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1. Theory

1.1. Sign test method

In addition to the calibrated estimation method described in the main text, we considered an
additional robust method that follows straightforwardly from repurposing existing methods
for conducting inference on the percentiles of a heterogeneous effect distribution1. Let k
denote the number of studies in the meta-analysis and let B̂i = 1{θ̂i < q} − 1{θ̂i > q}. Wang
et al. (2010) proposed the test statistic1:

T̂ (q) =
k∑

i=1

∣∣∣Φ((q − θ̂i)/σ̂i
)
− 1/2

∣∣∣B̂i =
k∑

i=1

{
Φ
(

(q − θ̂i)/σ̂i
)
− 1/2

}
where Φ denotes the cumulative distribution function of the standard normal distribution.
To provide intuition, the term Φ

(
(q − θ̂i)/σ̂i

)
represents the asymptotic coverage level of

the confidence interval [−∞, q] for θi, that is, P (q > θi).a Thus, the term in the absolute
value serves as a precision weight for the contribution B̂i in that it compares the precision of
study i (specifically with respect to the threshold q) to that of a study that is maximally
uninformative in the sense that P (q > θi) = 1/2. To test a null hypothesis equivalent to
H0 : 1 − P>q = p∗ for a fixed percentile p∗, Wang et al. (2010)1 simulated a reference
distribution for T̂ (q) under H0, calling the reference test statistic T̂ ∗(q):

T̂ ∗(q) =
k∑

i=1

∣∣∣Φ((q − θ̂i)/σ̂i
)
− 1/2

∣∣∣∆i

where ∆i is a null counterpart to B̂i that is simulated to equal 1 with probability p∗ and to
equal −1 with probability 1−p∗. Wang et al. (2010)2 showed that this simulated distribution
approximates the true distribution under H0 when the sample size in the meta-analyzed
studies is large, though without requiring asymptotics on the number of meta-analyzed studies
(k). These results designed for conducting inference on a fixed percentile of interest also
allow straightforward inference and point estimation for the proportion of effects above a
threshold, P>q. To do so, one can specify a grid of M values (p∗1, · · · , p∗M) ranging from 0

aSpecifically, let ni be the sample size in the ith study. Then θ̂i
D−−−−→

ni→∞
N
(
θi, σ

2
i

)
. Consider the coverage

of a confidence interval for θ̂i with lower bound θ̂i − cσ̂i for an arbitrary constant c > 0. Asymptotically,
the probability that the lower bound is too high to cover θi is P

(
θ̂i − cσ̂i > θi

)
p−−−−→

ni→∞
Φ(−c). Setting

q = θ̂i − cσ̂i yields P (q > θi) = Φ
(

(q − θ̂i)/σ̂i
)
, as desired.
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to 1 and conduct a level-α test of each hypothesis H0,m : 1− P>q = p∗m by simulating many
iterates of the reference statistics T̂ ∗(q), whose distribution depends on p∗ via the random
binary variable ∆i. The set of 1− p∗m that are not rejected at level α form the 100× (1−α)%

confidence interval for P̂>q, and a point estimate P̂>q can be defined as the value 1− p∗m with
the largest p-value (which we term the “sign test max” in the simulation study).

1.2. Sensitivity analysis for unmeasured confounding

We previously developed sensitivity analyses for unmeasured confounding in meta-analyses;
these methods quantified the proportion of effects of scientifically meaningful magnitude, P̂>q,
under a specified amount of unmeasured confounding3. We also developed converse methods
to estimate the strength of confounding capable of reducing P̂>q itself to below a chosen
threshold3. These methods used parametric point estimation and inference that generalized
the parametric methods described in the main text here4. These sensitivity analysis methods
can be conducted robustly using the present calibration-based methods as follows.

