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S2 Methods

S2.1 Notation glossary

u ∗ v concatenate strings u and v
|u| length of string u

u[i, j) substring of u starting at ith character (inclusive) and continuing up until
jth character (exclusive) using 0-based indexing

u[i, j] substring of u starting at ith character (inclusive) and continuing through
the jth character (inclusive) using 0-based indexing

{a |C(a)} set containing all elements a satisfying condition C(a)
{a |C1(a) ∧ C2(a)} set containing all elements a satisfying conditions C1(a) and C2(a)
{a |C1(a) ∨ C2(a)} set containing all elements a satisfying conditions C1(a) or C2(a)

E[A] expectation value of random variable A
V[A] variance of random variable A

i suffix array index: 0-based position of suffix in lexicographically sorted list
of all suffixes of string x

si suffix array value: 0-based spatial position of suffix with suffix array index
i within string x

bi block array value: 0-based position of block/word in which suffix with suffix
array index i begins

ωi 0-based position of suffix with suffix array index i within block bi
ŷi kernel smoothed score associated with suffix array index i
κ half-width of kernel applied to generate ŷi
k̂i estimate of smoothed k-mer length at suffix array index i

η(i) negative spatial shift operator defined by property sη(i) = si − 1
ρ(i) positive spatial shift operator defined by property sρ(i) = si + 1
θ threshold value for ŷi for sequence-smoothed peak calling
I set of suffix array indices identified as peaks by SArKS
M set of k-mer motifs derived from suffix array peak set

f
(i)
b weighted frequency of block/word b within smoothing window centered on

suffix array index i
gi Gini impurity of smoothing window centered on suffix array index i

gmin minimum value of smoothing window Gini impurity for inclusion in peak
set I

ˆ̂ysi spatially smoothed score associated with spatial array value (spatial position)
si

λ length of spatial kernel applied to generate spatially smoothed scores ˆ̂ysi
ˆ̂
ksi estimate of merged k-mer length at spatial position (suffix array value) si

θspatial threshold value for ˆ̂ysi to call significant spatial windows
Ispatial set of suffix array indices identified as k-mer starting positions using spatial

smoothing
Mspatial set of k-mer motifs derived from suffix array index set Ispatial using spatial

smoothing
π permutation of n blocks/words
Π random variable representing randomly generated permutation

ŷ
(π)
i sequence smoothed scores calculated with word scores permuted by π

ˆ̂y
(π)
si spatially smoothed scores calculated with word scores permuted by π
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S2.2 Limiting the impact of intra-sequence repeats

One complicating factor in the strategy described in Section 2.1 is the presence of tandem repeats
(common in eukaryotic DNA (Ellegren, 2004)): if the substring x[si, si + rm) (assumed to derive
wholly from the single word wbi) consists of r � 1 repeats of the same m-mer,

x[si, si + rm) = x[si, si +m)︸ ︷︷ ︸
1

∗x[si, si +m)︸ ︷︷ ︸
2

∗ · · · ∗ x[si, si +m)︸ ︷︷ ︸
r

(S1)

then it is likely that the sorted suffix array index positions j and k implicitly defined by sj = si + am
and sk = si + bm for small a, b ≥ 0 will be close by, since, assuming without loss of generality that
a < b,

x[si + am, si + (r − b+ a)m) = x[si + bm, si + rm) (S2)

showing that the suffixes of x beginning at positions (si + am) and (si + bm) agree on their first
(r − b)m characters. Since all of the positions si + am for small a must come from the same word
block bi they must have the same associated score ybi . If this score ybi is particularly high, this
phenomenon may lead to windows of high ŷj values centered on j satisfying sj = si + am which
result from a very small number of different repeat-containing words (perhaps as few as one if the
number of repeats is high enough within a single high-scoring word). We thus here develop a natural
method for filtering the peak index set I to selectively remove suffix array index values i where the
smoothing window is dominated by a few heavily repeated words wb.

The distribution of weighted word frequencies

f
(i)
b =

∑
j Kijδbjb∑
j Kij

(S3)

contributing to the window centered at position i of the suffix array table across the full word set
W may for these purposes be summarized by the associated Gini impurity (often used in fitting
classification and regression trees (Breiman et al., 1984)):

gi =
∑
b

f
(i)
b

(
1− f (i)

b

)
(S4)

which provides a measure ranging from 0 to 2κ
2κ+1 of the degree of uniqueness of the words contributing

to the calculation of ŷi.

As a concrete example, if all of the weighted frequencies word frequencies f
(i)
b = 1

q are the same

for a set of exactly q words wb appearing in the smoothing window centered on i, gi = 1− 1
q . This

suggests an intuitive interpretation of (1 − gi) as the multiplicative inverse of the “effective word
count” contributing to the smoothing window around i.

Section S2.5 further demonstrates that (1−gi) is also approximately proportional to the variation
of the smoothed scores ŷi that would be expected if there were no association between the sequences
wb and the scores yb (see Equation (S21) below). This proportionality suggests a simple method for
selection of a gmin value at which most suffix array indices i will be retained while filtering out only
those most likely to yield false positive results under permutation testing:

1− gmin = (1 + γ)
(

1−median
i

gi

)
(S5)

As shown in Equation (S21), setting gmin to satisfy Equation (S5) removes suffix indices i for which
the variance of the permuted smoothed scores is greater than (1+γ) times the median value. Thus
any value γ > 0 will retain the majority of positions i for further consideration. We have used γ = 0.1
or γ = 0.2 for all of the examples in the present work, retaining positions for which the permuted
score variance is less than 110% or 120%, respectively, of the median.
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x = u0 * C A TACTGAGA * u1 * C ATACTG AGA * u2

Figure S1: Example k-mers to be removed or extended to reduce redundancy in reported motif
set. Two identified k-mers (u=CATACTGAGA on the left and v=ATACTG on the right) are indicated by
the dark gray highlighting, with two additional separately identified k-mers that are part of u indicated within
the nested black boxes. The two nested k-mers contained within the boxes inside of u will be removed from
the discovered k-mer set by the method of Section S2.3.1, while k-mer v = ATACTG will be extended by the
method of Section S2.3.2 to include the characters highlighted in light gray, replacing v with CATACTGAGA.
The four k-mers indicated in this figure correspond to positions si ∈ {3959, 3960, 3961, 4232} from Section
3.1.

Requiring gi ≥ gmin results in redefining the peak index set I to

I =
{
i
∣∣ (ŷi ≥ θ) ∧

(
ŷη(i) ≤ ŷi ≥ ŷρ(i)

)
∧ (gi ≥ gmin)

}
(S6)

screening out positions i for which the repeated occurrence of a few high-scoring words in the window
centered at i leads to ŷi ≥ θ.

S2.3 Reducing redundancy in reported motif set

The presence of a k-mer x[si, si + k) associated with a high smoothed score ŷi can also result in
high smoothed scores ŷj when sj = si +m if the substring (k −m)-mers x[si +m, si + k) also also
preferentially found in higher-scoring sequences, as pictured in Figure S1. The following two steps
may be added to the algorithm described in Section 2.1 in order to reduce the reporting of such
substrings when they are present only as part of the full k-mer.

