Supplementary Material

to

Prolyl hydroxylase paralogs in *Nicotiana benthamiana* show high similarity with regard to substrate specificity

Réka Mócsai¹, Kathrin Göritzer², David Stenitzer¹, Daniel Maresch¹, Richard Strasser², Friedrich Altmann^{1*}

¹ Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria

² Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria

* Correspondence:

friedrich.altmann@boku.ac.at

SUPPLEMENTARY TABLES

Supplementary Table S1. All oligonucleotides used in this study are collected in this table.

	Construct	F 5'→3'	R 5′→3′	Size (bp)
s iniT	Nb_P4H1	TCCTCCATTTCAGTTCAGATTTC	GGACAAAAATGTTCTAAGATATATC AA	961
loning or pM	Nb_P4H4	AGGAACTTATCTCTATCTCTTCTGT CA	AGTGGGAGGGAGAGGTATAATG	1000
scto	Nb_P4H9	CCTCTCTATTTGGGTTGTGTTGT	AGAAGGGACAAACTGATACTGAGC	1102
۳ ۲	Nb_P4H10	CAGCGACTCAGACTTCATACACT	GGCTCTCCTCAAGATTGTAACC	1077
or	Nb_P4H1	GTTTCTGAGCTCCATAGGATGGAGG ACTCACTTGAC	GTTTCTGGTACCTTAGGATACAAGT CTTTGCCTCATCC	771
n vect His-1	Nb_P4H4	GTTTCTGAGCTCAACCCATCCAAAG TCAAGCAAAT	GTTTCTGGTACCTTAACAGGCTTTG CAGCTCTTCC	801
'essioi -Bac-F	Nb_P4H9	GTTTCTGAGCTCGGTTCTACTCTCA TCTCTCAGCAGG	GTTTCTGGTACCTTATTCATCAAGT TCCTGATCCCTG	771
Expr pVT	Nb_P4H10	GTTTCTGAGCTCTCGATTCCTTTCA GTTCTAAAGG	GTTTCTGGTACCTTAAACCTTGTAT TCGTGAACACG	747
رط: (ط:	Nb_P4H1	TATATCTAGAATGGCTTCGGCAATG AGAATTGTT	TATAGGATCCGGATACAAGTCTTTG CCTCATCC	858
essio FP/RF	Nb_P4H4	TATATCTAGAATGAACAGCTCTTTG CTGCTCG	TATAAGATCTACAGGCTTTGCAGCT CTTCC	882
t expr ors (G	Nb_P4H9	TATATCTAGAATGAAGAACAGAGGC AAATTAC	TATAGGATCCTTCATCAAGTTCCTG ATCCCTG	867
Plan vect	Nb_P4H10	TATATCTAGAATGGCAGTCAAAGGA AGGCACGTC	TATAGGATCCAACCTTGTATTCGTG AACACGCATC	870
i ors	Nb_P4H1	TATAGGTACCTTGCCTCATCCATTT AGTAG	TATAGGATCCGAGGGGGGGAGAGACA TACTTTC	213
RNA vect	Nb_P4H10	TATAGGTACCGCATCCATTTCGTAG ACGACC	TATAGGATCCAAATGGTGGTCAACG CATTGCC	278
~	Nb-P4H1	GGACTCACTTGACAGAGAATCG	TGCTAACGGATGTTTGTTGC	73
CI -	Nb-P4H10	GGAACCAAGAGCTGTTGTGT	CCCCTGGCAAGAAATGTTCC	168
Ъ,	Nb-PP2A	GACCCTGATGTTGATGTTCGCT	GAGGGATTTGAAGAGAGATTTC	123

Supplementary Table S2. Summarized results of the BLAST searches against *Nicotiana benthamiana* sequence database (https://benthgenome.qut.edu.au/) using all known *Arabidopsis thaliana* prolyl 4-hydroxylases (gene accession numbers in brackets). The candidates represented four phylogenetically distant groups, as shown in **Figure 1**. The last three hits were omitted from the list of candidates based on lack of transmembrane domains (TMD) and low homology scores. The 11 candidates were then phylogenetically assessed and 4 of them were selected for further characterization (marked red).

