ± 5 nmol/L Urine (post- shift): 42.6 ± 1.2 nmol/L	Oxidative stress: ROS, MDA, SOD, GSH Immune parameters: CD4, CD8, IgG mRNA expression: p53	Oxidative stress: ↑ ROS, ↑ MDA, ↓ SOD, ↓ GSH Immune parameters: ↓ CD4, ↓ CD4/CD8, ↓ IgG mRNA expression: ↑ p53
[82]	Vermeulen, 2005	Cross-sectional	Shoe factory workers	N=20; 10 exposed workers, 10 controls	China (Tianjin)	Personal passive monitoring	47.3 ± 24.3 ppm	Serum proteome	↓ 4.1 kDa protein, ↓ PF4, ↓ CTAP- III , ↓ PBP
[83]	Wang, 2012	Cross-sectional	Spray paint workers	N=101; 46 directly exposed (group A), 26 indirectly exposed (group B), 29 unexposed	China	Workplace air sampling (25 different locations of the spray- paint plant)	Group A: 0.21 ± 0.19 mg/m ³ Group B: 0.06 ± 0.12 mg/m ³	Hematological parameters: CD4+, CD8+, NK, WBCs, Hb, platelets, B-cells, T-cells mRNA expression: Cell cycle regulatory genes: <i>p53, p21, Bax, Mdm-2,</i> <i>Rad51</i> DNA repair genes: <i>Xpc,</i> <i>Xpa, Apel</i>	Group A : \downarrow WBC, \downarrow Hb, \downarrow platelets ^a , \downarrow CD8+, \downarrow CD4+ ^a , \downarrow T- cells, \downarrow B-cells Group B : \downarrow platelets ^a , \downarrow CD8+ ^a , \downarrow T-cells, \downarrow B-cells
[29]	Ward, 1996	Retrospective cohort (nested case-control design)	Rubber hydrochloride manufacturing workers	N=657 (all exposed)		Proxy (occupation)	Max daily BZ exposure = 34 ppm	Blood cell count: WBC, RBC	↓ WBCs (strong exposure- response); ↓ RBCs (weak exposure-response)
[84]	Wiwanitkit, 2004	Cross-sectional	Occupational workers	N=30 (all exposed)	Thailand	t,t-MA levels in urine	0.71 (0-7.08) mg/gCr	Platelet count	No significant correlation between urine t,t-MA and platelet parameters (p > 0.05) although platelet count did decrease
[85]	Wu, 1998	Cross-sectional	Occupational workers	N=112; 29 low BZ, 29 high BZ, 25 BZ poisoning, 29 control	China	Environmental monitoring of workplace; diagnosis of CBP	Low BZ: <300 mg/m ³ High BZ: >300 mg/m ³	Hematological parameters: WBC count, Hb, SOD Lymphocyte DNA damage Abs to Hsps	Hematological: ↓ WBCs in BZ- poisoned compared to other three groups, ↑ SOD in BZ-poisoned compared to control DNA damage: ↑ DNA damage ^a Abs: ↑ Abs against Hsp71 in BZ- poisoned compared to other three groups
[86]	Yaneva, 1998	Prospective cohort	Sailors from chemical cargo tankers	N=257; 179 exposed, 78 unexposed	Bulgaria			Hematological parameters: RBCs, RBC morphology, HCT, Hb, WBCs, platelets	No statistically significant difference between exp and ctrl group

[87]	Zamanian, 2018	Cross-sectional	Gas station workers	N=160; 80 exposed, 80 unexposed	Iran	Interview- administered questionnaire to collect history of occupational exposure	Blood parameters: WBCs, neutrophils, lymphocytes, monocytes, leukocytes Liver function: AST, ALT	↓ TLC ^b , ↑ lymphocyte ^b , ↑ monocyte ^b , ↑ neutrophils ^b

Assume all mean differences are significant at p < 0.05 unless marked below:

^aThe mean difference is significant at 0.01 (equal or less)

^bThe mean difference is significant at 0.001 (equal or less)

Abbreviations: a1-AT, alpha-1-antitrypsin; AACT, alpha-1-antichymotrypsin; Abs, antibodies; AEC, alveolar epithelial cells; ALP, alkaline phosphatase; ALT, alanine aminotransferase; apo, apolipoprotein; AST, aspartate transaminase; BMSP, Shell Benzene Medical Surveillance Program; BTEX, benzene, toluene, ethylbenzene, xylene; btwn, between; BTX, benzene, toluene, xylene; BUN, blood urea nitrogen; BZ, benzene; C3, complement 3; CA, chromosomal aberration; CAT, catechol; CBC, complete blood count; CC-16, clara cell protein; Cr, creatinine; CRP, C-reactive protein; Ctrl, control; ECP, eosinophil cationic protein; EPO, erythropoietin; Exp, exposed; FEF, forced expiratory flow; FEV, forced expiratory volume; FIVC, forced inspiratory vital capacity; FRAC, total ferric reducing antioxidant capacity; FVC, forced vital capacity; g, gram; gCr, gram creatinine; GLT₅₀, measure of red cell fragility; GM-CSF, granulocyte-macrophage colony-stimulating factor; GS, gas station workers; GSH, glutathione; h, hour; Hb, hemoglobin; HCT, hematocrit; HQ, hydroguinone; Hsp71, heat shock protein 71; IC, inspiratory capacity; ICAM-1, intercellular adhesion molecule 1; Ig, immunoglobulin; L, liter; LDH, lactate dehydrogenase; LS, leather shoe factory workers; LTB4, leukotriene B4; max, maximum; mg, milligram; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MDA, malondialdehyde; molCr, mole creatinine; MN, micronuclei; MPV, mean platelet volume; mtDNA, mitochondrial DNA; ng, nanogram; NK, natural killer; OR, odds ratio; PAH, polycyclic aromatic hydrocarbon; PAIg, platelet-associated antibody; PBP, platelet basic protein; PDW, platelet distribution width; PEFR, peak expiratory flow rate; PF4, platelet factor 4; P-LCR, large platelet cell ratio; PLG, plasminogen; PM, particulate matter; ppm, parts per million; RBC, red blood cell; RDW, red blood cell distribution width; Ref, reference; ROS, reactive oxygen species; SCE, sister chromatid exchange; SGOT, serum glutamic-oxaloacetic transaminase; SNP, single nucleotide polymorphism; SOD, superoxide dismutase; SPMA, S-phenyl-mercapturic acid; T3, triiodothyronine; T4, thyroxine; T4F, free thyroxine; TBARS, thiobarbituric acid reactive substances; TLC, total leukocyte count; t,t-MA, trans,trans-muconic acid; TREC, T-cell receptor excision DNA circles; TSH, thyroid stimulating hormone; TWA, time-weighted average; ug, microgram; umol, micromole; unexp, unexposed; U.S.A., United States of America; VC, vital capacity; VOC, volatile organic compound; WBC, white blood cell; yrs, vears.