1.2.1 Setting and notation

This background material is partly reproduced from our previous work regarding sensitivity
analysis using parametric methods, where we provide more detail, intuition, and guidance
on practical interpretation5;3. Let X denote a binary exposure, Y a binary outcome, Z a
vector of measured confounders, and U one or more unmeasured confounders5. Consider
the point estimate for a single meta-analyzed study on the relative risk scale; other effect
size measures, such as standardized mean differences and odds ratios, can be approximately
converted to relative risks to allow application of these methods, as when conducting the
sensitivity analyses parametrically3. Let:

RRXY |z =
P (Y = 1 | X = 1, Z = z)

P (Y = 1 | X = 0, Z = z)

be the confounded relative risk (RR) of Y for X = 1 versus X = 0 conditional or stratified
on the measured confounders Z = z. Let its unconfounded counterpart standardized to the
population be:

RR′XY |z =

∑
u P (Y = 1 | X = 1, Z = z, U = u)P (U = u | Z = z)∑
u P (Y = 1 | X = 0, Z = z, U = u)P (U = u | Z = z)
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Define the ratio of the confounded to the unconfounded relative risks as B = RRXY |z/RR
′
XY |z;

this “bias factor” can be sharply bounded as follows5. Let:

RRXu = P (U = u | X = 1) /P (U = u | X = 0)

Define the first sensitivity parameter as RRXU = maxu (RRXu); that is, the maximal relative
risk of U = u for X = 1 versus X = 0 across strata of U . (If U is binary, this is just the
relative risk relating X and U .) Next, for each stratum x of X, define a relative risk of U on
Y , maximized across all possible contrasts of U :

RRUY |X=x =
maxu P (Y = 1|X = x, U = u)

minu P (Y = 1|X = x, U = u)
, x ∈ {0, 1}

Define the second sensitivity parameter as RRUY = max
(
RRUY |X=0, RRUY |X=1

)
. That is,

considering both strata of X, it is the largest of the maximal relative risks of U on Y

conditional on X. Others5 showed that when B ≥ 1, then B itself is bounded above by:

B ≤ RRXU ·RRUY

RRXU +RRUY − 1

and that when B ≤ 1, the same bound holds for 1/B. Thus, defining the “worst-case”
bias factor as B+ = RRXU ·RRUY

RRXU+RRUY −1
, a sharp bound for the unconfounded effect when the

observed RRXY |z ≥ 1 is RR′XY |z ≥ RRXY |z
/
B+, and a sharp bound when RRXY |z ≤ 1 is

RR′XY |z ≤ RRXY |z ×B+.

1.2.2 Proportion of studies with scientifically meaningful effect sizes as a func-
tion of the bias factor

Here, we consider the case in which B is assumed to be homogeneous across studies; that is,
all studies are subject to the same degree of unmeasured confounding, albeit possibly due
to different unmeasured confounders. Assuming homogeneous, rather than heterogeneous,
bias across studies yields conservative sensitivity analyses in some settings; see Mathur &
VanderWeele’s (2019)3 Table 1 for details.

As one metric of sensitivity to unmeasured confounding, we can estimate the proportion of
unconfounded effects stronger than q when all studies have bias factor B (i.e., all studies’
relative risk estimates are shifted away from the null by a factor of B due to unmeasured
confounding). This quantity, here denoted P̂>q (B), can be robustly estimated using the
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calibrated estimates as follows. First, for a chosen bias factor B, define a bias-corrected point
estimate for each study on the log relative risk scale as θ̂′i = log

(
RRXY |z

/
B
)

= θ̂i − logB if
µ̂ > 0 (i.e., the confounded pooled point estimate on the log relative risk scale is apparently
causative) or as θ̂′i = log

(
RRXY |z ×B

)
= θ̂i+logB if µ̂ < 0 (i.e., the confounded pooled point

estimate is apparently preventive). Similarly, define the bias-corrected pooled point estimate
µ̂′ = µ̂ − logB if µ̂ > 0 and as µ̂′ = µ̂ + logB if µ̂ < 0. Next, use the bias-corrected point
estimates θ̂′i and pooled point estimate µ̂′ to calculate bias-corrected calibrated estimates
on the log relative risk scale as θ̃′i = µ̂′ +

√
τ̂ 2/(τ̂ 2 + σ̂2

i )
(
θ̂′i − µ̂′

)
. (Note that because

B is constant across studies, no bias correction is needed for τ̂ 2.) Then P̂>q (B) can be
straightforwardly estimated using the sample proportion of bias-corrected point estimates
that are stronger than q, i.e., P̂>q (B) = P̂

(
θ̃′i > q

)
. A confidence interval can be obtained via

bias-corrected and accelerated (BCa) bootstrapping as described in the main text, resampling
the pairs (θ̂′i, σ̂i).