#	Name	closest to	score	Comment
1	Nbv6.1trP31841 probable P4H 10	At-P4H3	1e-58	Cloned
		(At1g20270)		
2	Nbv6.1trP13474 probable P4H 10	At-P4H10	1e-55	84% identity to #1
		(At5g66060)		
3	Nbv6.1trP17689 probable P4H 10	At-P4H3	4e-49	96% identity to #1
		(At1g20270)		
4	Nbv6.1trP32337 probable P4H 3	At-P4H3	2e-29	79% identity to #1
		(At1g20270)		
5	Nbv6.1trP71678 prolyl 4-hydroxylase 1	At-P4H1	8e-23	Cloned
		(At2g43080)		
6	Nbv6.1trP28223 probable P4H 9	At-P4H9	3e-16	Cloned
		(At4g33910)		
7	Nbv6.1trP14824 probable P4H 9	At-P4H9	4e-15	81% identity to #6
		(At4g33910)		
8	Nbv6.1trP32386 probable P4H 4	At-P4H4	3e-13	Cloned
		(At5g18900)		
9	Nbv6.1trP9347 probable P4H 4	At-P4H4	3e-13	92% identity to #8
		(At5g18900)		
10	Nbv6.1trP34039 probable P4H 4	At-P4H4	2e-11	83% identity to #8
		(At5g18900)		
11	Nbv6.1trP9907 probable P4H 9	At-P4H9	6e-08	93% identity to #6
		(At4g33910)		
12	Nbv6.1trP27956 probable 28s rRNA (cytosine-c)-	At P4H7	1e-06	P4H domain, no TMD
	methyltransferase isoform x1	(At3g28480)		
13	Nbv6.1trP61995 hmg1 2-like protein	At-P4H13	0.057	low homology, no P4H
		(At2g23096)		domain
14	Nbv6.1trP17158 probable uncharacterized	At-P4H12	0.060	low homology, no P4H
	protein	(At4g25600)		domain

Supplementary Table S3. RNA expression levels of the 11 identified prolyl 4-hydroxylases in *Nicotiana benthamiana* leaf tissue. Data were obtained from the Gene Expression Atlas (version 6) in the *N. benthamiana* database (https://benthgenome.qut.edu.au/) The candidates selected for cloning and expression are marked bold. In two cases, data was not available (NA).

Transcript ID	Name	Expression level in leaf tissue (reads per million)
Nbv6.1trP71678	prolyl 4-hydroxylase 1	5
Nbv6.1trP32386	probable prolyl 4-hydroxylase 4	32
Nbv61trP34039	probable prolyl 4-hydroxylase 4	20
Nbv61trP9347	probable prolyl 4-hydroxylase 4	13
Nbv6.1trP28223	probable prolyl 4-hydroxylase 9	37
Nbv61trP14824	probable prolyl 4-hydroxylase 9	4
Nbv61trP9907	probable prolyl 4-hydroxylase 9	NA
Nbv6.1trP31841	probable prolyl 4-hydroxylase 10	14
Nbv61trP17689	probable prolyl 4-hydroxylase 10	8
Nbv61trP13474	probable prolyl 4-hydroxylase 10	5
Nbv61trP32337	probable prolyl 4-hydroxylase 3	NA

Supplementary Table S4.

Comparison of nucleic acid sequences of the *N. benthamiana* database (https://benthgenome.qut.edu.au/) entries (template) and sequences of the selected clones acquired after amplification from *N. benthamiana* cDNA library.

Template	Clone	Query cover(%)	Identity (%)	Mutations	Gaps
Nbv6.1trP71678	Nb-P4H1	100	100	0	0
Nbv6.1trP32386	Nb-P4H4	100	99.63	3	0
Nbv6.1trP28223	Nb-P4H9	100	100	0	0
Nbv6.1trP31841	Nb-P4H10	100	95.60	30	3