S2.3.1 Removing shorter k-mers nested inside longer peak motifs

Cases in which both k-mer x[si, si+k) (e.g., CATACTGAGA in Figure S1) and its sub-(k−m1−m2)-
mer x[si+m1, si+k−m2) (with m1 > 0,m2 ≥ 0; e.g., TACTGAGA in Figure S1 with m1 = 2,m2 = 0)
are individually identified can be resolved to report only the longer k-mer by removing any index
i ∈ I (defined by Equation (S6)) if there exists j ∈ I such that the bk̂je-mer interval starting at sj
includes all of the bk̂ie-mer interval starting at si, thus retaining only:

I ′ =
{
i ∈ I

∣∣∣ ∀j ∈ I : (si ≤ sj) ∨
(
si + bk̂ie > sj + bk̂je

)}
(S7)

This can be done efficiently using an interval tree.

S2.3.2 Extending substring k-mers to match longer motifs from distinct peaks

Besides two cases of nested k-mers which may be removed from the reported motif set by the method
of Section S2.3.1 (ATACTGAGA and TACTGAGA), Figure S1 also depicts a shorter k-mer ATACTG
derived from a distinct occurrence of the same longer k-mer (CATACTGAGA). Because this distinct
occurrence of the longer k-mer was not itself initially identified, the method of Section S2.3.1 does
not remove the shorter substring k-mer from the motif set. However, such substring k-mers may be
extended to the longer k-mer occurrence by the following method: for each i ∈ I ′, define the duplet(

z0
i , z

1
i

)
= arg max

z0,z1≥0

{
z0 + z1

∣∣∣ ∃j ∈ I ′ : x
[
si − z0, si + bk̂ie+ z1

)
= x

[
sj , sj + bk̂je

)}
(S8)

resolving any ties in the arg max in favor of maximal z0. Equation (S8) picks out the largest

super-interval
[
si − z0, si + bk̂ie+ z1

)
containing the interval

[
si, si + bk̂ie

)
such that the extended
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S2. METHODS(
bk̂ie+ z0

i + z1
i

)
-mer x

[
si − z0, si + bk̂ie+ z1

)
is equal to one of the already identified k-mers{

x
[
sj , sj + bk̂je

) ∣∣∣ j ∈ I ′}. (In the example of Figure S1, z0
i = 1 and z1

i = 3, corresponding to the

light gray highlighted characters surrounding the substring k-mer). Then

M ′ =
{
x
[
si − z0

i , si + bk̂ie+ z1
i

) ∣∣∣ i ∈ I ′} (S9)

defines our motif set after removal of nested motifs.

S2.4 Spatial smoothing to identify multi-motif domains

SArKS identifies candidate multi-motif domains (MMDs) through the application of a second round
of kernel-smoothing over suffix positions si within words:

ˆ̂ysi =

∑
j Lsitj ŷj∑
t Lsit

(S10)

where we here use uniform kernels of the form

L
(λ)
sitj =

{
1 if (0 ≤ (tj − si) < λ) ∧ (bi = bj)

0 otherwise
(S11)

(generally with width λ 6= κ) to search for regions of length λ with elevated densities of high-scoring

motifs. Note that ˆ̂ysi defined by Equation (S10) is indexed not by suffix array index i but by suffix
array value si giving the spatial position si in the concatenated word x.

To use such spatial smoothing for motif selection/filtering, it is necessary to introduce a second

threshold θspatial, as the doubly-smoothed scores ˆ̂ysi will generally be somewhat less dispersed than
will be the singly-smoothed ŷi. The threshold θspatial can be used to define an index set Ispatial

similar to the manner in which I is defined by Equation (S6), but the task is more complex when we
replace the single spatial position si by a spatial window [si, si + λ).

Recalling the definitions of the negative/positive spatial shift operators η(i)/ρ(i) which yield the
unique suffix array indexes corresponding to the spatial position immediately before/after si, so that
sη(i) = si − 1 and sρ(i) = si + 1, first define:

Jspatial =
{
i
∣∣∣ (ˆ̂ysi ≥ θspatial

)
∧ (gi ≥ gmin) ∧

(
ŷη(i) ≤ ŷi ≥ ŷρ(i)

)}
(S12)

Jspatial represents the set of suffix array indices i corresponding to the left endpoints si of spatial
windows [si, si + λ) passing the filters for score threshold θspatial and minimum Gini impurity gmin,
and for which the sequence-smoothed score ŷi is at least as high as the spatially adjacent scores ŷη(i)

to the left and ŷρ(i) to the right.
Defining the left-directed distance δj from the suffix with sorted suffix array index j to the set

Jspatial by
δj = min

i∈Jspatial
{sj − si | si ≤ sj} (S13)

we define in turn the set of sorted suffix array indices Ispatial marking the starting positions of selected
k-mers by:

Ispatial =
{
i
∣∣ (δi < λ) ∧ (ŷi ≥ θspatial) ∧

((
δη(i) ≥ λ

)
∨
(
ŷη(i) < θspatial

))}
(S14)

Equation (S14) identifies suffix array indices i: (1) whose spatial positions si fall within a spatial
window [sj , sj + λ) for some j ∈ Jspatial, (2) whose sequence-smoothed score ŷi ≥ θspatial, and (3) for
which the position si− 1 spatially to the left is either (3A) not in one of the spatial windows specified
by Jspatial or (3B) has associated sequence-smoothed score ŷη(i) < θspatial. This final criterion is
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included because we want to merge adjacent k-mers whose leftmost positions fall within the same
selected spatial window.

This merging process is implemented by calculating for each index i ∈ Ispatial the length

ˆ̂
ksi = max

j

{
k̂j + sj − si

∣∣∣ (δj < λ) ∧ (sm ∈ [si, sj ] =⇒ ŷm ≥ θspatial)
}

(S15)

of the merged k-mer starting at i. Equation (S15) sets
ˆ̂
ksi by selecting the right endpoint k̂j + sj of

the k-mer beginning at sj to maximize the merged length k̂j + sj − si over all choices of sj for which
every position sm between si and sj has an acceptable sequence-smoothed score ŷm ≥ θspatial. It is
then straightforward to obtain the motif set

Mspatial =
{
x
[
si, si +

⌊
ˆ̂
ksi

⌉) ∣∣∣ i ∈ Ispatial

}
(S16)

S2.5 Permutation testing to establish significance of motif set

The significance of the observed correlation between the occurrence of the motifs uncovered by SArKS
and the sequence scores yb can be evaluated by examining results obtained when the sequences wb
and the scores yb are independent of each other. To this end, the word scores yb are subjected to
permutation π to define

y
(π)
b = yπ(b) (S17)

If the permutation π is randomly selected independently of both the sequences wb and the scores yb,
any true relationships between sequences and scores will be disrupted. This suggests a simple method
for assessing the significance of motifs discovered using a given set of parameters (kernel half-width

κ, θ, gmin, etc.): generate R random permutations πr and for each permutation calculate scores ŷ
(πr)
i

using Equation (4) (and also ˆ̂y
(πr)
si using Equation (S10) if spatial smoothing is employed) with yb

replaced by yπb . In this manner one can estimate the distribution of scores under a null model in
which there is no association between the sequences of the various words wb and the scores yπb .

