

Article

1

Spectroscopic Signature of Red Blood Cells in the D-galactose-Induced Accelerated Aging Model

Aneta Blat^{1,2,} +, Tetiana Stepanenko^{1,2} +, Katarzyna Bulat¹, Aleksandra Wajda^{1,3}, Jakub Dybas¹, Tasnim Mohaissen¹, Fatih Celal Alcicek¹, Ewa Szczesny- Malysiak¹, Kamilla Malek², Andrzej Fedorowicz⁴ and Katarzyna M. Marzec^{1,*}

6 7	1	Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30–348 Krakow, Poland; katarzyna bulat@icet.eu (K.B.): tasnim.mohaissen@icet.eu (T.M.): f.celal.alcicek@icet.eu (F.C.A.): jakub.dybas@icet.eu (I.D.): ewa.szczesny@icet.eu
8		(E.S-M.)
9	2	Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; aneta.blat@doctoral.uj.edu.pl (A.B.); te-
10	3	tiana.stepanenko@student.uj.edu.pl (T.S.); kamilla.malek@uj.edu.pl (K.M.)
11	5	da@agh.edu.pl (A.W.)
13	4	Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland; <u>andrzej.fedorowicz@uj.edu.pl</u> (A.F.)
14	*	Correspondence: <u>katarzyna.marzec@jcet.eu</u> ; Tel.: +48-12-664-5476 (K.M.M.)
15 16	t	Contributed equally A cademic Editor: Firstname Lastname: Received: date: Accented: date: Publiched: date
10 17		Academic Euror. Firsthame Lasthame, Received. date, Accepted. date, I ublished. date
18		
10		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		

Figure S1. Changes in blood morphological parameters in natural aging and D-gal model. WBC, RBC, HGB, HCT, PLT, GRA, LYM, MON, MPV for (A) 5- and 7-month-old male C57BL/6J mice (N=4 and N=6, respectively) in natural aging and (B) 5-month-old male C57BL/6J mice in D-galactose induced aging model (N=3) with control group (N=3). Data distribution is presented as interval plots (mean value, median, min-max whiskers). Statistical significance of the obtained values was tested with Mann-Whitney test.

Figure S2. Biochemical parameters in blood plasma in natural aging and D-gal model. (A) Cholesterol, (B) HDL, (C) LDL, (D) creatinine, (E) glucose, (F) iron, (G) LDH, (H) phosphorous and (I) triglycerides level for 5- and 7-month-old male C57BL/6J mice (N=4 and N=3, respectively) in natural aging and 5-month-old male C57BL/6J mice in D-galactose induced aging model (N=7) with control group (N=10). Data distribution is presented as box (median and interquartile range, min-max whiskers). Statistical significance of the obtained values was tested with Mann-Whitney test (*p < 0.05; **p < 0.01).

Figure S3. Averaged FTIR and Raman spectra with SD for RBCs and their membranes in D-gal model. FTIR spectra of intact RBCs
(A) and isolated membranes (B) and Raman spectra of isolated membranes (C) taken from control (grey) and D-galactose induced
accelerated aging mice (black).

- 60
- 61
- -
- 62
- 63

65 Figure S4. Spectroscopically – derived biochemical profile of RBC membranes in natural aging.

Figure S5. Alterations inbiochemical composition of RBC membranes due to the D-galactose induced accelerated aging (C57BL/6J and D-galactose-fed C57BL/6J mice). Ratios calculated for the integral absorbances in the ATR-FTIR spectra. **Integration regions for**

69 IR bands: amide I – 1651 cm⁻¹ (1687–1605 cm⁻¹); amide II – 1544 cm⁻¹ (1560–1502 cm⁻¹); C=O stretch- 1738 cm⁻¹ (1758-1727 cm⁻¹), 1055

⁷⁰ cm^{-1} (1076-1034 cm^{-1}).

CHANGES IN PROFILE OF RBCs

72

Figure S6. Alterations inbiochemical composition of intact RBCs due to the D-galactose-induced accelerated aging (C57BL/6J and
D-galactose-fed C57BL/6J mice). Ratios calculated for the integral absorbances in the ATR-FTIR spectra. Integration regions for IR

- **bands**: amide I 1651 cm⁻¹ (1687–1605 cm⁻¹); amide II 1544 cm⁻¹ (1560–1502 cm⁻¹); CH₂ symmetric stretch 2933 cm⁻¹ (2863–2847 cm⁻¹); CH₃ asymmetric stretch 2873 cm⁻¹ (2965–2936 cm⁻¹); PO_{2⁻} asymmetric stretch 1236 cm⁻¹ (1261–1214 cm⁻¹); -CO–O–C stretch 1167 cm⁻¹ (1191–1144 cm⁻¹).
- $= 1107 \text{ cm}^{-1} (1191 1144 \text{ cm}^{-1})$

78

79

S6 of S6