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APC Forecasting Models and sensitivity analysis 
 

We analyzed 10 subsets of HCC cases in California by sex and ethnicity/race subgroup 

(White, Black, Hispanic, Asian, and All groups combined). For each subset, incidence rates by single-

year of age (ages 35 – 84 years old) and single calendar year were obtained from SEER. Our models 

included the 14 calendar years from 2000 through 2013 and we made projections for 2014-2030.    

In general, the number of cohorts in the APC analysis equals the number of age groups Aplus 

the number of calendar periodsPminus1 , and the sequence of cohorts 121 ,,, -+PAccc !  is defined by 

the oldest cases in the earliest period (i.e. 1916) through the youngest cases in the latest period (i.e. 

1978), yielding 63 cohorts in all.  

We calculated our forecasts of incidence using age-period-cohort (APC) forecasting models. 

APC model parameters quantify the age-associated natural history, secular perturbations (period 

effects), and relative increases or decreases from one generation to the next (cohort effects). 

Projecting ages Aaaa ,,, 21 ! (35, …, 84 in our example) forwards through T = 17 future periods (2014, 

…, 2030), the youngest 1-A observed cohorts will continue to be followed, and each future year a 

new cohort will enter follow-up beginning at age 1a .  

We developed three approaches to forecast cancer incidence (rate per 100,000 person-years) 

and cancer burden (absolute numbers of cases) by single-years of age and period for each of the 10 

subsets of cases. Please refer to our earlier paper [1] for the definitions of the functions below. The 

first approach proceeds as follows.  

Step 1:  Fit a classical APC model [2]. 

Step 2: Express the expected incidence in longitudinal form, so that the expected rate at age 

a among individuals born in calendar year c  equals )(
00 )|()|()|( acPD

LONG eccCRRcaLongAgecaR +´´= . 

In this equation, the function )|( 0caLongAge  describes the expected incidence at age a among 

individuals born in an arbitrary reference year 0c and followed longitudinally, )|( 0ccCRR is the incidence 
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rate ratio for cohort c versus 0c , and )( acPD + are non-linear period effects that are constant for all age 

groups during calendar period acp += . Also express the corresponding cross-sectional form 

𝑅"#$%% 𝑎|𝑝 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑔𝑒 𝑎|𝑝1 ×𝑃𝑅𝑅 𝑝|𝑝1 ×𝑒"4 567  described in reference [1]. 

Step 3: Fit a JoinPoint piecewise linear regression [3] to the logarithm of the )|( 0ccCRR  values 

accounting for their estimated variance-covariance matrix. Use the unconditional approach described 

in that paper to conservatively estimate the variance of the JoinPoint regression accounting for 

uncertainty about the number and location of the knots. Extrapolate from the last JoinPoint segment 

to impute a cohort rate ratio value for cohorts that enter follow up after 2013.  Also carry out a 

JoinPoint analysis on the logarithm of the model’s period rate ratio curve PRR(p|p0). See Rosenberg 

et al. for details [1]. 

Step 4: Partition the period deviations into an orthogonal quadratic component plus residuals 

or higher-order period effects. See Chernyavskiy et al. for details [4]. 

Step 5: [Sensitivity Analysis] Construct forecasts by plugging in age-period-cohort 

parameter estimates for observed and future ages and periods to the expression for RLONG(a|c) and 

RCROSS(a|p). We consider three scenarios for sensitivity analysis. Our base age-cohort forecasting 

model RLONG(a|c) extrapolates an effect for future cohorts using the JoinPoint results for cohorts from 

Step 3 and assumes that future period deviations are 0. Our first sensitivity model is an age-period 

forecasting RCROSS(a|p) model that assumes that future cohort deviations are 0, while extrapolating an 

effect for future periods using the JoinPoint results for periods from Step 3 above. Our second 

sensitivity model is an age-cohort-period forecasting model. This model adds to our base model, by 

adding to it an extrapolation from the quadratic component of the period deviations described in Step 

4. This additional parameter modulates the period effects for future years to accelerate or decelerate 

at the average rate of change over the observed years.  