Ref	Reference	Study Type	Population	Subject # (N)	Location	Exposure	Exposure Level	Outcome	Results
#	(Author, Year)					Assessment			
KC6:	Chronic Inflamma	on of the second s	F actoria	N 440 00	Ohina	O an anal air a martin a	4 00 + 4 40		
[88]	Guo, 2019	Cross-sectional	Factory workers (spraying lacquer)	N=140; 69 exposed, 71 unexposed	Cnina	General air sampling	1.82 ± 1.16 mg/m ³	RRNA expression Hematological: WBC, neutrophils, lymphocytes, RBC, Hb, platelets, ALT	mRNA: ↑ Caspase 1, ↑ IL-1β, ↑ TET2 Cytokines: ↑ IL-1β, ↑ IL-8, ↓ IL-10
KC7:	Immunosuppress	ion							
[89]	Aksoy, 1971	Cross-sectional	Shoe manufacturing workers	N=317; 217 exposed, 100 unexposed	Turkey	Area monitoring	30-210 ppm	Hematological: RBC, WBC, PCV, platelets, differential counts	↓ leukocytes
[90]	Li, 2019	Cross-sectional	Benzene- exposed workers and CBP patients	N=500; 61 short-term exposed, 237 long-term exposed, 53 CBP, 149 unexposed	China	Occupation Diagnosis for CBP	Not reported	Serological proteome analysis	↑ Apo-AI, ↓ transthyretin
[91]	Mukherjee, 2016	Cross-sectional	Petrol pump workers Traffic police	N=93; 73 exposed (40 petrol pump workers, 33 traffic police), 20 unexposed	India	General air sampling; individual passive monitoring; Urinary tt- MA + SPMA levels	Exp: Petrol pump workers: Static air: $86.5 \pm$ 54.4 ug/m3 Personal exp: 195.3 ± 184.4 ug/m3 tt-MA: $1.10 \pm$ 1.08 mg/gCr SPMA: $1.70 \pm$ 1.69 mg/gCr Traffic police: Static air: $56.6 \pm$ 35.6 ug/m3 Personal exp: 104.6 ± 99.0 ug/m3 tt-MA: $0.46 \pm$ 0.31 mg/gCr SPMA: $0.91 \pm$ 0.64 mg/gCr Ctrl: tt-MA: 0.36 tt- MA: 1.10 ± 1.08 mg/gCr SPMA: $1.70 \pm$ 0.20 mg/gCr	Hematological: Hb, TLC, differential leucocytes count, RBC, platelet, HCT, reticulocyte count Porphyrin Tests: Serum ALA and PBG Pulmonary function tests	Hematological: ↓ platelets, ↑ lymphocytes, ↑ eosinophils, ↓ decreased neutrophils Porphyrin Tests: ↑ PBG ^a

Table S5. Summary of additional studies identified from an updated search in July, 2020.

0.56 mg/gCr

[92]	Ren, 2020	Cross-sectional	CBP patients (all factory workers)	N=44; 21 exposed, 23 unexposed	China	General air sampling (samples were collected within the breathing zone of the workers three times a day)	0.09 - 5 mg/m ³	Genome-wide methylation Micronuclei frequency Hematological: WBC, RBC, Hb, platelet, neutrophils, lymphocytes	Methylation: ↑ promoter methylation for CSF3Ra and F2R genes; ↓ neutrophil percentage in high CSF3R-methylation group compared to low CSF3R- methylation group ↑ MN Frequency Hematological: ↓ WBC, ↓ RBC, ↓ Hb, ↓ platelets, ↓ neutrophils
[93]	Vaughan Watson, 2020	Cohort	NHANES participants with VOC lab results	N-9203	U.S.A.	Blood VOC laboratory analysis	Mean (95% Cl) Smoke exp: 0.148 (0.137, 0.16) ng/mL Smoke unexp: 0.021 (0.02, 0.022) ng/mL	Hematological: WBC, eosinophils, RBC, Hb, HCT, platelets	Smoke exp: ↓ HCTª, ↓ Hb ^b , ↓ platelets, ↓ WBC ^b

Note: These studies were identified from an updated PubMed search in July, 2020. We reviewed 182 studies and identified 6 new relevant studies. Assume all mean differences are significant at p < 0.05 unless marked below:

^aThe mean difference is significant at 0.01 (equal or less)

^bThe mean difference is significant at 0.001 (equal or less)

Abbreviations: ALA, Delta-aminolevulinic acid; ALT, alanine aminotransferase; apo, apolipoprotein; CBP, chronic benzene poisoning; Ctrl, control; Exp, exposed; gCr, gram creatinine; Hb, hemoglobin; HCT, hematocrit; IL, interleukin; mL, milliliter; mg, milligram; MN, micronuclei; ng, nanogram; NHANES, National Health and Nutrition Examination Survey; PBG, porphobilinogen; PCV, packed cell volume; ppm, parts per million; RBC, red blood cell; Ref, reference; SPMA, S-phenyl-mercapturic acid; TET2, Tet methylcytosine dioxygenase 2; TLC, total leukocyte count; t,t-MA, trans,trans-muconic acid; ug, microgram; unexp, unexposed; U.S.A., United States of America; VOC, volatile organic compound; WBC, white blood cell.

Γable S6. Major outcomes from benzene	e hematotoxicity studies	in exposed people.
--	--------------------------	--------------------

Hematotoxicity	Results						
	Increase	No association	Decrease				
Mixed lineage							
WBC	D'Andrea (2014b)[43], D'Andrea (2016)[44], D'Andrea (2017)[45], D'Andrea (2013a)[40], Doherty (2017)[5], Froom (1994)[47], Haufroid (1997)[50], Hristeva- Mirtcheva (1998)[51], Samadi (2019)[25]	Hancock (1984)[48], Pitarque (1996)[68], Yaneva (1998)[86], Sul (2005)[77]	Uzma (2008)[28], Wang (2012)[83], Ward (1996)[29], Wu (1998)[85], Zamanian (2018)[87], Bassig (2016)[34], Biro (2002)[35], Bogadi-Sare (1997)[3], Schnatter (2010)[26], Rothman (1996a)[23], Rothman (1996b)[24], Shen (2008)[72], Casale (2016)[38], Cody (1993)[39], D'Andrea (2014a)[42], Huang (2012)[52], Li (2009a)[15], Ibrahim (2014)[12], Kipen (1988)[56], Kamal (2012)[54], Li (2018)[63], Pelallo-Martinez (2014)[20], Qu (2002)[21], Lan (2004)[59], Aksoy (1971)[89], Ren (2020)[92], Vaughan Watson (2020)[93]				
CBC		Hancock (1984)[48], Spatari (2015)[75], Sul (2005)[77], Swaen (2010)[78], Koh (2015)[58], Hotz (1998)[11], Townsend (1978)[27], Erdei (2003)[46], Wiwanitkit (2004)[84], Tsai					

		(2004)[79],	
		Yaneva	
		(1998)[86]	
Hematological abnormalities	Midzenski		
	(1992)[65]		
Myeloid lineage			
Granulocytes			Bassig (2016)[34], Shen
			(2008)[72], Lan
			(2004)[59]
Neutrophils	Samadi		Casale (2016)[38],
	(2019)[25],		Hristeva-Mirtcheva
	Dutta		(1998)[51], Huang
	(2013)[6],		(2012)[52], Chen
	Zamanian		(2019)[4], Qu (2002)[21],
	(2018)[87],		Schnatter (2010)[26], Li
	Haufroid		(2018)[63], Bogadi-Sare
	(1997)[50],		(1997)[3], Biro
	Doherty		(2002)[35], Mukherjee
	(2017)[5],		(2016)[91], Ren
	Moro		(2020)[92]
	(2015)[19]		
Eosinophils	Dutta		Barman (2016)[33],
	(2013)[6], Ray		Samadi (2019)[25],
	(2007)[22],		Swaen (2010)[78], Singh
	Uzma		(2014)[73],
	(2008)[28], Li		Tunsaringkarn
	(2019)[64],		(2013)[80], Harati
	Mukherjee		(2017)[49], Renzetti
	(2016)[91]		(2009)[69]
Basophils	Chen		
	(2019)[4],		
	Haufroid		
	(1997)[50], Li		
	(2019)[64]		
Monocytes	Chen		Li (2018)[63], Schnatter
	(2019)[4],		(2010)[26]
	Doherty		
	(2017)[5],		
	Haufroid		
	(1997)[50],		
	Swaen		
	(2010)[78],		
	Zamanian		
	(2018)[87],		
	Ray (2007)[22]		

Macrophages	Dutta (2013)[6]		
RBCs	Doherty (2017)[5], Liang (2018)[16], Uzma (2008)[28]	Hancock (1984)[48], Yaneva (1998)[86]	Samadi (2019)[25], Rothman (1996a)[23], Ray (2007)[22], Ibrahim (2014)[12], Pelallo- Martinez (2014)[20], Qu (2002)[21], Schnatter (2010)[26], Rothman (1996b)[24], Chen (2019)[4], Haufroid (1997)[50], Kamal (2012)[54], Li (2009a)[15], Townsend (1978)[27], Ward (1996)[29], Huang (2012)[52], Ren (2020)[92]
Platelets	D'Andrea (2013a)[40], D'Andrea (2014a)[42], D'Andrea (2014b)[43], D'Andrea (2016)[44], D'Andrea (2017)[45]	Wiwanitkit (2004)[84]	Kasemy (2019)[55], Schnatter (2010)[26], Wang (2012)[83], Shen (2008)[72], Chen (2019)[4], Rothman (1996a)[23], Rothman (1996b)[24], Ray (2007)[22], Bassig (2016)[34], Huang (2012)[52], Li (2009a)[15], D'Andrea (2013b)[41], Lan (2004)[59], Ibrahim (2014)[12], Mukherjee (2016)[91], Ren (2020)[92], Vaughan Watson (2020)[93]
Lymphoid lineage			
Lymphocytes	Doherty (2017)[5], Dutta (2013)[6], Haufroid (1997)[50], Zamanian (2018)[87], Mukherjee	Erdei (2003)[46]	Bogadi-Sare (1997)[3], Bassig (2016)[34], Rothman (1996a)[23], Rothman (1996b)[24], Casale (2016)[38], Ray (2007)[22], Schnatter (2010)[26], Li (2018)[63], Lan (2004)[59]

