Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins

Samantha J. Wong¹, Alison E. Ringel¹, William Yuan², Joao A Paulo¹, Haejin Yoon¹, Mark A. Currie^{1,3}, Marcia C. Haigis^{1*}

¹Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts

²Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.

³Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.

*Corresponding author: Marcia C. Haigis

E-mail: marcia_haigis@hms.harvard.edu

Running title: A colorimetric α-ketoglutarate detection assay using 2,4-dinitrophenylhydrazine

Keywords: prolyl hydroxylase, *in vitro* hydroxylation, α -ketoglutarate-dependent dioxygenases, high throughput assay, enzyme kinetics, 2,4-dinitrophenylhydrazine

List of Supplementary Figures

Supplementary Figure S1	S-2
Supplementary Figure S2	S-3
Supplementary Figure S3	S-4
Supplementary Figure S4	S-5
Supplementary Figure S5	S-8
Supplementary Figure S6	S-10
Supplementary Figure S7	S-11

(a) Ion counts detected by metabolic liquid chromatography-mass spectrometry of increasing 2,4-DNPH alone and increasing 2,4-DNPH in the presence of 5 mM α -ketoglutarate. (b) Ion counts detected by metabolic liquid chromatography-mass spectrometry of increasing α -ketoglutarate alone and increasing α -ketoglutarate in the presence of 50 mM 2,4-DNPH. (c) Wavelength absorption of increasing 2,4-DNPH concentrations. Panel of wells above graph shows a representative color gradient of increasing 2,4-DNPH concentrations. (d) Wavelength absorption of increasing α -ketoglutarate concentration in the presence of 50 mM 2,4-DNPH. Panel of wells above graph shows a representative color gradient of increasing α -ketoglutarate in the presence of 50 mM 2,4-DNPH. (e) Wavelength absorption of increasing 2,4-DNPH concentrations in the presence of 50 mM 2,4-DNPH. (e) Wavelength absorption of increasing 2,4-DNPH concentrations in the presence of 2 M NaOH. Panel of wells above graph shows a representative change in color gradient of increasing 2,4-DNPH concentrations before (top) and after (bottom) addition of 2 M NaOH to the panel of wells in S1c. (f) Wavelength absorption of increasing α -ketoglutarate 2,4-DNP-hydrazone in the presence of 2 M NaOH. α -KG, α -ketoglutarate; 2,4-DNPH, 2,4-dinitrophenylhydrazine; NaOH, sodium hydroxide.

(a) Molar ratio of 2,4-DNPH needed to fully react with 1 mM of α -ketoglutarate, verified by metabolite liquid chromatography coupled with mass spectrometry (n.s. with two-tailed T-test, p<0.05, n=2). (b) Signal stability of increasing α -ketoglutarate 2,4-DNP-hydrazone in 2 M NaOH (n.s. with Student's T-test, p<0.05, n=3). α -KG, α -ketoglutarate; 2,4-DNPH, 2,4-dinitrophenylhydrazine; *NaOH*, sodium hydroxide.

(a) Oxidative stress generated during the hydroxylation reaction by PHD3 was simulated using a physiological concentration of 25 mM of H_2O_2 , which would form dehydroascorbic acid (that contains carbonyls) that reacts with 2,4-DNPH. Common reducing agents such as L-cysteine, glutathione (GSH), dithiothreitol (DTT), and tris(2-carboxyethyl)phosphine (TCEP) was added in in increasing concentrations to assess their respective abilities to relieve the oxidative stress generated by the reaction that would oxidize ascorbic acid (Student's T-test, ***p<0.001, n=3).

S-4

SEQUENCE	#	b: ∆ ERROR	b	У	y: ∆ ERROR	+1
D	1	0.580	420.241			19
L	2	0.594	533.325	2170.992		18
D	3	0.447	648.352	2057.908		17
L	4	0.357	761.436	1942.881		16
E	5	0.384	890.479	1829.797		15
м	6	0.496	1021.520	1700.755		14
L	7	0.699	1134.604	1569.714		13
Α	8	0.857	1205.641	1456.630	-2.143	12
P#	9	2.396	1318.688	1385.593	1.627	11
Y	10	1.161	1481.752	1272.545		10
I	11	0.952	1594.836	1109.482	1.742	9
Р	12		1691.889	996.398	0.611	8
M*	13		1838.924	899.345	-0.579	7
D	14		1953.951	752.310	0.036	6
D	15		2068.978	637.283	1.809	5
D	16		2184.005	522.256	-1.482	4
F	17		2331.073	407.229	-0.412	3
Q	18		2459.132	260.160	0.738	2
L	19			132,102	1,793	1