This method of significance testing also provides the motivation for the form of Equation (S4) in
Section S2.2. Let Π be a random variable representing a random permutation and note that the
random variables yΠ(b) satisfy

E
[
ŷ

(Π)
i

]
= E

[∑
j Kij yΠ(bj)∑

j Kij

]
=

∑
j Kij E

[
yΠ(bj)

]∑
j Kij

= ȳ (S18)

while, assuming that the number of words n = |W | is large enough that we may approximate
yΠ(b) ⊥⊥ yΠ(b′) for b 6= b′,

V
[
ŷ

(Π)
i

]
= V

[∑
j Kij yΠ(bj)∑

j Kij

]
≈
∑
b

V
[
f

(i)
b yΠ(b)

]
= V

[
yΠ(·)

]∑
b

[
f

(i)
b

]2
(S19)

where f
(i)
b is defined by Equation (S3) and for all b

V
[
yΠ(·)

]
= V

[
yΠ(b)

]
=

1

n

∑
b′

(yb′ − ȳ)
2

(S20)

Equation (S19) then tells us that

V
[
ŷ

(Π)
i

]
∝
[
f

(i)
b

]2
= 1− gi (S21)

where the Gini impurity gi is defined by Equation (S4). Thus smaller values of gi imply higher

variance V
[
y

(Π)
b

]
of the window-smoothed scores obtained under random permutation Π (with mean

unchanged). This increased variance will lead to the requirement of larger cutoff values θ for reporting
motifs discovered in the unpermuted data with a given degree of confidence unless positions i with
gi < gmin are filtered out as described in Section S2.2.
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S2.6 Permutation testing to set thresholds for multiple parameter com-
binations

Multiple combinations
(
κ(α), λ(α), g

(α)
min

)
of the values of SArKS parameters may be explored (with

α indexing the set of desired combinations); for example, Sections 3.2.1-3.2.2 discuss the parameters
used in the benchmarking examples herein and the rationales for their selection.

For any permutation π, let

ŷ(α,π)
max = max

i∈I(α,π)

{
ŷ

(α,π)
i

}
(S22)

ˆ̂y(α,π)
max = max

i∈I(α,π)
spatial

{
ˆ̂y(α,π)
si

}
(S23)

(i.e., ŷ
(α,π)
max is the highest filtered sequence-smoothed score obtained after permuting by π, while

ˆ̂y
(α,π)
max is similarly the highest filtered spatially-smoothed score). Then we suggest a simple method

for setting thresholds θ(α) and θ
(α)
spatial based on a set of randomly generated permutations {πr}:

θ(α) = mean
r

{
ŷ(α,πr)

max

}
+ z stdev

r

{
ŷ(α,πr)

max

}
(S24)

θ
(α)
spatial = mean

r

{
ˆ̂y(α,πr)
max

}
+ z stdev

r

{
ˆ̂y(α,πr)
max

}
(S25)

with higher values of z trading reduced sensitivity for lower false positive rates (in the examples
analyzed in Section 3.2.1 we take z = 4). For the sake of simplicity we have generally used only
one of these two thresholds for any particular combination of parameters α, setting θ(α) = −∞ if

κ(α) > 1 or θ
(α)
spatial = −∞ if κ(α) ≤ 1 (i.e., if spatial smoothing is not employed).

In order to characterize the false positive rate associated with the entire set of analyses across all of
the parameter settings employed while controlling for multiple hypothesis testing, a family-wise error
rate (FWER) ε resulting from these thresholds can then be estimated by generating an independent
set of R′ permutations {π′r} and counting the number of permutations π′r for which a nonempty set

of k-mer motifs is identified using any of the parameter sets
(
κ(α), λ(α), g

(α)
min

)
. That is, writing

e =
∣∣∣ { r | {α | I(α,π′

r) ∪ I(α,π′
r)

spatial 6= ∅} 6= ∅
} ∣∣∣ (S26)

(where I(α,π′
r) and I

(α,π′
r)

spatial are defined respectively by Equation (S6) and Equation (S14) using the

thresholds θ(α) and θ
(α)
spatial determined using the original permutation set {πr}) we can infer confidence

intervals by noting that the random variable E instantiated in e satisfies E ∼ Binom(R′, ε) under the
permutation test null hypothesis. We can thus derive confidence intervals (CIs) for the FWER (in
the weak sense, as the permutation test represents a complete null hypothesis with no true positives
(Farcomeni, 2008)) by applying the Clopper-Pearson method for estimation of binomial CIs.

S2.7 RNA-seq expression analysis

S2.7.1 Assigning PV differential expression scores for Mo 2015 data set

In order to test SArKS, we selected the M. musculus neocortical neuron RNA-seq data set GSE63137
(Mo et al., 2015) from Gene Expression Omnibus (GEO) database (Barrett et al., 2013) (https:
//www.ncbi.nlm.nih.gov/geo/). This data set contains detailed transcriptomic and epigenetic
information from three functionally and neurochemically distinct classes of pooled neocortical neurons:
principal excitatory neurons, parvalbumin-positive (PV) GABAergic neurons, and vasoactive intestinal
peptide-positive (VIP) GABAergic neurons.

Because the position of the first exon can help pinpoint the TSS—and hence the DNA region
containing the putative promoter—we reanalyzed the GSE63137 RNA-seq data using kallisto
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Mo 2015 Close 2017

All 111,669 23,045
Detected 73,912 15,490

+ Highly Expressed 37,721 6,939
+ Highly Varying 29,164

- Duplicate Isoforms 11,857
+ Accessible 6,326

Final SArKS Set 6,326 6,939

Table S1: Filters applied to select gene sets for SArKS analysis. The Mo 2015 data set (bulk RNA-
seq) was realigned and analyzed at isoform level, hence counts in first column indicate distinct transcripts
or isoforms. For the single-cell RNA-seq Close 2017 data set, the original gene-level alignment counts were
analyzed; counts in second column indicate distinct genes. No variance filter was applied for the Close
2017 data set, as none of the 6,939 highly expressed genes exhibited low estimated variance. Epigenetic
accessibility data was available for the Mo 2015 samples but not the Close 2017 samples.

(Bray et al., 2015) to quantify and normalize transcript level expression against Ensembl mouse
cDNA reference GRCm38. Transcript species were filtered by mean expression to focus on those for
which reliable expression estimates could be made, retaining only transcripts for which at least 100
pseudocounts were obtained when summed across all samples and whose mean normalized expression
met or exceeded the median of the transcript mean normalized expression levels. We also filtered
out transcripts that showed low variance across the full sample set, retaining only those for which
the estimated variance σ̂2

b of normalized expression values met or exceeded median{σ̂2
b} across all

transcript species (Bourgon et al., 2010). In order to simplify downstream analysis, only the isoform
with highest mean expression level across all samples was retained per gene. Finally, as based on
chromatin accessibility data (Mo et al., 2015), only transcripts for which the transcription start
sites were located within ATAC-seq peaks (i.e., were accessible) for all examined neuron classes were
analyzed. This accessibility-based filter reduced the likelihood that epigenetic features, rather than
regulatory sequences, determine the variations in gene expression between cell classes.

Differential gene expression was assessed using normalized expression values via standard Student’s
t-test (comparing data for PV neurons to data for excitatory and VIP neurons), with the resulting
t-statistic providing an estimate of a gene’s enrichment in PV neurons (score yb for transcript b).
One potential issue with the use of such t-statistics with small sample numbers—here, two samples
associated with each neuron type—is that especially low within-group standard deviation estimates
can result in very large magnitude t-statistics for a few genes. For example, the average estimated
within-group standard deviation of the 76 genes with |tb| > 10 (with |tb| ranging up to a maximum
value of 49.6) was less than 30% of the average within-group standard deviation of the full set of
6,326 analyzed genes (Table S1). Every one of the 76 genes with such high magnitude t-statistics
had a within-group standard deviation estimate below the median value for the full gene set.