	(2016)[91]	
B-lymphocytes		Bogadi-Sare (2000)[36],
		Wang (2012)[83], Bassig
		(2016)[34], Shen
		(2008)[72], Lan
		(2004)[59]
T-lymphocytes		Wang (2012)[83],
		Moszczynski (1985)[67],
		Moszczynski (1996)[66]
CD4+ T-lymphocytes		Bassig (2016)[34].
		Kirkeleit (2006)[57], Li
		(2012)[62], Ray
		(2007)[22], Uzma
		(2010)[81], Wang
		(2012)[83], Lan
		(2004)[59], Shen
		(2008)[72]
CD8+ T-lymphocytes	Sukaisi	Ray (2007)[22], Wang
	(2017)[76]	(2012)[83]
CD4+/CD8+T-cell ratio		Shen (2008)[72], Uzma
		(2010)[81], Bassig
		(2016)[34], Li (2012)[62],
		Moszczynski (1996)[66],
		Lan (2004)[59]
NK cells		Bassig (2016)[34],
		Moszczynski (1996)[66],
		Santiago (2017)[70], Lan
		(2004)[59]

Abbreviations: CBC, complete blood count; NK cells, natural killer cells; RBC, red blood cell; WBC, white blood cell

Benzene-Induced Hematotoxicity Outcomes

1. White blood cells

Many studies investigating the association between benzene exposure and altered blood cell counts demonstrate evidence of hematological suppression in exposed humans. A summary of the hematotoxicity outcomes observed can be found in **Table S6** above.

In particular, white blood cell (WBC) counts seem to be the most affected as a total of 27 studies have reported lower overall WBCs.[3, 12, 15, 20, 21, 23, 24, 26, 28, 29, 34, 35, 38, 39, 42, 52, 54, 56, 59, 63, 72, 83, 85, 87, 89, 92, 93] A much smaller number of studies reported an increase in overall WBC count,[5, 25, 40, 43-45, 47, 50, 51] and four studies reported no significant change.[48, 68, 77, 86]

WBC subsets were also observed in several studies. Three studies reported a decrease in granulocyte count.[34, 59, 72] Seven studies reported a significant decrease in eosinophil count in association with benzene exposure,[25, 33, 49, 69, 73, 78, 80] although five studies indicated an increase[6, 22, 28, 64, 91] and another study indicated no change.[4] For neutrophils, eleven studies reported a decrease,[3, 4, 21, 26, 35, 38, 51, 52, 63, 91, 92] but a separate six studies reported an increase.[5, 6, 19, 25, 50, 87]

The majority of studies have documented lower absolute lymphocyte levels in benzene-exposed humans,[3, 22-24, 26, 34, 38, 59, 63] although a few studies have reported an increase[5, 6, 50, 87, 91] and one study indicated no change.[46] Specifically, numbers of circulating B-lymphocytes[34, 36, 59, 72, 83] and T-lymphocytes[66, 67, 83] were decreased. In particular, CD4⁺ T-lymphocytes were observed to decrease in all studies,[22, 34, 57, 59, 62, 72, 81, 83]. The results were slightly mixed in regards to CD8⁺ T-lymphocytes with one study observing an increase in CD8⁺ T-lymphocytes,[76] two studies observing a decrease,[22, 83]. Several studies also reported a decrease in the CD4⁺/CD8⁺ T cell ratio,[34, 59, 62, 66, 72, 81] which could indicate altered or suppressed immune function as the CD4⁺/CD8⁺ ratio test is most commonly used to detect AIDS (acquired immunodeficiency syndrome).[94] Four studies also reported an overall decrease in natural killer (NK) cells.[34, 59, 66, 70]

In the case of increased white blood cell counts, one study reported an increase in macrophages[6] and three studies reported an overall increase in basophils.[4, 50, 64] Six studies also reported an increase in monocytes,[4, 5, 22, 50, 78, 87] although another two studies reported a decrease.[26, 63]

There have also been a few studies that have revealed no statistically significant differences in complete blood cell counts examined.[11, 27, 46, 48, 58, 75, 77-79, 84, 86]

Finally, one study has reported unique hematological abnormalities in 15 shipyard workers from the U.S. By observing cells with peripheral blood smears, the study reported that 9 out of the 15 workers exhibited at least one hematologic abnormality and that 6 out of the 15 peripheral blood smears contained numerous large granular lymphocytes, indicating proliferation of cytotoxic T cells.[65]

2. Platelets

Platelets are traditionally known as having only one function: hemostasis and thrombosis (blood clotting). Recently, however, evidence has accumulated that suggests a potential role for platelets in elements of the immunological response. In particular, data suggests that platelets could play a role in

inflammation by releasing cytokines and chemokines to attract neutrophils, monocytes, and lymphocytes to sites of infection.[95] Additionally, studies have shown that platelets can function as immune cells by engulfing microbes, such as HIV and bacteria.[96, 97] Thus platelet count could be an indicator of immune system dysfunction or deficiency.