1.2.3 Bias factor or confounding strength required to reduce proportion of sci-
entifically meaningful effect sizes to below a threshold

As a second sensitivity analysis metric, we previously proposed reporting the minimum
bias factor in each study that would be required to reduce to less than r (e.g., 0.10) the
proportion of effects of scientifically meaningful magnitude3. This metric, denoted T̂ (r, q),
can be robustly estimated using a simple grid search across values of B. That is, for each of
a grid of candidate values for the bias factor B, such as (1, 1.01, 1.02, ...), apply the methods
described in Section 1.2.2 to estimate P̂>q(B). Then, T̂ (r, q) is simply the bias factor such
that P̂>q(B) is exactly equal to the chosen proportion r; that is, T̂ (r, q) = B : P̂>q(B) = r.

Recall that B+, the upper bound on B, is a function of two sensitivity parameters that char-
acterize the strengths of association between the unmeasured confounder(s) and the exposure
(RRXU) and between the unmeasured confounder(s) and the outcome (RRUY ). If these two
sensitivity parameters are assumed to be equal to one another6;3, the sensitivity analysis
metric T̂ (r, q) can alternatively be parameterized on the more intuitive confounding strength
scale (i.e., the values of both RRXU and RRUY ). Consider the minimum confounding strength
required to reduce to less than r the proportion of studies with scientifically meaningful effect
sizes. This quantity, denoted Ĝ (r, q), can be obtained as a simple transformation of T̂ (r, q)

as follows: Ĝ(r, q) = T̂ (r, q) +

√(
T̂ (r, q)

)2
− T̂ (r, q). This metric is closely analogous to the

“E-value” for an individual study6;5.
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Confidence intervals for T̂ (r, q) or Ĝ(r, q) can be constructed via bootstrapping by resampling
the bias-corrected point estimates, θ̂′i, estimating the desired quantity (T̂ (r, q) or Ĝ(r, q)) for
each resample, and constructing confidence intervals using the BCa method. In practice, the
same set of resamples could be used for P̂>q(B), T̂ (r, q), and Ĝ(r, q).

1.2.4 Meta-analyses including both randomized and observational studies

The present robust methods also allow straightforward extension to meta-analyses in which
some studies (e.g., randomized studies) are assumed to have no unmeasured confounding,
while other studies are assumed to be subject to unmeasured confounding of strength B. For
this setting, set the bias-corrected point estimates θ̂′i equal to their observed values (θ̂i) for the
randomized studies and to θ̂i − logB or θ̂i + logB, as described above, for the observational
studies. Then, meta-analyze these bias-corrected point estimates to arrive at a bias-corrected
pooled point estimate and heterogeneity estimate, µ̂′ and τ̂ 2′, and use these to compute the
calibrated estimates. (Note that because B is no longer constant across all studies, it is now
necessary to estimate τ̂ 2′ using the calibrated, bias-corrected estimates.) Estimation and
inference for P̂>q(B), T̂ (r, q), and Ĝ(r, q) would then proceed as above.

2. Simulation study

2.1. Methods

The simulation study assessed the performance of point estimation and inference methods
for P̂>q without confounding. We fixed the mean of the true population effects to µ = 0.50

on the mean difference scale while varying the number of studies (k) between 5 and 50,
the heterogeneity (the variance of true population effects) τ 2 ∈ {0.01, 0.04, 0.25}, and
the distribution of total sample sizes within each study (either N ∼ Unif(100, 200) or
N ∼ Unif(800, 900)). For each of k meta-analyzed studies, we generated a true effect, θi, on
the raw mean difference scale from a normal distribution, a scaled and shifted t-distribution
with 3 degrees of freedom, a bimodal uniform mixture distribution, or a shifted exponential
distribution. For all distributions, we chose the parameters to provide the desired mean of
µ = 0.50 and heterogeneity τ 2. Figure 1 shows example data depicting true population effects
simulated from each of the four distributions for each value of τ 2.
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We then simulated subject-level data for a control group with mean 0 and for a treatment with
mean θi; each group was of size N/2 with a standard deviation of 1. Thus, the within-study
standard error of the estimated mean difference, θ̂i, was approximately σ̂i =

√
4/N . For

the meta-analysis, the proportion of the total variance attributable to effect heterogeneity7;8

(termed I2) was approximately τ 2/ (τ 2 + 4/E[N ]). We chose values of q to result in true
proportions P>q of 0.05, 0.10, 0.20, and 0.50.