The phenomenon of low within-group variance estimates leading to inflated test statistics has
previously led to the application of empirical Bayes methods (Smyth, 2004) using moderated t-
statistics in place of standard t-statistics for calculating differential expression p-values. As we are
here instead interested in using the t-statistics to derive word scores yb, for which no particular
distributional assumptions are required, we have adopted a simpler approach to prevent the few very
large magnitude t-statistics from unduly influencing motif discovery by applying a ceiling of 10 on
the magnitude of yb:

yb =


−10 if tb ≤ −10

tb if − 10 < tb < 10

10 if tb ≥ 10

(S27)
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S2.7.2 Assigning DCX differential expression scores for Close 2017 data set

We also examined an RNA-seq data set comparing transcriptomes of in vitro-induced human
embryonic stem cells and the resulting cultured interneurons (Close et al., 2017). We applied SArKS
to identify promoter motifs associated with elevated gene expression in doublecortin-positive (DCX+)
interneurons. We restricted our analysis to the post-induction day 54 (D54) timepoint, where most
of the DCX+ neurons were post-mitotic and GABAergic, and for which the largest total number of
cells had been profiled, minimizing the within-group expression variations.

We used the normalized gene expression levels from GEO (Barrett et al., 2013) records for this
data set (accession GSE93593). We chose not to reanalyze the sequencing data in this case because we
did not want to split the read counts per cell—which, given the large numbers of cells observed, tend
to be much lower than read counts per sample in bulk RNA-seq—across multiple distinct transcripts
for each gene. We found 15,490 genes for which (1) nonzero aligned read counts were detected in at
least one (out of 585) analyzed cells and (2) a unique entry was found in the GRCh38 annotation of
the human genome. We retained the 6,939 genes from this set for which the average aligned read
count per cell was ≥ 25 for further analysis (Table S1). As the variance of the log2-transformed
transcripts-per-million (TPM) normalized expression levels was quite high (≥ 1 for 6,852 of the
6,939 genes, ≥ 0.5 for all 6,939 genes), we did not apply any variance filter for this data set. As no
epigenetic information was available, no accessibility filtering could be conducted.

For the filtered high-read-count gene set, differential expression was assessed via a simple two
group t-test comparing the DCX+ cells to the DCX- cells and SArKS scores were assigned according
to Equation (S27), just as was done for the Mo 2015 data set.

S2.8 Specifications for running existing motif discovery algorithms

Existing algorithms were run at their default parameter settings (defined either within the source code
or in associated documentation), with two exceptions: (1) MOTIF REGRESSOR was run searching
only for motifs positively correlating with score to enable more direct comparison of its output with
that of the other algorithms (none of which look for anticorrelated motifs by default). (2) STEME
was run in discriminative mode using a high order Markov model on the negative sequences exactly
as suggested in the online documentation (https://pythonhosted.org/STEME/using.html); however,
STEME’s implementation requires pre-specification of the number of motifs to report, defaulting to
a single motif if unspecified. Given that (Reid and Wernisch (2014)) extensively compared STEME
to DREME with the finding that the two were generally comparable in performance, we took the
upper bound on the observed DREME motif set size (10 motifs) as the number of motifs for STEME
to report.
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## ------------

## DREME options:

dreme \

-p $pos_seq_fasta \

-n $neg_seq_fasta \

-oc $out \

-png

## ------------

## FIRE options:

perl fire.pl \

--expfiles=$scores \

--exptype=continuous \

--fastafile_dna=$seq_fasta \

--seqlen_dna=$seq_len \

--nodups=1

## ------------

## HOMER options:

homer2 denovo \

-i $pos_seq_fasta \

-b $neg_seq_fasta

## ------------

## MOTIFREGRESSOR options:

MotifRegressor.pl \

$scores \

$seq_fasta \

null 1 1 2 1 0 50 250 50 250 5 15 50 30 \

$out

## _interpretation of MOTIFREGRESSOR parameters above_

## null : background sequence distribution to be computed based on input sequences

## 1 : use column 1 from $scores to rank sequences

## 1 : use column 1 from $scores to perform regression

## 2 : data does not need to be further log-transformed

## 1 : look for motifs in high-scoring (as opposed to low-scoring) sequences

## 0 : select fixed count of top motifs (as opposed to setting fixed score threshold)

## 50* : number of initial top motifs

## 250* : number of sequences with high values for confirmation

## 50* : (ignored since we are only interested in high-scoring motifs)

## 250* : (ignored since we are only interested in high-scoring motifs)

## 5* : minimum motif width

## 15* : maximum motif width

## 50* : number of seed candidate motifs

## 30* : number of motifs reported before regression

## _all parameters marked with * were set at the example (e.g.) values given in

## MOTIFREGRESSOR’s README.MR file_

## ------------

## STEME options:

steme \

--output-dir=$out \

--num-motifs=10 \

--bg-model-order=5 \

--bg-fastafile=$neg_seq_fasta \

$pos_seq_fasta

## _see https://pythonhosted.org/STEME/using.html_
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S3. RESULTS AND DISCUSSION

ŷmax − ŷ(π)max motif (+) motif (-)

− 2/9 0 7
− 1/9 0 275

0 29 479
1/9 551 229
2/9 420 10

Table S2: Unpermuted scores consistently exceed permuted scores only when motif is present.
Distribution of simulated differences ŷmax − ŷ(π) obtained by suffix array kernel smoothing when CATACT-
GAGA motif is embedded into 10 high score sequences (motif (+) column) or when it is not (motif (-)
column). The values ŷmax were calculated by smoothing the unpermuted sequence scores yb, while the values

ŷ
(π)
max were obtained using permuted sequence scores yπ(b). When motif is included, ŷmax − ŷ(π) tends to be

positive—i.e., unpermuted smoothed scores usually exceed permuted—while when motifs are not present the
distribution is symmetric about 0, reflecting the lack of signal for SArKS to detect.

S3 Results and Discussion

S3.1 Illustration of SArKS using simulated data

To demonstrate that the results of Section 3.1 are not a quirk of a single simulation,
we repeated the process of (1) generating 30 random sequences, embedding the motif
CATACTGAGA into the last 10 sequences, and (2) applying SArKS to the sequences and
sequence scores 1000 times. In 971 iterations, the maximum value

ŷmax = max {ŷi | gi ≥ gmin} (S28)

calculated using the unpermuted sequence scores exceeded the maximum value

ŷ(π)max = max {ŷ(π)i | gi ≥ gmin} (S29)

obtained using one set of randomly permuted sequence scores per iteration. The full

distribution of the differences ŷmax − ŷ(π)max is shown in the motif (+) column of Table S2.
We also examined the results of SArKS applied to simulated data in which no motif

was present to find; for this purpose, we repeated an amended version of the simulation

process 1000 times, omitting the motif embeddings. The distribution of ŷmax− ŷ(π)max for these
no-motif simulations is presented in the motif (-) column of Table S2. In this case, ŷmax

exceeded ŷ
(π)
max in only 239 of the simulations, while ŷ

(π)
max exceeded ŷmax in 282 simulations,

with equality between the two holding in the remaining 479 iterations. The symmetry of

the distribution of ŷmax − ŷ(π)max around 0 in the motif (-) case is to be expected since the
scores yb are independent of the sequences wb whether permuted or not if no motifs are

included. By contrast, the strong asymmetry of the distribution of ŷmax − ŷ(π)max when the
motif is present demonstrates the ability of the permutation approach to differentiate a true
signal from background noise.
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Figure S2: Motif regression model predictions correlate with gene specificity scores in held-out
validation subsamples. Each of five cross-validation folds is plotted as separate point for each algorithm;
fewer than five points are shown for corresponding algorithm if it failed to identify any motifs in one or more
cross-validation folds. Upper panels: regions 3kb upstream of TSS; lower panels: regions 1kb downstream of
TSS. Vertical lines indicate mean Pearson correlation across all folds (including a value of 0 for any fold in
which algorithm failed to identify any motifs).