SUPPLEMENTARY FIGURES

CLUSTAL O(1.2.4) multiple sequence alignment

Arath_P4H1_Q9ZW86	VSWSPRIIVLHDFLSPEECEYLKAIARPRLQVSTVVDVKTG-KGVKSDVRTSSGMFLTHV	59
NbP4H-1	ISWKPRIILFHNFLSAEECDYLRSVAMPRLHVSTVVDAKTG-KGIKSDVRTSSGMFLSPD	59
NbP4H-4	ISWKPRAFVYEGFLTDEECNHLISLAKSELKRSAVADNESG-NSKTSEVRTSSGMFIPKA	59
NbP4H-9	LSWFPRALYFPNFATEEQCQGIIKMAKAELKPSALALRKGETAENTKGIRTSSGMFISSS	60
NbP4H-10	ISWEPRAVVYHNFLSKDECEYLINLGKPHMKKSTVVDSATG-KSTDSRVRTSSGTFLARG	59
	** **	
Arath P4H1 Q9ZW86	ERSYPIIQAIEKRIAVFSQVPAENGELIQVLRYEPQQFYKPHHDYFADTFNLKRGGQRVA	119
NbP4H-1	ERKYPMIQAIEKRISVYSQIPVENGELIQVLRYEKNOFYRAHHDYFSDSFNVKRGGQRIA	119
NbP4H-4	KDPIVSGIEEKIATWTFLPKENGEEIQVLRYEEGQKYEPHYDYFVDEVNIARGGHRLA	117
NbP4H-9	EDKTGILDLIEEKIARAAMIPRTHGEAFNVLRYEIGQSYHSHYDAFDPSQYGPQKSQRVA	120
NbP4H-10	ODKVVRTIEKRIADFTFIPVEHGEGLOILHYEVGOKYEPHYDYFAEEFNTINGGORIA	117

Arath_P4H1_Q9ZW86	TMLMYLTDDVEGGETYFPLAGDGDCTCGGKIMKGISVKPTKGDAVLFWSMGL	171
NbP4H-1	TMLMYLSDGVEGGETYFPMAGTGECSCGGKMIKGLCVKPTKGDAVLFWSMGL	171
NbP4H-4	TVLMYLTDVEKGGETVFPNAEESPRRRSMTADDSLSECAKKGIPVKPRKGDALLFYSLHP	177
NbP4H-9	SFLLYLSDVEEGGETMFPFENGQNMDANYDFRKCIGLKVKPRRGDGLLFYSLFP	174
NbP4H-10	TVLMYLSDVEEGGETVFPTAKGNVSAVPWWNELSECGKGGLSVKPKMGDALLFWSMKP	175
	* *** * *** **	
	↓ ↓	
Arath_P4H1_Q9ZW86	DGQSDPRSIHGGCEVLSGEKWSATKWMRQKA 202	
NbP4H-1	DGQSDPESLHGGCEVLSGEKWSATKWMRQRL 202	
NbP4H-4	NATPDPLSLHGGCPVIQGEKWSATKWIHVDS 208	
NbP4H-9	NGTIDPTSLHGSCPVIRGEKWVATKWIR 202	
NbP4H-10	DATLDPSSLHGGCPVIKGNKWSSTKWMRVHE 206	
	** * ** * * * **	

Supplementary Figure S1. Alignment of the catalytic domain sequences of the selected *N*. *benthamiana* P4H candidates next to the *Arabidopsis thaliana* P4H1 (Uniprot Q9ZW86). Arrows mark the three Fe²⁺-binding residues (two histidines and an aspartate), and the lysine binding the C-5 carboxyl group of the 2-oxoglutarate. Alignment was created with the Clustal Omega Multiple sequence alignment tool (Madeira et al., 2019).

Supplementary Figure S2. A capillary-LC-ESI-MS measurement example (Nb-P4H9; 1.12 mM substrate). Assays were taken up in water and loaded onto a Biobasic capillary column (150×0.32 mm Thermo Scientific) using a Dionex Ultimate 3000 LC system coupled to a Bruker maXis 4G Q-TOF MS equipped with the standard ESI source. The concentration of the internal standard (PTTTPITTTTVTPTPTPTGTQTK) remained the same for all measurements and was used for normalization of peak areas. The peak areas of the (**A**) base peak chromatograms were used for calculation. Representative mass spectra are depicted of the (**B**) internal standard, (**C**) the substrate IgA1 synthetic peptide (VTVPVPSTPPTPSPSTPPTPSPS) and the (**D**) one times oxidized product. Due to eluent composition the IgA1 peptide dominantly occurs as ammonium adduct, hence this form was used for quantification.