We ran scenarios representing all 480 possible combinations of the varying parameters, using
5,000 iterates to estimate both types of bootstrap confidence interval and 2,000 iterates to
estimate the reference distribution for the sign test method1. We ran at least 500 simulation
iterates per scenario. For inference, we assessed the coverage and width of 95% confidence
intervals constructed by computing P̂>q from calibrated estimates in bootstrapped datasets as
described above (“BCa-calibrated”), constructed using the delta method (“Parametric”)4, and
constructed by estimating P̂>q parametrically in bootstrapped datasets (“BCa-parametric”)
as we previously described4. For point estimation, we assessed the root mean squared error
(RMSE) and absolute bias of three methods: the parametric method (“Parametric”), the
sample proportion based on the calibrated estimates (“Calibrated”), and the value maximizing
the p-value of the sign test as described above (“Sign test max.”).

τ 2 = 0.01 τ 2 = 0.04 τ 2 = 0.25

E[N ] = 150 0.27 0.60 0.90
E[N ] = 850 0.68 0.89 0.98

eTable 1: Approximate values of relative heterogeneity (I2) for each combination of simulation
parameters regarding the mean within-study sample size (E[N ]) and heterogeneity (τ2).
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eFigure 1: Distributions of true population effects (θi) used in simulation study for varying choices
of heterogeneity

2.2. Summary of results

Tables 2 and 3 summarize the performance of 95% confidence intervals and of point estimates
respectively. For clarity given the very large number of simulation scenarios, the tables
summarize results according to a single varied simulation parameter that produced particularly
interesting variation in performance across methods (i.e., τ 2 for inference and the true effect
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distribution for point estimation). Comprehensive simulation results for all 480 scenarios are
also presented in the figures of Sections 2.3-2.6; these results are also publicly available as a
dataset (https://osf.io/6nyg8/).

τ 2 Method Coverage
Minimum
coverage

Width

BCa-calibrated 0.99 0.90 0.52
0.01 BCa-parametric 0.94 0.62 0.50

Parametric 0.84 0.50 0.36
Sign test 0.90 0.16 0.37

BCa-calibrated 0.98 0.91 0.38
0.04 BCa-parametric 0.89 0.44 0.35

Parametric 0.82 0.45 0.28
Sign test 0.96 0.72 0.33

BCa-calibrated 0.98 0.92 0.32
0.25 BCa-parametric 0.86 0.33 0.28

Parametric 0.82 0.39 0.25
Sign test 0.97 0.84 0.31

eTable 2: Performance of 95% confidence intervals for scenarios with k ≥ 10, showing mean
coverage, minimum coverage, and mean width of 95% confidence intervals aggregating all
scenarios with a given amount of heterogeneity (τ2).

10
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Distribution Method RMSE Bias Absolute bias
Calibrated 0.162 0.022 0.097

Exponential Parametric 0.164 0.042 0.105
Sign test max. 0.141 0.036 0.089

Calibrated 0.159 0.005 0.094
Normal Parametric 0.135 0.006 0.080

Sign test max. 0.135 0.014 0.084

Calibrated 0.151 0.007 0.089
t Parametric 0.150 0.027 0.088

Sign test max. 0.135 0.010 0.082

Calibrated 0.165 0.010 0.098
Uniform mixture Parametric 0.135 0.007 0.083

Sign test max. 0.137 0.015 0.087

eTable 3: Performance of methods for point estimation, showing means across all scenarios for
each distribution of root mean squared error (RMSE), bias, and absolute bias.
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2.3. All coverage results by distribution

eFigure 2: Coverage of 95% confidence intervals for exponential distribution
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eFigure 3: Coverage of 95% confidence intervals for normal distribution
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eFigure 4: Coverage of 95% confidence intervals for scaled t distribution
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eFigure 5: Coverage of 95% confidence intervals for uniform mixture distribution