In relation to benzene exposure, 17 studies reported a decrease in platelet count, [4, 12, 15, 22-24, 26, 34, 41, 52, 55, 59, 72, 83, 91-93] five studies reported an increase, [40, 42-45] and one study reported no change. [84]

Many studies reporting on hematological parameters also observed changes in mean corpuscular volume and hemoglobin count, although these results are not included here since as of our current scientific understanding, the two measures do not correlate with inflammatory or immunosuppressive outcomes.

3. Red blood cells

A large number of studies reported a *decrease in red blood cells (RBC)*.[4, 12, 15, 20-27, 29, 50, 52, 54] RBCs typically play a role in oxygen transport to the various tissues of our body. Although RBCs do not play a direct role in the immune system, recent studies have revealed an emerging role for erythrocytes as modulators of innate immunity and cytokine signaling.[98, 99] This suggests that a lack of RBCs could play a role in the immune response to benzene exposure. A separate three studies reported an increase in RBCs.[5, 16, 28]

Figure S1. Summary of observed chronic inflammation, immunosuppression, and hematotoxicity outcomes in association with benzene exposure.

Abbreviations: CTAP III, connective tissue-activating peptide III; CXCL, CXC chemokine ligand; HLA-DR, human leukocyte antigen-DR isotype; IFN, interferon; Ig, immunoglobulin; IL, interleukin; NAG, N-acetyl-beta-glucosamine; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NK cells, natural killer cells; PAIgs, platelet-associated immunoglobulins; PF4, platelet factor 4; RBC, red blood cell; sCD, soluble CD; STAT3, signal transducer and activators of transcription 3; TCRV β , variable β -domain of T-cell receptors; TNF- α , tumor necrosis factor alpha; TRECs, T-cell receptor excision circles

References

- 1. Smith MT, Guyton KZ, Gibbons CF, et al. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. *Environ Health Perspect*. 2016;124(6):713-21.
- 2. IARC. Benzene. *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*. 2018;120:307.
- 3. Bogadi-Sare A, Turk R, Karacic V, et al. Red blood cell glycerol lysis and hematologic effects in occupational benzene exposure. *Toxicol Ind Health*. 1997;13(4):485-94.
- 4. Chen Q, Sun H, Zhang J, et al. The hematologic effects of BTEX exposure among elderly residents in Nanjing: a cross-sectional study. *Environ Sci Pollut Res Int*. 2019;26(11):10552-61.
- 5. Doherty BT, Kwok RK, Curry MD, et al. Associations between blood BTEXS concentrations and hematologic parameters among adult residents of the U.S. Gulf States. *Environ Res.* 2017;156:579-87.
- 6. Dutta A, Roychoudhury S, Chowdhury S, et al. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. *Int J Hyg Environ Health*. 2013;216(3):301-8.
- 7. Elango N, Kasi V, Vembhu B, et al. Chronic exposure to emissions from photocopiers in copy shops causes oxidative stress and systematic inflammation among photocopier operators in India. *Environ Health*. 2013;12(1):78.
- 8. Fenga C, Gangemi S, Giambo F, et al. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress. *Life Sci*. 2016;147:67-70.
- 9. Forrest MS, Lan Q, Hubbard AE, et al. Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. *Environ Health Perspect*. 2005;113(6):801-7.
- 10. Haro-Garcia LC, Juarez-Perez CA, Aguilar-Madrid G, et al. Production of IL-10, TNF and IL-12 by peripheral blood mononuclear cells in Mexican workers exposed to a mixture of benzene-toluene-xylene. *Arch Med Res.* 2012;43(1):51-7.
- 11. Hotz P, Carbonnelle P, Scheiff JM, et al. Interleukin 1 alpha hematological examination in mechanics exposed to low benzene concentrations. *Int Arch Occup Environ Health*. 1998;71(1):19-28.
- 12. Ibrahim KS, Amer NM, El-dossuky EA, et al. Hematological effect of benzene exposure with emphasis of muconic acid as a biomarker. *Toxicol Ind Health*. 2014;30(5):467-74.
- 13. Jorgensen KM, Faergestad Mosleth E, Hovde Liland K, et al. Global Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels. *Int J Environ Res Public Health*. 2018;15(11).
- 14. Lehmann I, Rehwagen M, Diez U, et al. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: results of the LARS study. *Int J Hyg Environ Health*. 2001;204(4):211-21.
- 15. Li B, Li YQ, Yang LJ, et al. Decreased T-cell receptor excision DNA circles in peripheral blood mononuclear cells among benzene-exposed workers. *Int J Immunogenet*. 2009;36(2):107-11.
- 16. Liang B, Zhong Y, Chen K, et al. Serum plasminogen as a potential biomarker for the effects of low-dose benzene exposure. *Toxicology*. 2018;410:59-64.
- 17. McHale CM, Zhang L, Lan Q, et al. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms. *Genomics*. 2009;93(4):343-9.
- 18. McHale CM, Zhang L, Lan Q, et al. Global gene expression profiling of a population exposed to a range of benzene levels. *Environ Health Perspect*. 2011;119(5):628-34.
- 19. Moro AM, Brucker N, Charao MF, et al. Early hematological and immunological alterations in gasoline station attendants exposed to benzene. *Environ Res.* 2015;137:349-56.