S3.2 Uncovering promoter motifs associated with differential gene expres-
sion

S3.2.1 Benchmark comparisons to existing algorithms

The cross-validated regression modeling strategy described in Section 3.2.3 builds a single
regression model based on the concatenated upstream and downstream motif count vectors.
We also built two more separate regression models—one using as feature set only the
upstream motif counts, the other only the downstream motif counts—for each of the two
data sets, obtaining the results presented in Figure S2. SArKS generally outperformed
the other algorithms in these comparisons, though for the upstream analysis of the Close
2017 data, DREME and HOMER offer similar performance; all of the algorithms have their
poorest performance in this particular analysis. For both data sets the regression model
predictions on the held-out validation folds are noticeably better in the downstream analyses
than the upstream analyses, as discussed in Section 3.2.3.

We used tomtom (Gupta et al., 2007) to compare the pooled motif sets identified by
each algorithm and detected overlap between motifs sets by algorithm (S3). There exists a
significantly similar (q ≤ 0.1) SArKS-identified motif for the majority of motifs identified
by any of the existing algorithms in the Mo 2015 data set. For the Close 2017 data set, at
least 50% of the motifs identified by DREME, FIRE, MOTIF REGRESSOR, and STEME
can be paired with a significantly similar SArKS motif, though this is true for only 39% of
HOMER-identified motifs.

An alternative benchmarking approach is to compare the motifs identified algorithmically
to databases of known TF-binding motifs, such as JASPAR (Mathelier et al., 2015). For
the presence of a TF-binding site to be biologically relevant in a cell, it is necessary for the
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Figure S3: Counting motif similarities shows substantial overlap between algorithms. Each cell
indicates the count of motifs identified by the target motif set algorithm for which there is a motif in the query
set with significant tomtom similarity (q ≤ 0.1). Cells are colored according to the numbers they contain.

TF itself to be present as well. In the context of our analysis of the two RNA-seq data
sets, we checked whether or not mRNA encoding TFs whose binding sites were similar to
discovered motifs are enriched among either the PV neuron (Mo 2015) or DCX+ cell (Close
2017) transcripts. We classified a TF gene as enriched if there was at least one distinct
mRNA transcript for the gene with (1) at least 100 reads (or pseudocounts for the Mo 2015
set) and (2) for which the mean TPM-normalized estimated expression level in either the
PV samples (Mo 2015) or DCX+ cells (Close 2017) ≥ the median of the genewise means
for all measured transcripts/genes in the relevant data set. Figure S4A is similar to a
receiver-operating characteristic plot in which the motif discovery algorithms are regarded
as classifying JASPAR motifs as positive when they show sufficient similarity to any of
the discovered motifs; the distance of a point above the diagonal indicates the degree to
which an algorithm preferentially identifies binding motifs for TFs showing high RNA-seq
expression levels in the target cell population. SArKS identifies motifs similar to a larger
fraction of JASPAR than do the other algorithms while maintaining a preference for motifs
for highly expressed TFs.

Figure S4B illustrates the overlaps between the sets of JASPAR motifs with similarities
among the motifs identified by the motif discovery algorithms: For all algorithms applied to
the Close 2017 data set and all but HOMER in the Mo 2015 data set, the set of JASPAR
motifs with significant similarity (q ≤ 0.1) to one of the algorithm-identified motifs overlaps
by more than 50% with the set of JASPAR motifs significantly similar to a SArKS motif.
The degree of overlap between the JASPAR matches among the various algorithm motif sets
tends to be higher than the degree of overlap directly between the motif sets themselves.
This suggests that the presence of a similar JASPAR motif may provide supporting evidence
that a given detected motif is a not a false positive.
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Figure S4: Discovered motifs overlap with known transcription factor binding sites. (A) Fractions
of JASPAR-annotated TFs for which the algorithms indicated identified a motif with significant tomtom

similarity (q ≤ 0.1) to the corresponding JASPAR binding motif. Vertical axis: fractions calculated using
only the JASPAR-annotated TFs whose measured expression in either PV neurons (left panel) or DCX+
cells (right panel) were in top 50% by mean normalized expression (TPM) and had at least 100 associated
reads. Horizontal axis: fractions calculated using only the remaining JASPAR-annotated TFs with measured
expression below these expression filters. (B) Each cell indicates the count of JASPAR motifs for which
there is a motif in both of the indicated algorithm motif sets with significant tomtom similarity (q ≤ 0.1).
Cells are colored according to the numbers they contain.
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sequence range γ half-window κ gmin fraction gi ≥ gmin

Upstream 0.1 250 0.9976 92.44%
Upstream 0.1 500 0.9987 90.16%
Upstream 0.1 1000 0.9992 87.46%
Upstream 0.1 2500 0.9996 83.89%

Upstream 0.2 250 0.9974 95.27%
Upstream 0.2 500 0.9986 93.82%
Upstream 0.2 1000 0.9991 92.27%
Upstream 0.2 2500 0.9995 89.61%

Downstream 0.1 250 0.9976 94.12%
Downstream 0.1 500 0.9987 91.12%
Downstream 0.1 1000 0.9992 86.83%
Downstream 0.1 2500 0.9996 81.96%

Downstream 0.2 250 0.9974 97.04%
Downstream 0.2 500 0.9986 95.74%
Downstream 0.2 1000 0.9991 93.87%
Downstream 0.2 2500 0.9995 90.88%

Table S3: Gini index filters remove small fractions of suffix array positions. Fraction of suffix array
positions i for which Gini impurity values gi ≥ gmin, with gmin selected according to Equation (S5) (applied
to Mo 2015 data set).

S3.2.2 Case study: analysis of SArKS results for Mo 2015 data set

The values of gmin obtained for the analysis of the Mo 2015 gene set (6,326 genes remaining
after application of filters described in Section S2.7.1), along with the fraction of suffix array
index values i for which gi ≥ gmin, are listed in Table S3.

