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1 Some supplementary figures

Fig. S1: A schematic illustration of how the training for child nodes may help the training for parent nodes. The GO
terms are sorted in topological order and the NN model is trained for each GO term separately in the reverse order.
At a parent node p, the predicated class labels of each isoform for its children are simply added to the initial isoform
class labels during its training process.

0

2500

5000

7500

0 5 10 15 20 25

isoforms per gene

g
e

n
e

 f
re

q
u

e
n

cy

Fig. S2: The distribution of isoforms over genes. Out of the 19532 genes in RefSeq, 9039 have only one isoform (called
single isoform genes or SIGs) and 10313 have more than one isoform (called multiple isoform genes or MIGs).
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Fig. S3: Correlation between expression similarity and functional similarity with respect to different GO term sizes.
The GO terms were again divided into four groups based on sizes. For each group, all genes that have been annotated
with at least one term in the group were collected. For these genes, we generated two matrices to represent their
(pairwise) similarity in terms of expression profiles or GO functions. Then, using a standard tool (cor.test) in the R
Stats package, we estimated the Pearson correlation between these two similarity matrices. Clearly, the stronger the
correlation, the more likely we are able to predict GO functions based on expression. As shown in the histogram, the
correlation decreases as the GO term size increases although the correlation is weak in all groups. This trend might
indicate that there is more annotation noise in GO terms with larger sizes, which in turn might help explain why the
performance of DeepIsoDun decreases with respect to GO terms with larger sizes.
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Fig. S4: Performance of DeepIsoFun on MIGs with different numbers of isoforms. We divided MIGs into five groups:
MIGs with 2 isoforms, 3 isoforms, 4 isoforms, 5 isoforms, or more than 5 isoforms. The average AUC performace of
DeepIsoFun is shown in the histogram. It increases slightly as the number of isoforms per gene increases.

(a) Without DA (b) With DA

Fig. S5: Effectiveness of DA in mixing the two domains. Red dots represent samples from the source domain after
feature extraction and blue dots represent samples from the target domain. The tool t-SNE (1) was used to per-
form dimensionality reduction and visualization. The DA technique clearly makes the two distributions harder to
distinguish.
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2 Comparison of the divergence of isoform functions predicted by the methods

It would be interesting to compare the average dissimilarity among the isoform functions of the same gene
predicted by different methods, although it would probably be difficult to rank the methods based on this
measure. We applied the same divergence analysis procedure for DeepIsoFun to the three methods in (2; 3;
4; 5), mi-SVM, MILP (i.e., the non-iterative version of iMILP) and WLRM. The result is shown in Figure
S6. The average dissimilarity scores achieved by DeepIsoFun, mi-SVM, MILP, and WLRM are respectively
0.162, 0.322, 0.197 and 0.204. Interestingly, the first three methods all reported the highest divergence on
the branch CC.
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Fig. S6: Functional dissimilarity distributions on the three main branches of GO achieved by DeepIsoFun, mi-SVM,
MILP, and WLRM.

3 Time efficiency of the methods

When the programs are run sequentially on a single CPU, DeepIsoFun is faster than the other three methods.
More precisely, it takes DeepIsoFun 12.09 minutes to process one GO term on Dataset1 on the average (on a
standard compute server node), which is 1.42 times faster than mi-SVM, 0.37 times faster than MILP, 2.49
times faster than iMILP, and 0.21 times faster than WLRM.

Table S1: Average computation time (in minute) per GO term.

DeepIsoFun mi-SVM MILP iMILP WLRM

Time 12.09 29.26 16.48 42.17 14.59

4 Some more supplementary tables
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Table S2: To check if DeepIsoFun consistently outperforms the other methods on data from more organisms, we
tested them on two more expression datasets concerning Arabidopsis thaliana and Drosophila melanogaster (i.e.,
fruit fly), respectively named as Dataset#4 and Dataset#5. The data generation procedure is similar as described
in Section 3.2. Dataset#4 contains the expression profiles of 24315 genes and 31811 isoforms derived from 13 SRA
arabidopsis studies consisting of 101 experiments and Dataset#5 contains the expression profiles of 13022 genes
and 28419 isoforms derived from from 11 SRA fruit fly studies consisting of 128 experiments, with the requirement
that each study contains at least 6 experiments. The transcript annotations for these two organism were collected
from TAIR (https://www.arabidopsis.org/) and FlyBase (http://flybase.org/). The results in the table show that
DeepIsoFun consistently performs better than MILP and iMILP. Specifically, in terms of AUC, DeepIsoFun is 97.2%
and 58.1% better than MILP and iMILP on Dataset#4 (45.6% and 29.4% better on Dataset#5), respectively, against
the baseline 0.5. In terms of AUPRC, DeepIsoFun performs 38.7% and 15.2% better than MILP and iMILP on
Dataset#4 (33.6% and 16.1% better on Dataset#5), respectively, against the baseline 0.1.