15



Robust Metrics for Meta-Analyses

2.4. All confidence interval width results by distribution

eFigure 6: Width of 95% confidence intervals for exponential distribution
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eFigure 7: Width of 95% confidence intervals for normal distribution
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eFigure 8: Width of 95% confidence intervals for scaled t distribution
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eFigure 9: Width of 95% confidence intervals for uniform mixture distribution
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2.5. All RMSE results by distribution

eFigure 10: RMSE of point estimates for exponential distribution
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eFigure 11: RMSE of point estimates for normal distribution
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eFigure 12: RMSE of point estimates for scaled t distribution
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eFigure 13: RMSE of point estimates for uniform mixture distribution
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2.6. All bias results by distribution

eFigure 14: Bias of point estimates for exponential distribution
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eFigure 15: Bias of point estimates for normal distribution
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eFigure 16: Bias of point estimates for scaled t distribution
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eFigure 17: Bias of point estimates for uniform mixture distribution
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3. Applied example

We illustrate the methods using two meta-analyses of randomized controlled trials on the
effect of mass deworming programs in developing countries on children’s bodyweights. A
Cochrane meta-analysis9 of 11 studies reported “little to no effect” (estimated mean increase
in bodyweight [kg]: 0.08; 95% CI: [-0.11, 0.27]), while an updated meta-analysis of 22 studies
by other investigators10 reported “significant” mean increases in weight (estimate: 0.13; 95%
CI: [0.03, 0.24]). A largely unresolved controversy ensued11. We obtained data for both
meta-analyses10;9 from Croke et al.’s (2016)10 Figures 1 and 2; the data are reproduced in
Figures 18a and 18b. (We fit random-effects meta-analysis models using restricted maximum
likelihood with standard errors adjusted via the Knapp-Hartung method in keeping with best
practices12;13; hence, the confidence intervals reported in our analyses are slightly wider than
those the original authors reported using the Dersimonian-Laird method10, which are the
estimates reported above.) Figure 19 shows estimated densities of the standardized point
estimates, (θ̂i − µ̂)/

√
τ̂ 2 + σ̂2

i , in each meta-analysis14 and suggests some non-normality in
both cases. Similarly, Shapiro-Wilk tests on the standardized point estimates yielded p = 0.11

and p = 0.02 for the Taylor-Robinson et al. (2015)9 and Croke et al. (2016)10 meta-analyses
respectively, also suggesting some non-normality15.

We therefore used the calibrated estimates to estimate the proportions of effects in each
meta-analysis above and below several effect size thresholds, and we used the BCa-calibrated
method for confidence intervals. For all thresholds, the meta-analyses in fact seemed to agree
closely (Table 4). For example, both suggested that a majority of effects are above 0 (P̂>0

= 0.73 with 95% CI: [0, 1] and 0.82 with 95% CI: [0.41, 0.91] respectively9;10); these point
estimates suggest frequent beneficial effects of mass deworming, albeit possibly of very small
size. The meta-analyses also both suggested that a sizable minority of effects are above 0.2
kg (P̂>0.2 = 0.18 with 95% CI: [0, 0.55] and 0.23 with 95% CI: [0, 0.41]), though the wide
confidence intervals indicated that there was considerable uncertainty. The analysis also
indicated that in at least some settings, the programs may in fact decrease bodyweight by at
least 0.2 kg on average (P̂<−0.2 = 0.18 with 95% CI: [0, 0.45] and 0.14 with 95% CI: [0, 0.36]).
Although the point estimates appear to agree closely, some of the confidence intervals for the
first meta-analysis9 are quite wide, indicating considerable uncertainty. Table 4 illustrates
how these results compare to those obtained using parametric methods.
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RE Model

−1 −0.5 0 0.5 1 1.5

Estimated increase in body weight (kg)

Awasthi 1995

Sur 2005

Awasthi 2001

Alderman 2006

Watkins 1996

Hall 2006

Dossa 2001b

Dossa 2001a

Awasthi 2000

Kruger 1996

Donnen 1998

 0.98 [ 0.69,  1.27]

 0.50 [−0.42,  1.42]

 0.17 [−0.50,  0.84]

 0.15 [−0.03,  0.33]

 0.13 [−0.08,  0.34]

 0.00 [−0.14,  0.14]

 0.00 [−0.27,  0.27]

 0.00 [−0.52,  0.52]

−0.05 [−0.20,  0.10]

−0.38 [−0.82,  0.06]

−0.45 [−0.78, −0.12]

 0.08 [−0.18,  0.34]

(a) Taylor-Robinson et al. (2015)9 meta-analysis

RE Model

−2 −1 0 1 2

Estimated increase in body weight (kg)