d

(a) Increasing concentrations of PHD2 were added to 100 μ M P564 peptide and 0.5 mM α -ketoglutarate. For all negative controls, 0.5 mM α -ketoglutarate, 100 μ M P564 peptide and 3 μ M of PHD2 were used unless otherwise indicated. (b) Tandem Mass Tag (TMT) reporter ion signal of hydroxylated HIF-1 α P564 peptide from complete reaction and negative controls. (c) Representative mass spectra of hydroxylated HIF-1 α peptides. (Top panel) Detected peptide fragments, with high intensity species labelled. "b" fragments (blue) are N-terminal amino acid fragments of the peptide, and "y" fragments (red) are C-terminal amino acid fragments of the peptide. (Bottom panel) The tabulated numbers denote measured fragment masses. Reactions were set up in an identical manner to (a), with the exception of 250 μ M of peptide, to generate the TMT signals and mass spectra (#: hydroxylation, *: oxidation). (d) Representative time course kinetic data for various concentrations of P564 peptide and PHD2. Increasing concentrations of HIF-1 α peptide (P564) added to saturating concentrations of all other reagents. (e) Representative time course kinetic data for various concentrations of α -ketoglutarate. Increasing concentrations of α -ketoglutarate were added to saturating concentrations of all other reagents, 100 μ M peptide substrate and 3 μ M of PHD2.

Representative steady state kinetic plots for PHD3 HIF-1a peptide a-ketoglutarate titrations

(a) Representative time course kinetic data for various concentrations of P564 peptide and PHD3. Increasing concentrations of HIF-1 α peptide (P564) added to saturating concentrations of all other reagents. (b) Representative time course kinetic data for various concentrations of α -ketoglutarate. Increasing concentrations of α -ketoglutarate were added to saturating concentrations of all other reagents, 100 μ M peptide substrate and 10 μ M of PHD3.

b

Hydroxylated ACC2 P450 peptide

F P# S Ε G GK E G Μ G G b. b b b b, b b b b b b, b

SEQUENCE	#	B: △ ERROR	В	Y	Y: ∆ ERROR	+1
Е	1		130.050			18
R	2	0.180	286.151	1733.937		17
1	3		399.235	1577.836		16
G	4	6.338	456.257	1464.752		15
F	5	2.780	603.325	1407.730		14
P#	6		716.373	1260.662		13
L	7	-0.367	829.457	1147.614	5.675	12
м	8	0.681	960.497	1034.530	1.653	11
I	9	-0.375	1073.581	903.489	0.089	10
к	10	6.986	1201.676	790.405	-0.184	9
Α	11		1272.713	662.310	-0.968	8
S	12		1359.745	591.273	-11.813	7
E	13		1488.788	504.241	1.189	6
G	14		1545.809	375.199	0.515	5
G	15		1602.831	318.177	-0.225	4
G	16		1659.852	261.156	-2.457	3
G	17		1716.874	204.134	0.942	2
ĸ	18			147 113	-1.012	1

Non-hydroxylated ACC2 P450 peptide

SEQUENCE	#	B: △ ERROR	В	Y	Y: ∆ ERROR	+1
E	1		130.050			18
R	2	-1.207	286.151	1717.942		17
1	3		399.235	1561.841		16
G	4	6.070	456.257	1448.757		15
F	5	-1.165	603.325	1391.735		14
Р	6	-7.408	700.378	1244.667		13
L	7	-0.473	813.462	1147.614	2.803	12
м	8	-1.913	944.502	1034.530	0.473	11
1	9	-1.149	1057.586	903.489	-1.060	10
к	10	1.967	1185.681	790.405	-0.570	9
Α	11		1256.718	662.310	-1.337	8
S	12		1343.750	591.273	-0.664	7
E	13		1472.793	504.241	-0.385	6
G	14		1529.814	375.199	-1.356	5
G	15		1586.836	318.177	-0.129	4
G	16		1643.857	261.156	-0.353	3
G	17		1700.879	204.134	-1.675	2
K	18			147 113	0.336	1

Supplementary Figure S6

(a) Representative time course kinetic data for various concentrations of P450 peptide and PHD3. Increasing concentrations of ACC2 peptide (P450) were added to saturating concentrations of all other reagents and 10 μ M of PHD3. (b) Representative mass spectra of hydroxylated and non-hydroxylated ACC2 P450 peptides. The tabulated numbers denote the peptide masses detected. "b" fragments (blue) are N-terminal amino acid fragments of the peptide, and "y" fragments (red) are C-terminal amino acid fragments of the peptide. 250 μ M of peptide was incubated with (left panel) and without (right panel) 10 μ M PHD3 to generate the mass spectra above.

(a) Increasing concentrations of GDH were added to 5 mM L-glutamate and 2.5 mM NAD⁺. For all negative controls, 5 mM L-glutamate, 2.5 mM NAD⁺ and 5 μ M GDH were used unless otherwise indicated. (b) Qualitative observation of the time course experiments used to generate part (a). Plotted data represent 3 independent replicates. GDH, Glutamate Dehydrogenase; NAD⁺, nicotin-amide adenine dinucleotide.