AUC AUPRC

Dataset

Method
DeepIsoFun MILP iMILP DeepIsoFun MILP iMILP

Dataset#4 0.674 0.588 0.610 0.229 0.193 0.212

Dataset#5 0.698 0.636 0.653 0.259 0.219 0.237

Table S3: Comparison of DeepIsoFun, mi-SVM and WLRM on Dataset#4 and Dataset#5. Again, DeepIsoFun con-
sistently outperforms the other two methods. In terms of AUC, DeepIsoFun is 30.6% and 22.7% better than mi-SVM
and WLRM, respectively, on Dataset#4 (12.2% and 15.7% better on Dataset#5). In terms of AUPRC, DeepIso-
Fun is 31.1% and 40.6% better than mi-SVM and WLRM, respectively, on Dataset#4 (25.9% and 18.1% better on
Dataset#5).

AUC AUPRC

Dataset

Method
DeepIsoFun mi-SVM WLRM DeepIsoFun mi-SVM WLRM

Dataset#4 0.662 0.624 0.632 0.197 0.174 0.169

Dataset#5 0.684 0.664 0.659 0.231 0.204 0.211

Table S4: Comparison of DeepIsoFun, MILP and iMILP in AUC performance with respect to GO terms of different
sizes. Again, we divided GO terms into four groups based on size: [5,10], [11,20], [21, 50], and [51, 1000]. As shown
in the table, the performance of all methods deceases as the GO term size increases in most cases. This is consistent
with the pattern observed in Section 3.3.2 and Figure 3(a).

Dataset

Method DeepIsoFun MILP iMILP
[5,10] [11,20] [21,50] [51,1000] [5,10] [11,20] [21,50] [51,1000] [5,10] [11,20] [21,50] [51,1000]

Dataset#1 0.761 0.744 0.734 0.731 0.631 0.629 0.612 0.608 0.662 0.657 0.64 0.631

Dataset#2 0.754 0.742 0.726 0.717 0.589 0.579 0.566 0.561 0.661 0.631 0.626 0.62

Dataset#3 0.741 0.726 0.721 0.692 0.558 0.536 0.532 0.534 0.701 0.679 0.665 0.651

Dataset#4 0.701 0.682 0.664 0.647 0.609 0.584 0.582 0.577 0.623 0.608 0.611 0.598

Dataset#5 0.714 0.705 0.695 0.681 0.637 0.641 0.63 0.638 0.668 0.662 0.642 0.638

Table S5: Comparison of DeepIsoFun, mi-SVM and WLRM on Dataset#4 and Dataset#5 in AUC performance with
respect to different GO term sizes. As shown in the table, the performance of all methods deceases as the GO term
size increases in most cases. Again, this is consistent with the pattern observed in Section 3.3.2 and Figure 3(a).

Dataset

Method DeepIsoFun mi-SVM WLRM
[5,10] [11,20] [21,50] [51,1000] [5,10] [11,20] [21,50] [51,1000] [5,10] [11,20] [21,50] [51,1000]

Dataset#1 0.756 0.739 0.736 0.708 0.705 0.683 0.664 0.662 0.714 0.696 0.694 0.661

Dataset#2 0.732 0.728 0.725 0.729 0.674 0.665 0.671 0.659 0.672 0.667 0.649 0.641

Dataset#3 0.732 0.715 0.707 0.667 0.657 0.656 0.642 0.616 0.681 0.671 0.67 0.637

Dataset#4 0.687 0.661 0.657 0.643 0.635 0.622 0.623 0.617 0.643 0.636 0.628 0.619