S3.2.2.1 Top motif identified in sequences downstream of TSS

The highest ŷi value obtained—detected in the downstream sequence analysis using
κ = 250, λ = 0, and γ = 1.1 in the downstream region analysis—corresponded to the
k-mer TGACCTTG. This k-mer is very similar to a number of JASPAR TF-binding
motifs. The strongest matches are to the binding motifs of ESRRB (q = 0.00078), ESRRA
(q = 0.00078), and ESRRG (q = 0.00301). In fact a large fraction of the motifs associated
with identified peaks in ŷi identified in the downstream analysis exhibit significant similarity
to one of the JASPAR motifs ESRRB, ESRRA, or ESRRG, as is illustrated in Figure S5B.
The ESRR(A/B/G) TFs are all members of the estrogen-related receptor family; there is
evidence that these receptors are involved in brain functions including synaptic transmission,
neuronal firing, and mitochondrial biogenesis (Saito and Cui, 2018). This particular set of
motifs may also help to explain the overall stronger performance of all of the motif discovery
algorithms using the downstream sequences relative to the upstream sequences (Figure 3A),
as we noted that all of these algorithms identified motifs similar to each of these JASPAR
motifs (Section 3.2.3).
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Figure S5: Contributions of top motifs to peak composition. (A) Log-scaled histograms of peaks
i ∈ I (or Ispatial when spatial smoothing is employed) identified in upstream analysis for which corresponding
k-mer motifs: (1) are prefixed with CACCTGC or CCACCTGC (indicated in red) or are suffixed by the
reverse complement sequences GCAGGTG or GCAGGTGG (purple); (2) are otherwise spatially located
within a blast hit to the B1 SINE sequence (gold); (3) exhibited significant tomtom similarity (q ≤ 0.1)
to one of the JASPAR motifs ESRRA, ESRRB, or ESRRG (blue); or (4) did not satisfy any of the above
criteria (gray). Horizontal panels: half-window κ values used in analysis; vertical panels: spatial smoothing
length λ. (B) Log-scaled histograms of peaks identified in downstream analysis; color coding is as in (A)
except that black replaces gray. C?CACCTGC and its reverse complement do not occur in downstream peak
set.

15



S3. RESULTS AND DISCUSSION

 upstream downstream   T
G

A
C

C
T

T
G

  
 C

C
A

C
C

T
G

C
 

B
1

−2 −1 0 1 2 −2 −1 0 1 2

0

1

2+

0

1

2+

0

1

2+

sequence score yb

m
ot

if 
co

un
t i

n 
se

qu
en

ce
 b

Figure S6: PV-specific differential expression scores are higher in sequences containing one or
more copies of top SArKS motifs Each plot shows distribution of sequence scores split by the number of
occurrences of motif indicated by the row label (TGACCTTG, CCACCTGC, or B1) found in the sequence
range indicated by the column label (upstream or downstream). The first two motifs—k-mers TGACCTTG
and CCACCTGC—were counted using regular expression matching (allowing matches on either forward or
reverse strands), while B1 counts were assessed using blastn (percent identity ≥ 90%, alignment length ≥
70). Distributions are summarized by notched boxplots (area scaled to square root of sequence count; notch
width is 1.57 times the interquartile range (IQR) divided by square root of sequence count) laid over kernel
density estimates drawn as gray violins (area scaled to sequence count). Scores ≤ −2.5 or ≥ 2.5 are plotted
at -2.5 or 2.5, respectively, in order to clearly show the bulk of the distribution, which falls within this range.
For the motif CCACCTGC derived from analysis of the upstream sequences, the scores for the downstream
sequences containing the k-mer do not show the same upward shift in the score distribution as do those
for the upstream sequences with one or more occurrence. On the other hand, the score distribution for
both TGACCTTG-positive upstream sequences and TGACCTTG-positive downstream sequences is shifted
upwards, though the shift is notably larger in the downstream sequences, explaining the prominence of this
motif in the downstream analysis.

S3.2.2.2 Top motifs identified in sequences upstream of TSS

ESRRB/ESRRA/ESRRG binding motifs were also identified by SArKS analysis of the
upstream sequences, but they did not account for either the highest scores ŷi nor did they
correspond to a large fraction of the overall k-mer motif sets discovered (Figure S5A). Figure
S6 sheds some light on this: the distribution of sequence scores yb for downstream sequences
containing one or more copies of the top SArKS octamer TGACCTTG is shifted upward
to a much higher degree than is the the distribution of yb values for upstream sequences
containing TGACCTTG.

Instead, For five of the 12 distinct combinations of smoothing half-window κ and spatial
window λ investigated using SArKS, the k-mer CCACCTGC was identified at the positions si
with maximal values of ŷi (the k-mers GCACACCTT, TGGAACTCACT, CCTGGAAC, and
CAGCCTGG (identified using two distinct parameter combinations at the same suffix index
i) were associated the highest ŷi values using the remaining seven parameter combinations).
The octamer CCACCTGC contains the canonical core recognition E-box sequence CANNTG
(specifically, the E12-box variant CACCTG (Bouard et al., 2016); we note that the significant
SArKS peak set contains many peaks corresponding to the 7-mer CACCTGC as well as
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the longer octamer adding the extra initial C). Comparison of CCACCTGC with known
motifs from the JASPAR database using tomtom finds some evidence of similarity to 10
TF-binding motifs (SNAI2, MAX, SCRT2, SCRT1, TCF3, MNT, Id2, MAX::MYC, TCF4,
and FIGLA; q-values of 0.14 for each), though no similarities significant at q ≤ 0.1. Unlike
the case for the ESRR(A/B/G) motifs discovered in the downstream analyses, for which all
of the benchmarked algorithms detected a matching motif, only one of the other algorithms
(HOMER) detected a motif similar to either CACCTGC or CCACCTGC (tomtom q ≤ 0.1;
no other algorithm produced any motifs matching even at q ≤ 0.5).

S3.2.2.3 B1 SINE sequence identified through MMD analysis

As the octamer CCACCTGC was identified in analyses with spatial window length λ
ranging up to 100, we performed a multiple sequence alignment using muscle (Edgar, 2004)
of the 100-mers x[si − 50, si + 50) for these positions si (Figure S7A); three of the five
100-mers thus aligned were very similar (Levenshtein distance ≤ 7) to the 99-mer consensus
sequence constructed. Furthermore, the consensus sequence also contains CCTGGAAC and
CCAGGCTG (reverse complement of CAGCCTGG).

A blast screen of known repeated elements in the mouse genome for a consensus
sequence uncovered a 93.9% identical base pair stretch of the B1 short interspersed element
(SINE) sequence (SINEBase (Vassetzky and Kramerov, 2013)). The B1 SINE family consists
of retrotransposon-derived sequences appearing throughout the mouse genome, especially
upstream and within introns of genes implicated in DNA remodeling and expression regulation
(Tsirigos and Rigoutsos, 2009). Additional observations have further suggested that SINEs
function as transcriptional enhancers (Ichiyanagi, 2013; Elbarbary et al., 2016; Ge, 2017).

Figure S5A indicates the number of SArKS-identified peaks that fall within blast hits
between the upstream sequences wb and the B1 SINE consensus sequence as well as the
numbers of peaks corresponding to the top motifs discussed above. The upstream SArKS
peaks derived from analyses involving spatial-smoothing (λ ∈ {10, 100}) are dominated by
B1 sequences, many including the CCACCTGC motif or its reverse-complement.