Supplementary Figure S3. A nano-LC-ESI-MS measurement example (Nb-P4H4; 1.12 mM substrate). Assays were taken up in water and loaded onto a Thermo Acclaim PepMap300 RSLC C18 separation column (2 µm particle size, 150*0.075 mm) with a Thermo Acclaim PepMap µ-precolumn using a Dionex Ultimate 3000 LC system coupled to a Bruker maXis 4G Q-TOF MS equipped with the nano ESI source. The concentration of the internal standard (PTTTPITTTTVTPTPTGTQTK) remained the same for all measurements and was used for normalization of peak areas. The peak areas of the (**A**) base peak chromatograms were used for calculation. Representative mass spectra are depicted of the (**B**) internal standard, (**C**) the substrate IgA1 synthetic peptide (VTVPVPSTPPTPSPS) and the (**D**) one times oxidized product. In the product spectra also a two times oxidized peptide (+2Hyp) can be found. Due to the negligible amount it was excluded from the calculations.

Supplementary Figure S4. K_m and v_{max} values were determined for (A1+B1) Nb-P4H1, (A2+B2) Nb-P4H4, (A3+B3) Nb-P4H9 and (A4+B4) Nb-P4H10. Concentrations from 0.02 to 5.61 mM of synthetic IgA1 peptide and a reaction time of 20 minutes (Nb-P4H9 and Nb-P4H10) or 30 minutes (Nb-P4H1 and Nb-P4H4) were used to calculate the K_m and v_{max} value. Analysis of the assays was done by LC-ESI-MS. (A1-A4) shows the velocity, which was calculated using a standard peptide, plotted against the substrate concentration. (B1-B4) Hanes-Woolf Plots for the calculation of the K_m and v_{max} values.