- 20. Pelallo-Martinez NA, Batres-Esquivel L, Carrizales-Yanez L, et al. Genotoxic and hematological effects in children exposed to a chemical mixture in a petrochemical area in Mexico. *Arch Environ Contam Toxicol*. 2014;67(1):1-8.
- 21. Qu Q, Shore R, Li G, et al. Hematological changes among Chinese workers with a broad range of benzene exposures. *Am J Ind Med*. 2002;42(4):275-85.
- 22. Ray MR, Roychoudhury S, Mukherjee S, et al. Occupational benzene exposure from vehicular sources in India and its effect on hematology, lymphocyte subsets and platelet P-selectin expression. *Toxicol Ind Health*. 2007;23(3):167-75.
- 23. Rothman N, Li GL, Dosemeci M, et al. Hematotoxicity among Chinese workers heavily exposed to benzene. *Am J Ind Med*. 1996;29(3):236-46.
- 24. Rothman N, Smith MT, Hayes RB, et al. An epidemiologic study of early biologic effects of benzene in Chinese workers. *Environ Health Perspect*. 1996;104 Suppl 6:1365-70.
- 25. Samadi MT, Shakerkhatibi M, Poorolajal J, et al. Association of long term exposure to outdoor volatile organic compounds (BTXS) with pro-inflammatory biomarkers and hematologic parameters in urban adults: A cross-sectional study in Tabriz, Iran. *Ecotoxicol Environ Saf*. 2019;180:152-9.
- 26. Robert Schnatter A, Kerzic PJ, Zhou Y, et al. Peripheral blood effects in benzene-exposed workers. *Chem Biol Interact*. 2010;184(1-2):174-81.
- 27. Townsend JC, Ott MG, Fishbeck WA. Health exam findings among individuals occupationally exposed to benzene. *J Occup Med*. 1978;20(8):543-8.
- 28. Uzma N, Salar BM, Kumar BS, et al. Impact of organic solvents and environmental pollutants on the physiological function in petrol filling workers. *Int J Environ Res Public Health*. 2008;5(3):139-46.
- 29. Ward E, Hornung R, Morris J, et al. Risk of low red or white blood cell count related to estimated benzene exposure in a rubberworker cohort (1940-1975). *Am J Ind Med.* 1996;29(3):247-57.
- 30. Yang J, Bai W, Niu P, et al. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data. *Exp Mol Pathol.* 2014;96(3):346-53.
- 31. Zhang Z, Li P, Lin D, et al. Proteome analysis of the potential serum biomarkers for chronic benzene poisoning. *Environ Toxicol Pharmacol*. 2018;60:157-64.
- 32. Baiz N, Slama R, Bene MC, et al. Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort. *BMC Pregnancy Childbirth*. 2011;11:87.
- 33. Barman B, Baishya R, Bora B. A comparative study of pulmonary function and eosinophil count in petrol pump workers in Kamrup Metro district in relation to chronic inhalation of petroleum derivatives. *International Journal of Scientific Research*. 2016;5(12):56-8.
- 34. Bassig BA, Zhang L, Vermeulen R, et al. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene. *Carcinogenesis*. 2016;37(7):692-700.
- 35. Biro A, Pallinger E, Major J, et al. Lymphocyte phenotype analysis and chromosome aberration frequency of workers occupationally exposed to styrene, benzene, polycyclic aromatic hydrocarbons or mixed solvents. *Immunol Lett.* 2002;81(2):133-40.
- 36. Bogadi-Sare A, Zavalic M, Trosic I, et al. Study of some immunological parameters in workers occupationally exposed to benzene. *Int Arch Occup Environ Health*. 2000;73(6):397-400.
- 37. Boscolo P, Di Gioacchino M, Sabbioni E, et al. Lymphocyte subpopulations, cytokines and trace elements in asymptomatic atopic women exposed to an urban environment. *Life Sci.* 2000;67(10):1119-26.
- 38. Casale T, Sacco C, Ricci S, et al. Workers exposed to low levels of benzene present in urban air: Assessment of peripheral blood count variations. *Chemosphere*. 2016;152:392-8.
- 39. Cody RP, Strawderman WW, Kipen HM. Hematologic effects of benzene. Job-specific trends during the first year of employment among a cohort of benzene-exposed rubber workers. *J Occup Med.* 1993;35(8):776-82.