Dataset#5 0.699 0.683 0.682 0.671 0.676 0.669 0.661 0.649 0.666 0.658 0.655 0.656
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Table S6: Performance of DeepIsoFun in predicting the apoptosis regulatory, pro-apoptosis and anti-apoptosis func-
tions. The 18 genes that have multiple isoforms and are annotated with both pro-apoptosis and anti-apoptosis func-
tions are listed in the first two columns. Here, the ID of a gene is extracted from the NCBI database. The numbers of
isoforms of the genes are shown in the third column. DeepIsoFun was trained on Dataset#1 using a standard five-fold
cross validation procedure with GO Slim as the benchmark. The prediction results concerning the three functions are
shown in the next three columns, where an “Y” means that the concerned function is predicted for at least one of
the isoforms of the concerned gene. The last column shows for each gene, if some isoforms of the gene are predicted
to be pro-apoptosis but not anti-apoptosis while some other isoforms of the gene are predicted to be anti-apoptosis
but not pro-apoptosis.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-apoptosis Anti-apoptosis Differentiated

FAS 355 4 Y Y Y Y

BARD1 580 5 Y Y Y N

BMP4 652 9 Y Y Y Y

DDX3X 1654 3 Y N N N

DNAJA1 3301 2 Y Y N N

IL6 3569 2 Y Y Y N

MAPK8 5599 17 Y Y Y Y

PSEN2 5664 2 N N N N

RPS27A 6233 3 Y N Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 Y Y Y N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y Y Y Y

HMGA2 8091 5 Y N Y N

SQSYM1 8878 3 Y N Y N

ZNF268 10795 9 Y Y Y Y

YNFAIP8 25816 6 Y Y Y Y

Table S7: Performance of iMILP in predicting the apoptosis regulatory, pro-apoptosis and anti-apoptosis functions.
Here, iMILP was trained on Dataset#1 using a standard five-fold cross validation procedure with GO Slim as the
benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-apoptosis Anti-apoptosis Differentiated

FAS 355 4 N N N N

BARD1 580 5 Y Y N N

BMP4 652 9 Y Y Y N

DDX3X 1654 3 Y N Y N

DNAJA1 3301 2 N N N N

IL6 3569 2 Y N Y N

MAPK8 5599 17 Y Y Y N

PSEN2 5664 2 Y Y N N

RPS27A 6233 3 Y Y Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y N Y N

UBB 7314 6 Y Y Y Y

HMGA2 8091 5 Y N Y N

SQSYM1 8878 3 N N N N

ZNF268 10795 9 Y Y Y Y

YNFAIP8 25816 6 Y Y Y Y

5



Table S8: Performance of mi-SVM in predicting the apoptosis regulatory, pro-apoptosis and anti-apoptosis functions.
Here, mi-SVM was trained on Dataset#1 using a standard five-fold cross validation procedure with GO Slim as the
benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-apoptosis Anti-apoptosis Differentiated

FAS 355 4 Y N Y N

BARD1 580 5 Y Y Y Y

BMP4 652 9 Y Y Y N

DDX3X 1654 3 Y N Y N

DNAJA1 3301 2 N N N N

IL6 3569 2 Y Y N N

MAPK8 5599 17 Y Y Y Y

PSEN2 5664 2 N N N N

RPS27A 6233 3 Y Y Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y Y Y N

HMGA2 8091 5 Y Y N N

SQSYM1 8878 3 Y N Y N

ZNF268 10795 9 Y Y Y N

YNFAIP8 25816 6 Y Y N N

Table S9: Performance of WLRM in predicting the apoptosis regulatory, pro-apoptosis and anti-apoptosis functions.
Here, WLRM was trained on Dataset#1 using a standard five-fold cross validation procedure with GO Slim as the
benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-apoptosis Anti-apoptosis Differentiated

FAS 355 4 Y Y Y N

BARD1 580 5 Y Y Y N

BMP4 652 9 Y Y Y Y

DDX3X 1654 3 N N N N

DNAJA1 3301 2 Y Y N N

IL6 3569 2 Y N Y N

MAPK8 5599 17 Y Y Y N

PSEN2 5664 2 N N N N

RPS27A 6233 3 N N N N

SNCA 6622 4 Y Y Y N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y N Y Y

HMGA2 8091 5 Y Y Y N

SQSYM1 8878 3 Y Y Y N

ZNF268 10795 9 Y N Y N

YNFAIP8 25816 6 Y Y Y N
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