Р4Н1 1Нур	387, 188	498,313	+1Hyp Ye PTPSPS	731,445	923,488 10jt	1908 1187,592	P1633	142.78	1545,814	+ v1wPwPs 1/46,837	2Hyp Baa meetresesteet		
P4H1 2Hyp	387, 188	426.313	+1Hyp Y ₈ PTPSPS e01,222	8138 181.446	+11 E 983.487 3	Hyp 311 922-921_1187,592	+2Hy Y		1581,810	+2 VIVPVPS 1783,831	Hyp B. Interferenserer Interferenserer		
P4H1 2Hyp	387, 188	486,313	+1Hyp Ye PTIPSPS ett.252	/81.445	921,496 10/4	+2Hyp Y ¹² Parameters	+1Hyp B ₁₉ TVPVPSTPPTPS 1276.676	1478,700	1981.800	+ VTVPVP 1953-832	2Hyp B.g 11971752951797 1872,980		
P4H1 3Hyp	387, 188	498,312	+1Hyp Ye PTPSPS e01,222	181,445	+2Hyp +1 Y 10 PSTPPTPSPS/TW 200,492 X	IHyp B., 19785000 202 594 1181 548	+3Hy Y PTPSPST0PT	D Para Haked	+2Hyp B 18 STLass	4 1792/1	3Hyp B 13 PSTRPTPSPSTRPT 1892983		
P4H1 3Hyp	+1Hyp Y.	498,313	+2Hyp Ye PTPSPS B17.277	/81.445	+1 E 200,464	Hyp B ₁₁ ^{WETIPPT} 1181.548	+3Hy Y Presented	p Pers House	8 1981,812	VTVPv 1773.829	+2Hyp B ₁₉ rstreptpeperstrept 1872,987 v	+3Hyp B ₂₁ TWWSTIPTPEPSTP	PTPS
P4H1 4Hyp	+1Hyp Y PSPS 401100	498,315	+2Hyp Y PTPSPS 581,129 882	/81,445 878,502	+3Hyp ⁺ Y ₁₀ vity PSTIPPTPSPS S22,484 x	1Hyp B Monthern Margana (200, 552	+4H Y. PTPSPSTI	ур Флеве цев	+2Hyp B ₁₈ vitriverstrettesest aas 1577.aas	+ VI VPVP 1/58,830	3 Нур В., 5109105051097 _{VI} 1871.924	+4Hyp B www.storriPepstor 2000.005	TPS
P4H4 1Hyp	387, 188	496,313	581.223 81	/81,448	+1Hyp Yin PSTPPTIPSPS 983,488 1070	900 1187 552 13	81.833	1482,708/11 .]	+1Hyp Bre set ato	1746,837	191 8 982		_
P4H4 1Hyp	387, 188	498.313	+1Hyp Y ₈ PTPSPS ett.252 ett.252 ett.252	из.445 	983,488 10/0 1000	1.928 1187.992 13 1280	81.633 14	1482,705	1545,814 1630	VI VPV 1/43.841 1800	1Hyp B 19 STIPPTPSPSTPPT	220	m/z
Р4Н4 1Нур	387, 188	486,313	35 . .28	+1Hyp 181,445 Bg VTVPVPST	987,472	1151.557	17 12/1677	+1Hyp Y ₁₅ TPSPSTPPTPS S482,768	1581, 810	1/45.839	879 982		
Р4Н4 2Нур	387,188 . 	498,313	+1Hyp Ye stype stype	/81.445	+2Hyp Y 10 PETPPTTEPS 980,482 1076	528 1121.548 g	eress	+2Hvp	+ THYP B ₁₈ www.strift.tpspst test.ato	VI.VPVP 1783,831	2Hyp B 10 51001795051001 1872,965		
Р4Н4 2Нур	387,188	428,313	+1Hyp Ye PTINSPS e01,222 es	+1Hyp /81,448 Bg VI VI VI VI VI VI VI	953.468 107	192 (1921-547 21-1	1270-878	Y 15 1478-101 +4Hv		1 VI VPVP 1783 831	2Hyp Bas steptiesestept 187259		
P4H4 4Hyp	387, 188	486.313	+1Hyp Ye PTITESIS BUL222	+1Hyp	+2Hyp +	3Hyp B www.street masses masses +1Hyp	+3Hyp Y PTPSPSTIPTPS 1222,673	ү Мазентен на за	+3Hyp reses Ba vivevestiteres	2PST VII 1735.823	+4Hyp B	ч	_
Р4Н4 4Нур	387, 188	438.313 	+1Hyp **	2 myp 1	+3Hyp Y 10 Y	B 11 IVPVPSTPPT 222.594 1122.593	+4Hyp Y ₁₄ PTPSPSTPPTPS 1276,480	*** +4Hy		Hyp B ₁₇ vi uvrranst/Paan	+4Hyp B www.streffreestr soy.see	97	_