S3.2.2.4 SArKS motifs correspond to variations on B1 sequence

Figure S7B provides a more detailed view of these peak counts by splitting them out by
position to which the corresponding k-mers align to the B1 consensus and by whether they
are matched or mismatched to the B1 consensus at each position. The k-mer CCACCTGC
itself is not quite a perfect match to the canonical B1, containing a single base substitution
away from the octamer CCGCCTGC whose reverse complement GCAGGCGG is found at
positions 49-56 of the SINEBase B1 sequence. This substitution is responsible for the peak
at position 54 in the mismatch counts in Figure S7B—one of the few positions at which
there are more mismatches than matches. This G to A substitution creates the above noted
E-box sequence CANNTG, while the unmodified octamer CCGCCTGC does not match
any JASPAR motifs at q ≤ 0.5. This highlights the ability of SArKS to discover potentially
functionally significant variations within a recurring sequence.

One of the remaining top upstream k-mer motifs mentioned above, GCACACCTT,
similarly matches the nonamer GCACGCCTT spanning positions 15-23 of the SINEBase
B1 sequence, but with a single G to A substitution. The modified nonamer GCACACCTT
identified by SArKS shows significant similarity (tied q values of 0.038) to several JASPAR
motifs (TBX21, EOMES, TBX15, TBX1, and TBX2), while the unmodified B1 nonamer

17



S3. RESULTS AND DISCUSSION

(A)
logo

TGAGGCTAGAGTGCGTCATGGCTAATCTCGTACTACTNTCTTGCTAGCACCAGGTCTGAGTCTCTATCAGGACGATCTGTCGAAGTAGTACGACTCCGACCTGCGGTGGGGCATTCTGCGTCTCTCTCAGAGTGCTAGGGGATCTTAAAGCGCACGTCGTCAGACTCCTGGGGACCCAACT
Tcf20 TGAGTAAGTAGGCATTCTTACCTTCAGCCC...TTGATCTAAGCTTTGATTCCCCACCTGCGGTGGGCATTGGCTCTT...........TTTAAGCCATCCACTCTGGGGCCAA
Atp5j2 TGGCTGGCGTGGAACTCGT.CCTGTAGACCAGGCTGATCTTGAG..GGGAGGTCCACCTGC......CTCTGTCTCCCGAGTGCTGGGGTCAAAGGCCTGTGAC.....ACCCA
Zbtb26 ..GCTGTCCTGGTACTCAT.TCTGTAGACCAGGCTGGCTTCGAACTCAGAAATCCACCTGC......CTCTGTCTCCCGAGTGCTGGGATTAAAGGCGTGCACC.....ACCAT
B1 consensus TGGCTGTCCTGGAACTCAC.TNTGTAGACCAGGCTGGCCTCGAACTCAGAAATCCGCCTGC......CTCTGCCTCCCAAGTGCTGGGATTAAAGGCGTGCGCC.....ACCAT
Cdk11b ..GCTGTCCTGGAACTCAC.TTTGTAGACCAGGCTGGCCTCGAACTCAGAAATCCACCTGC......CTCTGTCTCCCGAGTGCTAGGATTAAAGGCGTGCGCC.....ACCAC
Qars ..GCTGTCCTGGAACTCAC.TTTGTAGACCAGGCTGGCCTTGAACTCAGAAATCCACCTGC......GTCTGTCTCCTGAGTGCTGGGATTAAAGGCGTGTGCC.....ACCAC
consensus **!*****!!*!*!!* * !**!!*!!****!!***! ************!!*!!!!! ***!!*!!!*************!**!!!*!*!***** *!!*

(B)

G

CC

G

G

GCA
T

G
G

TGG

C
G

C
A
C

G

C
CTTTA

ATCCCAGCAC
T
T
GGGAGGCAGAGGCAGG

C
G
G

ATT
T

CT
G

AGTT
C
G

AG
GC

CAGCCTGGTC
T
A
CA

N
A
G

T
GA

GT
TCCAGG

AC
A
GCCA

G
G
G
CT

A
C
ACAG

AGA
AACCCTGT

C
T

C

G

A

A

A

A

A

A

A

AA

A

* *

1

10

100

1000

10000

0 50 100 150

position along B1 SINE sequence

co
un

t o
f S

A
rK

S
−

id
en

tif
ie

d 
k

−
m

er
s 

al
ig

ne
d 

to
 p

os
iti

on

identical

False

True

Figure S7: SArKS-discovered motifs within B1 SINE elements. (A) Multiple sequence alignment
(muscle) of 100-mers surrounding top CCACCTGC motif peaks with reverse-complement of B1 consensus
sequence. Associated genes are indicated to the left. Gray highlighting: ≥ 50% agreement in the multiple
sequence alignment. (B) Number of upstream motif k-mer peaks in B1 regions that align to each position
within the B1 sequence. Gray bars: number of peak k-mers derived from upstream sequence regions for which
a blast hit (percent identity ≥ 90%, alignment length ≥ 70) to B1 was found and for which an alignment of
the k-mer to B1 aligned a matching base at the position in question. Red bars: number of k-mers within
B1 blast hits which align against B1 with a mismatched base at the position in question. Above each bar
is a label indicating the B1 consensus base at that position. Note that the lack of a gray bar at position
89 results from the lack of consensus base for B1 at this position (marked by N above the red bar), so that
all k-mers that align against this position must produce a mismatch. The consensus base labels are drawn
darker and the bars are marked with an asterisk at positions (19 and 54) where two of the top SArKS peaks
exhibit changes compared to the B1 consensus sequence. While essentially the entirety of the B1 consensus is
represented by identified k-mer motifs, there is more variation away from the consensus towards the left end
and at a couple of isolated positions further in than along most of the length of B1.
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Distinct Transcripts Count

All analyzed 6,326
+ Protein coding 5,017

+ High expression in PV 1,595
+ Low expression in non-PV 196
+ PV : non-PV log-ratio ≥ 1 92

+ Top 5% SArKS regression score 13
+ Top 5% t-statistic score yb 11

Table S4: SArKS-based regression modeling assists in selecting candidate upstream regions for
promoting PV-specific expression. Number of distinct transcripts remaining after sequential application
of described filters. Annotation of transcripts as protein coding or otherwise taken from Ensembl GRCm38
(Aken et al., 2016). Expression levels were considered high in PV samples if the average within-PV value of
log2(TPM + 1) ≥ log2(10 + 1), while expression levels were considered low in non-PV samples if the average
non-PV log2(TPM + 1) < log2(10 + 1). Log-ratios were calculated as the difference of the PV-averaged- and
non-PV-averaged-log2(TPM + 1) values, so that a log-ratio of one represents at least a two-fold increase in
expression levels. SArKS regression scores were calculated using a ridge regression model built using counts
of all k-mer motifs identified by SArKS applied to 3kb upstream promoter regions.

GCACGCCTT again shows no similarity to any JASPAR motifs at q ≤ 0.5, again suggestive
that specific SINE variants may promote differential gene expression.