- 40. D'Andrea MA, Singh O, Reddy GK. Health consequences of involuntary exposure to benzene following a flaring incident at British Petroleum refinery in Texas City. *American journal of disaster medicine*. 2013;8(3):169-79.
- 41. D'Andrea MA, Reddy GK. Health consequences among subjects involved in Gulf oil spill cleanup activities. *The American journal of medicine*. 2013;126(11):966-74.
- 42. D'Andrea MA, Reddy GK. Health effects of benzene exposure among children following a flaring incident at the British Petroleum Refinery in Texas City. *Pediatr Hematol Oncol.* 2014;31(1):1-10.
- 43. D'Andrea MA, Reddy GK. Hematological and hepatic alterations in nonsmoking residents exposed to benzene following a flaring incident at the British petroleum plant in Texas City. *Environ Health*. 2014;13:115.
- 44. D'Andrea MA, Reddy GK. Detrimental Health Effects of Benzene Exposure in Adults After a Flaring Disaster at the BP Refinery Plant in Texas City. *Disaster medicine and public health preparedness*. 2016;10(2):233-9.
- 45. D'Andrea MA, Reddy GK. Benzene exposure from the BP refinery flaring incident alters hematological and hepatic functions among smoking subjects. *International journal of occupational medicine and environmental health*. 2017;30(6):849-60.
- 46. Erdei E, Bobvos J, Brozik M, et al. Indoor air pollutants and immune biomarkers among Hungarian asthmatic children. *Arch Environ Health*. 2003;58(6):337-47.
- 47. Froom P, Dyerassi L, Cassel A, et al. Erythropoietin-independent colonies of red blood cells and leukocytosis in a worker exposed to low levels of benzene. *Scand J Work Environ Health*. 1994;20(4):306-8.
- 48. Hancock DG, Moffitt AE, Jr., Hay EB. Hematological findings among workers exposed to benzene at a coke oven by-product recovery facility. *Arch Environ Health*. 1984;39(6):414-8.
- 49. Harati B, Shahtaheri SJ, Karimi A, et al. Hematologic evaluation of painting hall workers in an automobile manufacturing company. *Shiraz E-Medical Journal*. 2017;18(12):1-7.
- 50. Haufroid V, Hotz P, Carbonnelle P, et al. Relationships between smoking habits, smokingassociated hematological changes, and urinary benzene metabolites. *J Toxicol Environ Health*. 1997;52(1):1-17.
- 51. Hristeva-Mirtcheva V. Changes in the peripheral blood of workers with occupational exposure to aromatic hydrocarbons. *Int Arch Occup Environ Health*. 1998;71 Suppl:S81-3.
- 52. Huang Z, Wang H, Huang H, et al. iTRAQ-based proteomic profiling of human serum reveals down-regulation of platelet basic protein and apolipoprotein B100 in patients with hematotoxicity induced by chronic occupational benzene exposure. *Toxicology*. 2012;291(1-3):56-64.
- 53. Huang J, Zhao M, Wang P, et al. Effects of low concentrations of benzene exposure on levels of platelet-associated antibodies and platelet parameters. *J Occup Environ Med*. 2014;56(10):e92-7.
- 54. Kamal A, Malik RN. Hematological Evidence of Occupational Exposure to Chemicals and Other Factors among Auto-Repair Workers in Rawalpindi, Pakistan. *Osong Public Health Res Perspect.* 2012;3(4):229-38.
- 55. Kasemy ZA, Kamel GM, Abdel-Rasoul GM, et al. Environmental and health effects of benzene exposure among Egyptian taxi drivers. *Journal of Environmental and Public Health*. 2019;2019:1-6.
- 56. Kipen HM, Cody RP, Crump KS, et al. Hematologic effects of benzene: a thirty-five year longitudinal study of rubber workers. *Toxicol Ind Health*. 1988;4(4):411-30.
- 57. Kirkeleit J, Ulvestad E, Riise T, et al. Acute suppression of serum IgM and IgA in tank workers exposed to benzene. *Scand J Immunol*. 2006;64(6):690-8.
- 58. Koh DH, Jeon HK, Lee SG, et al. The relationship between low-level benzene exposure and blood cell counts in Korean workers. *Occup Environ Med*. 2015;72(6):421-7.
- 59. Lan Q, Zhang L, Li G, et al. Hematotoxicity in workers exposed to low levels of benzene. *Science*. 2004;306(5702):1774-6.
- 60. Lan Q, Zhang L, Hakim F, et al. Lymphocyte toxicity and T cell receptor excision circles in workers exposed to benzene. *Chem Biol Interact*. 2005;153-154:111-5.

- 61. Li B, Li Y, Chen S, et al. The T-cell receptor Vβ gene repertoire and clonal expansion from peripheral blood T cells in benzene-exposed workers in China. *Hematology*. 2009;14(2):106-10.
- 62. Li B, Niu Y, Liu S, et al. A change in CD3gamma, CD3delta, CD3, and CD3zeta gene expression in T-lymphocytes from benzene-exposed and benzene-poisoned workers. *J Immunotoxicol*. 2012;9(2):160-7.
- 63. Li J, Xing X, Zhang X, et al. Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene. *Environ Pollut*. 2018;234:127-35.
- 64. Li X, Guo Y, Song X, et al. A cross-sectional survey based on blood VOCs, hematological parameters and urine indicators in a population in Jilin, Northeast China. *Environ Geochem Health*. 2019;41(3):1599-615.
- 65. Midzenski MA, McDiarmid MA, Rothman N, et al. Acute high dose exposure to benzene in shipyard workers. *Am J Ind Med*. 1992;22(4):553-65.
- 66. Moszczynski P, Rutowski J, Slowinski S. The effect of cigarettes smoking on the blood counts of T and NK cells in subjects with occupational exposure to organic solvents. *Cent Eur J Public Health.* 1996;4(3):164-8.
- 67. Moszczynski P, Lisiewicz J. Occupational exposure to benzene, toluene and xylene and the lymphocyte lysosomal N-acetyl-beta-D-glucosaminidase. *Ind Health*. 1985;23(1):47-51.
- 68. Pitarque M, Carbonell E, Lapena N, et al. No increase in micronuclei frequency in cultured blood lymphocytes from a group of filling station attendants. *Mutat Res.* 1996;367(3):161-7.
- 69. Renzetti G, Silvestre G, D'Amario C, et al. Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children. *Pediatrics*. 2009;123(3):1051-8.
- 70. Santiago F, Lima S, Pinheiro T, et al. Benzene poisoning, clinical and blood abnormalities in two Brazilian female gas station attendants: two case reports. *BMC Res Notes*. 2017;10(1):52.
- 71. Sauer E, Gauer B, Nascimento S, et al. The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk. *Environ Res.* 2018;166:91-9.
- 72. Shen M, Zhang L, Bonner MR, et al. Association between mitochondrial DNA copy number, blood cell counts, and occupational benzene exposure. *Environ Mol Mutagen*. 2008;49(6):453-7.
- 73. Singh D, Hasan S, Siddiqui S, et al. Eosinophil count in petrol pump workers in and around the Muzaffarnagar city. *National Journal of Physiology, Pharmacy & Pharmacology*. 2014;4(2):118-20.
- 74. Smolik R, Grzybek-Hryncewicz K, Lange A, et al. Serum complement level in workers exposed to nebzene, toluene and xylene. *Int Arch Arbeitsmed*. 1973;31(3):243-7.
- 75. Spatari G, Saitta S, Giorgianni C, et al. Interleukin-10 involvement in exposure to low dose of benzene. *Toxicol Ind Health*. 2015;31(4):351-4.
- 76. Sukaisi, Harahap U, Munir E. Measuring the amount of trans, trans-muconic acid in correlation with the CD4+ and CD8+ lymphocytes and their ratios caused by benzene exposure, and associated occupational health hazards. *IIOAB Journal*. 2017;8(3):13-7.
- 77. Sul D, Lee E, Lee MY, et al. DNA damage in lymphocytes of benzene exposed workers correlates with trans,trans-muconic acids and breath benzene levels. *Mutat Res.* 2005;582(1-2):61-70.
- 78. Swaen GM, van Amelsvoort L, Twisk JJ, et al. Low level occupational benzene exposure and hematological parameters. *Chem Biol Interact*. 2010;184(1-2):94-100.
- 79. Tsai SP, Fox EE, Ransdell JD, et al. A hematology surveillance study of petrochemical workers exposed to benzene. *Regul Toxicol Pharmacol.* 2004;40(1):67-73.
- 80. Tunsaringkarn T, Soogarun S, Palasuwan A. Occupational exposure to benzene and changes in hematological parameters and urinary trans, trans-muconic acid. *Int J Occup Environ Med*. 2013;4(1):45-9.
- 81. Uzma N, Kumar BS, Hazari MA. Exposure to benzene induces oxidative stress, alters the immune response and expression of p53 in gasoline filling workers. *Am J Ind Med*. 2010;53(12):1264-70.