Р4П4 4Нур	387, 188	408.313	+1Hyp	Hyp Harse Hyp Hyp Hyp Hyp Hyp Hyp Hyp Hyp	+3Hyp	^{222 зан} 1122 эа2 2Нур	1276.682	PTIPEPETT 1917 1917 1917 1917 1917 1917 1917 19	+2riyp +3 **********************************	Hyp Byyyy Trefransil@axa	+4Hyp B www.streffeestr	971 2000_027	_
Р4н4 5Нур	387,188	498.312	+ ITIYP Y PTPSPS 813,212 822	PTI SPS 781,445 Bg VTVPVPST	PSTIPPTIPSPS 1015.488	B marsa 19250 +1Hvn ⁺	+4Hyp Y energystrifferen 1Hyp	PPTPSPS1 15		4Hyp *B., renificeren (*	+onyp Bis www.simiteerst	091	_
1Hyp	307 100 400	498,313	<u>. දුසු 287</u> හෝ හෝ	781,445 830	987,472 107 1000	Y 12 VIN PERSIPPIPERS 1908 197.692	B s evestiertes	1482.705 	1981,800	1747,837 1800	1006.981	020	mž
P4H9 2Hyp P4H9	387, 188 +1Hyp	408,313 •••	581.203 80	/81,448 8,138	+111yp Y PSTPP/PSPS 983.488 10/ +2Hyp	+2Hyp Y ***********************************	Hyp B evestleres 276809 +1Hyp	1475.702	+2Hyp B ***********************************	1763,833	18 <mark>12</mark> 1938	+3Hvp	_
3Hyp P4H9	+1Hyp Y	498.314	601,283	781, 448 714, 330 781, 446	Y 10 PSTPPPTPSPS 982,484 10/4 +2Hyp ⁺¹ Y	Hyp +3Hyp B ₁ Y	1278.678 1278.678 +2Hyp B ₁₃ +4H Typoperson	ченей УР 1510	+3Hyp Bas Bas	1779_828	187 <u>1</u> 981	+4Hyp	IPPTIPS
4Hyp P4H10 1Hyp	412.17 412.17	498.312	- <u>95-79</u> . 82.	HI 181,445	esternings tots assum +1F B	typ	PTPEPET PTPEPET PTPEPET PTPEPET PTPEPET	90 002 19 002 19 002	SYLEN	1735.824	1872,998	VIWWEIPHINE	IPPIPS
P4H10 2Hyp	387, 188	498,313	+1Hyp Ye PTPSPS 801.222	8,138	982.423 297 +1 923.488 10	Hyp B 11 MSTPPT 202,963, 1167,992	1276.678 +2Нур Ү 1276.677	NS 1475.700	1982,813	1/46/225	+2Hyp B 10 111/1997		
P4H10 2Hyp	38(188	496.313	+1Hyp Y PTPSPS BU1222	103.448 103.448	90.483 1	+2Hyp Y	+1Hyp Bu www.sternes www.sternes	1475-701	1581,810	1/62.833	+2Hyp Bia Hyperstreetperson	IPPI	
P4H10 3Hyp	387,188	496,313	+1Hyp Y PTPSPS	/81.445	+1 E 933.487 (1		+2Hyp +3H s B o present eventiones +4H	yp	5 1572,805	17/12 828	+3Hyp B ₁₉ vtvpvpstrpptpsps 1881,881	1991	
P4H10 4Hyp P4H10	+1Hyp Y +1Hyp +1Hyp	498,313	+2Hyp Y ₈ PTPSPS _817,278 +2Hyp	781,446 714,330	+1 ************************************		+2Hyp Y PSB TO PERSON WYPETITOTICS +2Hyp	Preses Ban	+3Hyp	1755.820	+3Hyp B vivevesimitiess +4Hvn	+4Hyp Barren Ban Viverestrentiers	<u>tee</u> tes
5Hyp	Y 19575 401 1952 400	488.313	Y medis state at the	181.445 a31	PSTPPTTPSPS ^{VTVI} 1015-458 x 1000 +2HVD	В11 т4ПУР мизарит У 12 ул релетатири ул ход 405 т200 ход	Bra +5F WWYSTIPTIPS Y S 1220,882 PTPSPST 94	iyp Minses ¹⁸ • +3Hy Y	P +2Hyp	1811.8 1850	2 VTVPVPSTPPTPSP 2 VTVPVPSTPPTPSP 2 991,983 2 +3Hyp	+5Hyp strer B ₂₁ vtvevestrertese) <u>stee</u> tes m2
ЗНур Рдни	Ĩ.	.	Y Pripestes	yp		190.00 ·	29479 192349	NN PERSONNAL PROPERTY.	+1Hvp	+2Hvp	H3Hvp	РТ •	-
3Hyp	30 JM	dW.314	+1Hyp	31.48 616	+3Hyp Y ₁₀ PSTIPPTPSPS			100.000	Ba	B,	B. NorstorPerson	ч	