Awasthi 1995
Stephenson 1993
Ostwald 1984
Gateff 1972
Sur 2005
Wiria 2013
Awasthi 2001
Willett 1979
Alderman 2006
Watkins 1996
Gupta 1982
Hall 2006
Joseph 2015
Liu 2015
Gupta 1982
Ndibazza 2012
Dossa 2001b
Dossa 2001a
Awasthi 2000
Kruger 1996
Donnen 1998
Miguel 2004

 0.98 [ 0.69,  1.27]
 0.90 [ 0.54,  1.26]

 0.70 [−0.18,  1.58]
 0.35 [ 0.10,  0.60]
 0.29 [ 0.11,  0.47]

 0.19 [−0.68,  1.06]
 0.17 [ 0.04,  0.30]

 0.16 [−0.01,  0.33]
 0.15 [−0.03,  0.33]
 0.13 [−0.08,  0.34]
 0.13 [−0.16,  0.42]
 0.05 [−0.07,  0.17]
 0.04 [−0.06,  0.14]
 0.03 [−0.25,  0.31]
 0.03 [−0.31,  0.37]
 0.01 [−0.17,  0.19]
 0.00 [−0.27,  0.27]
 0.00 [−0.52,  0.52]

−0.05 [−0.20,  0.10]
−0.38 [−0.82,  0.06]

−0.45 [−0.78, −0.12]
−0.76 [−1.62,  0.10]

 0.13 [−0.02,  0.29]

(b) Croke et al. (2016)10 meta-analysis

eFigure 18: Forest plots for each meta-analysis of study-level point estimates (mean differences
in bodyweight with vs. without mass deworming intervention) with 95% confidence
intervals. Pooled point estimates were estimated via random-effects meta-analysis.
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eFigure 19: Estimated densities of true population effects in each meta-analysis.
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Taylor-Robinson (2015) Croke et al. (2016)

k 11 22
µ̂ 0.08 [-0.18, 0.34] 0.13 [-0.02, 0.29]
τ̂ 0.35 [0.00, 0.51] 0.28 [0.13, 0.38]

Est. % of effects Parametric Calibrated Parametric Calibrated
> 0 59 [33, 85] 73 [0, 100] 68 [49, 87] 82 [41, 91]
> 0.1 48 [21, 74] 45 [0, 82] 54 [34, 75] 50 [14, 68]
> 0.2 36 [11, 62] 18 [0, 55] 40 [20, 61] 23 [0, 41]
> 0.5 11 [0, 58] 9 [0, 27] 10 [0, 35] 9 [0, 23]
< −0.1 30 [5, 55] 18 [0, 36] 21 [3, 38] 14 [0, 27]
< −0.2 21 [0, 44] 18 [0, 45] 12 [0, 29] 14 [0, 36]

eTable 4: Number of studies (k), pooled point estimates (µ̂), heterogeneity estimates of standard
deviation of true population effects (τ̂), and estimated percent of estimates above and
below various thresholds (100% × P̂>q or 100% × P̂<q). “Parametric”: point estimate
was obtained parametrically and inference was obtained either via the delta method or
by bootstrapping parametric estimates when the estimated percentage of effects was less
than 15% or greater than 85%. “Calibrated”: point estimate and inference were obtained
using the calibrated estimates and BCa bootstrapping. Effect sizes are presented on the
raw mean difference scale (kg of bodyweight). Brackets denote 95% confidence intervals.

4. Software

The code below illustrates use of the function prop_stronger in the R package MetaUtility
to estimate the proportion of effects above 0.5 in the Taylor-Robinson (2015) meta-analysis
described above. The standard R documentation for the function provides details.

# see the Open Science Framework repository for the dataset "dt"

# and a few steps of data prep

library(MetaUtility) # we ran version 2.0.0

# estimate proportion of effects above 0.5 kg

# using the recommended methods (i.e., calibrated estimates for

# point estimate and BCa -calibrated method for CI)

prop_stronger(q = 0.5, # threshold

tail = "above", # look at effects above the threshold
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estimate.method = "calibrated",

ci.method = "calibrated",

dat = dt, # dataset

yi.name = "yi", # name of point estimate variable in dataset

vi.name = "vyi") # name of study variance variable in dataset
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