- 82. Vermeulen R, Lan Q, Zhang L, et al. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics. *Proc Natl Acad Sci U S A*. 2005;102(47):17041-6.
- 83. Wang Q, Ye R, Ye YJ, et al. mRNA expression levels among cell regulatory and DNA damage genes in benzene-exposed workers in China. *J Occup Environ Med*. 2012;54(12):1467-70.
- 84. Wiwanitkit V, Suwansaksri J, Soogarun S. The urine trans, trans muconic acid biomarker and platelet count in a sample of subjects with benzene exposure. *Clin Appl Thromb Hemost*. 2004;10(1):73-6.
- 85. Wu T, Yuan Y, Wu Y, et al. Presence of antibodies to heat stress proteins in workers exposed to benzene and in patients with benzene poisoning. *Cell Stress Chaperones*. 1998;3(3):161-7.
- 86. Yaneva S, Zlatev Z, Totcheva T. Hematological changes in sailors from chemical cargo tankers. *Int Arch Occup Environ Health*. 1998;71 Suppl:S50-4.
- 87. Zamanian Z, Sedaghat Z, Mehrifar Y. Harmful Outcome of Occupational Exposure to Petrol: Assessment of Liver Function and Blood Parameters among Gas Station Workers in Kermanshah City, Iran. *Int J Prev Med*. 2018;9:100.
- 88. Guo X, Zhong W, Chen Y, et al. Benzene metabolites trigger pyroptosis and contribute to haematotoxicity via TET2 directly regulating the Aim2/Casp1 pathway. *EBioMedicine*. 2019;47:578-89.
- 89. Aksoy M, Dincol K, Akgun T, et al. Haematological effects of chronic benzene poisoning in 217 workers. *Br J Ind Med.* 1971;28(3):296-302.
- 90. Li P, Wu Y, Zhang Z, et al. Proteomics analysis identified serum biomarkers for occupational benzene exposure and chronic benzene poisoning. *Medicine (Baltimore)*. 2019;98(25):e16117.
- 91. Mukherjee AK, Chattopadhyay BP, Roy SK, et al. Work-exposure to PM10 and aromatic volatile organic compounds, excretion of urinary biomarkers and effect on the pulmonary function and heme-metabolism: A study of petrol pump workers and traffic police personnel in Kolkata City, India. *J Environ Sci Health A Tox Hazard Subst Environ Eng*. 2016;51(2):135-49.
- 92. Ren JC, Wang T, Wu H, et al. Promoter hypermethylation in CSF3R induces peripheral neutrophil reduction in benzene-exposure poisoning. *Environ Mol Mutagen*. 2020.
- 93. Vaughan Watson C, Naik S, Lewin M, et al. Associations between select blood VOCs and hematological measures in NHANES 2005-2010. *J Expo Sci Environ Epidemiol*. 2020.
- 94. McBride JA, Striker R. Imbalance in the game of T cells: What can the CD4/CD8 T-cell ratio tell us about HIV and health? *PLoS pathogens*. 2017;13(11):e1006624.
- 95. Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. *The Journal of physiology*. 2012;590(5):1023-34.
- 96. Zucker-Franklin D, Seremetis S, Zheng ZY. Internalization of human immunodeficiency virus type I and other retroviruses by megakaryocytes and platelets. *Blood*. 1990;75(10):1920-3.
- 97. Youssefian T, Drouin A, Masse JM, et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. *Blood*. 2002;99(11):4021-9.
- 98. Anderson HL, Brodsky IE, Mangalmurti NS. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. *Journal of immunology*. 2018;201(5):1343-51.
- 99. Karsten E, Herbert B. The emerging role of red blood cells in cytokine signalling and modulating immune cells. *Blood Reviews*. 2019.