S3.2.2.5 SArKS-based candidate promoter selection

Finally, to illustrate how SArKS can be used to help select candidate regulatory regions
for promoting specific expression patterns, we again constructed a ridge regression model
based on the counts of SArKS-identified k-mer motifs. We applied the same modeling
strategy as described in Section 3.2.3 to the promoter regions defined by the 3,000 base pairs
immediately preceding the TSSs of each of the 6,326 distinct analyzed transcripts. Each
distinct transcript was then assigned a score by resubstitution into the resulting regression fit.
Table S4 shows a sequence of filters in which these regression scores were applied alongside
other relevant criteria to select candidate PV-specific promoter regions. The promoter
regions associated with the genes ATP5SL, GPRC5B, IFT27, KCNH2, MAFB, PAQR4,
SLC29A2, SYT2, TBC1D2B, TMEM186, and TTC39A comprise the 11 candidates (from
the final row of Table S4) selected for further experimental validation. Table S5 shows which
of the top motifs discussed above are present in each of the candidate promoter regions: all
regions except those for GPRC5B and MAFB contain at least one match for the ESRRB
motif, while several also contain one or more copies of the E-box sequence and/or a match
to the B1 SINE sequence. The promoter for IFT27 contains a match to a variant the B1
sequence with the substitution creating the E-box sequence CACCTGC. It is worth noting
that there are many other SArKS motifs contributing to the promoter ranking model used
here. Indeed, in accord with the principle that there is likely to be more than one way for
combinations of motifs to achieve expression specificity, the candidate promoters for the
genes GPRC5B and MAFB are ranked highly based exclusively on motifs other than the
highest scoring ones.
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Promoter ESRRB C?CACCTGC (E-box) B1

ATP5SL 3 1/3 0
GPRC5B 0 0/1 0

IFT27 1 0/2 1
KCNH2 2 0 0
MAFB 0 0 0

PAQR4 2 2 0
SLC29A2 1 0 1

SYT2 2 1 0
TBC1D2B 3 1 0
TMEM186 2 0 1

TTC39A 2 0/1 0

Table S5: Selected candidate promoter regions contain different combinations of top motifs.
Counts for the JASPAR motif ESRRB—the best JASPAR match to the top SArKS motif TGACCTTG—
were assessed using fimo, while counts of the E-box sequence CCACCTGC or its reverse complement were
assessed using simple string matching. If a promoter had additional matches to the substring CACCTGC (on
either strand) omitting the initial C, a second count for this reduced match is indicated after a forward slash.
Matches for the B1 SINE sequence were counted using blast requiring a minimum 90% sequence identity
and 70 bp alignment length.

S3.3 Computational complexity and scalability of SArKS

One of the major motivations behind SArKS’ method of discovering motifs—searching
for blocks of lexicographically similar suffixes derived predominantly from high-scoring
sequences—lies in the scalability of suffix-based methods. The number of suffixes of a string
(or set of strings) scales linearly with the length of the string(s) involved: as a result, the
steps involved in the SArKS algorithm for identifying significant peaks scale linearly in both
runtime and memory space with the combined size of the set of input sequences. We discuss
this in more detail below. We then discuss the complexity of the later steps involved in
extracting information regarding specific motif k-mers from the significant SArKS peak set.

The existing implementation of SArKS generates and then stores in memory the full
suffix array of the concatenated sequence x = w0 ∗ . . . wn−1: this step is asymptotically
linear in the length of the concatenated sequence both in terms of runtime and memory
(Kärkkäinen and Sanders, 2003). There is one caveat regarding the memory requirement
here: the suffix array for a sequence of length l contains a permutation of the first l integers;
while the length of this array is linear in l, the number of digits required to specify each
integer grows logarithmically with l as well. An uncompressed suffix array (as used here)
thus technically requires memory specified in bits scaling with llogl. Assuming the default
use of 64-bit integers (as is done in the numpy-based python implementation we have used),
however, memory will scale linearly for sequences of length up to ∼ 1018 characters, far
beyond current practical limits.

Given the inverted suffix array is yielding the value of the suffix array index i corre-
sponding to the suffix array value si, the block array (Equation (3)) can be constructed
in linear time and space (again in terms of the length of the concatenated sequence x) by
(1) looping through the positions s in the concatenated string x, (2) checking whether the
active block b needs to be incremented according to whether s ≥ lb+1 (Section 2.1), and (3)
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filling in the position is of the block array with the active block value b.
Kernel smoothing using a uniform kernel may be implemented in linear time by computing

differences of cumulative sums (Equation (6)). The array of Gini impurity values (Equation
(S4)) can be computed in linear time by successively computing the difference in consecutive
values resulting from shifting the smoothing window by one position and updating the
associated block frequencies Equation (S3). Identification of peaks (by comparing the score
of each position to the scores of the two spatially adjacent positions) in the array of smoothed
suffix scores ŷi, along with the filtering of the resulting peak set based on score threshold θ
and Gini impurity threshold gmin, again requires time linear in the length of the concatenated
sequence x. Similar remarks hold for the analogous spatial smoothing operations.

Permutation testing requires repetition of the above steps R times, where R is the number
of permutations, and is hence still asymptotically linear in the length of the concatenated
sequence x. While in principle parallelizable, each permutation will require its own smoothed
(and, if desired, spatially smoothed) score array, so that parallelization requires memory
linear in R ∗ |x|.

Motif length selection according to Equation (7) could be naively implemented in
O(kmax ∗ κ) time per peak by directly comparing each suffix in the smoothing window to
the suffix corresponding to the suffix array index around which the window is centered. In
fact it is generally faster to use the suffix array to compute the suffix array index bounds for
which the k-mer prefixing the central suffix is conserved (this may be done quite efficiently
using the Burrows-Wheeler transform (Ferragina and Manzini, 2000); in our implementation
of SArKS we have generally avoided this in order to reduce the memory requirements of
the algorithm, favoring instead a slightly less efficient binary search approach). Either way,
motif length selection generally requires time linear in the size of the peak set; in practice,
when the peak set is large, this step can be relatively time consuming.

Merging of spatially adjacent k-mers originating within the same spatial smoothing
window (Equation (S15)) may be computed in time linear in the size of the peak set times
the length of the spatial smoothing window λ. In the case of large peak sets, this step can
be time consuming as well.
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S4 Future directions

S4.1 Gapped motif detection

While lexical sorting of suffixes assembles occurrences of the same k-mer into a block of
adjacent index positions i, gapped motifs such as

u = u0 ∗ ugap ∗ u1 (S30)

in which there is significant variability in the characters appearing within the internal
substring ugap will be scattered into distinct subblocks dispersed within the larger superblock
corresponding to their common prefix u0. This dispersion can dilute the apparent correlation
ŷi between motif and score by mixing non-matching suffixes in with those corresponding to
u within the range of the smoothing kernel.

While the technique described in Section S2.4 ameliorates this problem, it does not
specifically focus on the important situation where a head motif u0 is always followed by the
same tail motif u1 after the variable region ugap. Such gapped motifs might be discovered
using SArKS by first applying a relatively relaxed threshold θ (which may on its own admit
many false positives) and then examining the tail sequences ugap ∗ u1 ∗ · · · following it for
evidence of an enriched sequence u1, removing candidate head sequences for which no such
corresponding tails can be found. In this way, the ability of SArKS to detect motifs with
particularly variable internal positions may be improved.

S4.2 Other applications of SArKS

While we have tested SArKS as a method for identifying candidate cell type-specific regulatory
motifs, it could also be applied to sequence motifs associated with state dependent changes
in activated neurons of a single class as well as to differential gene expression in cancer
and in specimens that have been exposed to varying physical or chemical stimuli. We also
anticipate uses far afield from analysis of biological sequences, including motif discovery in
time series data (Fu, 2011), or, by considering node or edge sequences produced by random
walks, analysis of complex network structure (Masoudi-Nejad et al., 2012).
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