From these results, we calculated plausible ranges centered at the averages of the 3 models 

described above, ranging from the lowest lower confidence limit to the highest upper confidence limit. 
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Step 6: Calculate future burden by multiplying the SEER-derived incidence forecasts by 

single-years of age and period by the corresponding California population projections. For variance 

calculations assume that the population projections are known quantities. 

 Examples on parameter estimates are shown for illustrative purposes for all males in 

California in Supplementary Figure 1. Age-period-cohort fitted rates are a product of the estimates 

shown in panels A.-C. Estimates for future rates include estimates in panel D for the age-cohort 

model, panel E for the age-period model, and panel D and C (smooth curve) for the age-cohort-period 

model. For all males in California, JoinPoint analysis shows that the risk increased among successive 

cohorts born from circa 1945 through 1955, and then moderated (panel D). Temporal effects have 

also moderated slightly in recent years. However, the rapid rise among the oldest baby-boomers will 

drive increasing incidence for the next 10-15 years, as shown in Figure 1A.  

In the main text, we have presented results from the age-cohort model, to be consistent with 

our previous studies [5]. Quantitative forecasts vary according to the extrapolation model, and the 

differences between the models increase as we look further forward in time. Supplementary Figure 

2 summarizes quantitative forecasts for Black, Hispanic, White, Asian, and all males by model. 

Supplementary Figure 3 summarizes model outputs for females. Taken together, these results 

suggest that the declines forecast for Asian men and women are supported by each model. Hispanic 

females may increase at a faster rate than our base model, white males and females may plateau 

rather than increase, and Black men and women may plateau rather than slowly increase.   
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Supplementary Figure 1 Age-Period-Cohort Parameters for HCC incidence among all 

California males. Age-period-cohort fitted rates are a product of the estimates shown in panels A.-C. 

Estimates for future rates include estimates in panel D for the age-cohort model, panel E for the age-

period model, and panel D and C (smooth curve) for the age-cohort-period model.  
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Supplementary Figure 2: Sensitivity analysis for forecasting among females. Each figure 

summarizes quantitative forecasts for Black, Hispanic, White, Asian, and all males by different 

forecasting models (base model: age-cohort model) 
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Supplementary Figure 3: Sensitivity analysis for forecasting among males. Each figure summarizes 

quantitative forecasts for Black, Hispanic, White, Asian, and all males by different forecasting models 

(base model: age-cohort model) 
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Supplementary Figure 4: Age-standardized HCC incidence rates by period (2000-2013 for the past 
and 2014-2030 for the future) in the states other than CA (non-CA) 
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Supplementary Figure 5. HCC incidence rate by birth cohort (A-B); and cross-sectional age curve 
for the past (2000-2013) versus the future (2014-2030) (C-D) in the states other than CA (non-CA).  
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Supplementary Figure 6 Cross-sectional age curve for the past (2000-2013) versus the future 
(2014-2030) by ethnicity/race in CA (MALE) 
 

 
 
 



 11 

Supplementary Figure 7 Cross-sectional age curve for the past (2000-2013) versus the future 
(2014-2030) by ethnicity/race in CA (FEMALE) 
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Supplementary Figure 8 Age-specific annual percent change of the population in CA (dark green) 
versus non-CA (light green) by race/ethnicity 
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Supplementary Figure 9 Proportions of HCC cases in CA (red) versus the proportion of individuals 
who live in CA (yellow) by race/ethnicity. The three groups of bars show the results for Asians, 
Hispanics, and Asians and Hispanics combined, respectively. 
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Supplementary Table 1 Predicted versus observed HCC incidence rate and count for 2014 SEER 
data  
 

2014	
Predicted	data	 Observed	data	

Rate	 Count	 Rate	 Count	
All	 15.9	 3456	 15.1	 3252	

White	 11.4	 1373	 10.4	 1248	
Black	 22.3	 292	 17.6	 240	
Asian	 21.5	 633	 21.2	 675	

Hispanic	 22.2	 1091	 21.3	 1042	
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