Supplementary Figure S5. Individual LC-ESI-MS/MS spectra of the separate Base Peak Chromatogram peaks of **Figure 4** used to determine oxidation sites. Diagnostic Y-ions are marked blue and B-ions pink. Substrate was a synthetically produced IgA1 peptide with the sequence of VTVPVPSTPPTPSPSTPPTPSPS.

Supplementary Figure S6. LC-ESI-MS spectra of the IgA1 tryptic peptide

(HYTNPSQDVTVPCPVPSTPPTPSPSTPPTPSPSCCHPR - 4136.8899 Da) obtained after expressing IgA1 together with overexpression constructs of P4H candidates in *Nicotiana benthamiana*. After overexpression, a maximum of 6 hydroxyproline residues were attached to the peptide. Relative quantification of the data can be found in **Table 2** of the manuscript.

Supplementary Figure S7. Relative transcript levels of *Nb-P4H1* or *Nb-P4H10* mRNA in wild-type *N. benthamiana* leaves infiltrated with a control or a Nb-P4H gene silencing construct. Expression levels were analyzed by RT-qPCR. Values and error bars indicate means \pm SD (n = 3).

SUPPLEMENTARY DATA

Supplementary Data S1. ORF regions of the selected *Nb-P4H* candidates amplified using *N. benthamiana* cDNA library and subcloned into pMiniT 2.0 vectors (NEB PCR mini kit; New England Biolabs, Frankfurt am Main, Germany). The sequences have been submitted to the NCBI nucleotide database and the GenBank accession numbers are in brackets.

pMiniT 2.0-Nb-P4H1 (GenBank: MW524054)

pMiniT 2.0-Nb-P4H4 (GenBank: MW524055)

pMiniT 2.0-Nb-P4H9 (GenBank: MW524056)

ATGAAGAACAGAGGCAAATTACCGGGACAAAGATGGTGGAGCTTAGGGTTACCTTCGGTTTTTCTCCT TTGTCTTTCTTCTTCCTCGTCGGTTTATTCGGTTCTACTTTCATCTCTCAGCAGGATGTACAAGTAG GTAGTGTACGACCTAGGTCGAGGGTGCTTGAATCTGTGGAAGAATTTGATGCTTTGCCCAATGGCGAG ACTGGAGAACATTCACTCACTTCCATCCCCTTTCAGGTCTTAAGCTGGTTCCCGCGTGCATTATACTT TCCCAATTTTGCAACTGAAGAACAATGCCAAGGCATTATTAAGATGGCAAAGGCAGAGCTGAAACCAT CAGCTTTGGCTCTCCGCAAAGGAGAAACAGCAGGAGAATAACCAAAGGCAAGGCAGAGCTGAAACCAT CAGCTTTGGCTCTCCGCAAAGGAGAAACAGCAGAGAATAACCAAAGGAATAAGAACAAGTTCTGGAATG TTTATCAGTTCATCTGAAGACAAAACTGGAATTTTGGACCTCATTGAGGAAAAAATTGCAAGGGCGGC TATGATCCCCAGGACACATGGAGAGGCATTTAATGTGTTGCGGTATGAAATCGGCCAGAGTTATCATT CACATTATGATGCATTTGATCCTTCTCAATATGGTCCTCAGAAGAGCCAAAGGGTTGCATCCTTTTTA TTGTATTTATCTGATGTGGAAGAAGGTGGAGAGACCATGTTTCCTTTCGAGAATGGGCAGAACATGGA TGCTAATTATGACTTCCGAAAGTGTATTGGTTTGAAAGTGAAGCCGCGTAGAGGGGATGGACTACTGT TCTACTCACTGTTTCCAAATGGTACAATTGATCCGACATCTCTTCACGGGAGGCGATGGACTACCAGA GGCGAAAAATGGGTTGCCACAAAGTGGATCAGGAATCAGGAACTTGAATAA

pMiniT 2.0-Nb-P4H10 (GenBank: MW524057)

Supplementary Data S2. Sequence A: Synthetic *NbP4H1*-RNAi sequence in pMA-GeneArt cloning vector. The sequence consists of a *N. benthamiana P4H1* cDNA fragment (bold), restriction enzyme cleavage sites (underlined) and the intron 2 (italics) from the *Arabidopsis thaliana* β 1,2-xylosyltransferase gene (At5g55500) (Strasser et al., 2008). **Sequence B:** Synthetic *NbP4H10*-RNAi sequence in pMA-GeneArt cloning vector. The sequence consists of a *N. benthamiana P4H1* cDNA fragment (bold), restriction enzyme cleavage sites (underlined) and the intron 2 (italics) from the *Arabidopsis thaliana* β 1,2-xylosyltransferase gene (AT5g55500) (Strasser et al., 2008).

Sequence A:

Sequence B: